植物生态学报 ›› 2020, Vol. 44 ›› Issue (4): 360-372.DOI: 10.17521/cjpe.2019.0208

所属专题: 稳定同位素生态学 生态学研究的技术和方法

• 综述 • 上一篇    下一篇

碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望

葛体达1,*(),王东东1,2,祝贞科1,魏亮1,2,魏晓梦1,2,吴金水1,2   

  1. 1中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室, 长沙 410125
    2中国科学院大学, 北京 100049
  • 收稿日期:2019-08-06 接受日期:2019-10-14 出版日期:2020-04-20 发布日期:2020-01-03
  • 通讯作者: 葛体达
  • 基金资助:
    国家自然科学基金(41430860);国家自然科学基金(41761134095);国家自然科学基金(41811540031);湖南省自然科学基金优秀青年项目(2019JJ30028);湖南省自然科学基金创新研究群体项目(2019JJ10003);湖南省国际科技创新合作基地项目(2018WK4012)

Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem

GE Ti-Da1,*(),WANG Dong-Dong1,2,ZHU Zhen-Ke1,WEI Liang1,2,WEI Xiao-Meng1,2,WU Jin-Shui1,2   

  1. 1CAS Key Laboratory of Subtropical Agriculture Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-08-06 Accepted:2019-10-14 Online:2020-04-20 Published:2020-01-03
  • Contact: GE Ti-Da
  • Supported by:
    National Natural Science Foundation of China(41430860);National Natural Science Foundation of China(41761134095);National Natural Science Foundation of China(41811540031);Natural Science Foundation of Hunan Province(2019JJ30028);Foundation Science Natural of the Groups Research Innovative of Hunan Province(2019JJ10003);Hunan Province Base for Scientific and Technological Innovation Cooperation(2018WK4012)

摘要:

碳同位素示踪技术具有高度的专一性和灵敏度, 经过几十年的发展, 形成了一系列成熟的标记方法, 在陆地生态系统碳循环过程的研究中已得到广泛应用。目前, 自然丰度法、与13C贫化示踪技术结合的自由空气中气体浓度增加(FACE)实验、脉冲与连续标记法以及碳同位素高丰度底物富集标记法是研究陆地生态系统碳循环过程常用的碳同位素示踪方法; 通过将长期定位实验和室内模拟实验结合, 量化光合碳在植物-土壤系统的传输与分配特征, 明确植物光合碳对土壤有机质的来源、稳定化过程的影响及其微生物驱动机制; 阐明土壤碳动态变化(迁移与转化)和新碳与老碳对土壤碳库储量的相对贡献, 评估有机碳输入、转化与稳定的生物与非生物微观界面过程机制。然而, 生态系统碳循环受气候、植被、人为活动等多因素影响, 碳同位素技术需要结合质谱、光谱技术实现原位示踪, 结合分子生物学技术阐明其微生物驱动机制, 从而构建灵敏、准确、多尺度、多方位的同位素示踪技术体系。因此, 该文以稳定碳同位素为主, 综述了碳同位素示踪技术的原理、分析方法和在陆地生态系统碳循环过程中的应用进展, 归纳总结了碳同位素示踪技术结合原位检测技术和分子生物学技术的研究进展和应用前景, 并对碳同位素示踪技术存在的问题进行了分析和展望。

关键词: 陆地生态系统, 土壤有机质, 碳循环, 碳同位素示踪技术, 稳定碳同位素探针技术

Abstract:

Recently developed in recent decades, the carbon isotope tracing technology is one of the most reliable methods, which has been widely used in the study of carbon (C) cycling in terrestrial ecosystems due to its high specificity and sensitivity. Here, the principle, analysis method and application process of C isotope tracing technology in C cycling in terrestrial ecosystem have been reviewed. Four different methods are currently being used in laboratory or field conditions, including natural abundance method, Free-Air Concentration Enrichment (FACE) technology coupling with 13C dilution method, pulse and continuous labeling with 13C enriched CO2, and labeling with 13C enriched substrates. Results of field experiments and lab incubation experiments employing carbon isotope tracing technology were combined in order to quantify the transformation and distribution of photosynthetic C in plant-soil system. Furthermore, these techniques also help to understand the contribution of plant photosynthetic C to soil organic matter, the stabilization of soil organic matter and its microbial mechanism, to illustrate the dynamic changes of soil organic carbon (SOC), evaluate the contribution of new and old organic C to soil C storage, and estimate the micromechanism of SOC input, conversion and the stabilization in terrestrial ecosystems. Carbon cycle is affected by climate, vegetation, human activities and other factors, and therefore it is imperative to further develop a sensitive, accurate, multiscale and multidirectional isotope tracing system by combining carbon isotopes with mass spectrometry, spectroscopy and molecular biological technology. We have summarized the coupled application of carbon isotope tracing technology and the insitu detection involving molecular and biological approaches, and discussed the existing issues of carbon isotope tracing technology.

Key words: terrestrial ecosystem, soil organic matter, carbon cycle, carbon isotope tracing technology, stable carbon isotope probe technology