植物生态学报 ›› 2014, Vol. 38 ›› Issue (10): 1110-1116.DOI: 10.3724/SP.J.1258.2014.00105

• 研究论文 • 上一篇    下一篇

四种作物光下暗呼吸速率降低的原因

康华靖1,2,3,4(), 李红4, 权伟4, 欧阳竹1,2,3,**()   

  1. 1温州科技职业学院, 浙江温州 325006
    2中国科学院地理科学与资源研究所生态网络观测与模拟重点试验室, 北京 100101
    3中国科学院禹城综合试验站, 北京 100101
    4中国科学院大学, 北京 100049
  • 收稿日期:2014-03-06 接受日期:2014-06-04 出版日期:2014-03-06 发布日期:2021-04-20
  • 通讯作者: 欧阳竹
  • 作者简介:** E-mail: ouyz@igsnrr.ac.cn
    * E-mail: kanghuajing@126.com
  • 基金资助:
    国家高技术研究发展计划(863计划);中国科学院地理科学与资源研究所“一三五”战略科技计划项目(2012ZD004);浙江省教育厅项目(2013-A-116)

Causes of decreasing mitochondrial respiration under light in four crops

KANG Hua-Jing1,2,3,4(), LI Hong4, QUAN Wei4, OUYANG Zhu1,2,3,**()   

  1. 1Wenzhou Vocational & Technical College, Wenzhou, Zhejiang 325006, China
    2Key Laboratory of Ecosystem Network Observation and Modeling Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3Yucheng Comprehensive Experiment Station, Chinese Academy of Sciences, Beijing 100101, China
    4University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-03-06 Accepted:2014-06-04 Online:2014-03-06 Published:2021-04-20
  • Contact: OUYANG Zhu

摘要:

以C3作物(小麦, Triticum aestivum和大豆, Glycine max)和C4作物(玉米, Zea mays和千穗谷, Amaranthus hypochondriacus)为例, 探讨了其光下暗呼吸速率降低的原因。结果表明, 2% O2条件下, CO2浓度为0时, 叶室CO2浓度维持在0左右, 而胞间CO2浓度(Ci)显著高于叶室CO2浓度。分析认为这是由于此时植物的暗呼吸仍在正常进行。因此, 该测量条件下的表观光合速率应为CO2浓度为0时的光下暗呼吸速率(Rd)。CO2浓度为0时, 不同光强下的Rd均随光强的升高而降低, 且在低光强(50 μmol·m-2·s-1)和高光强(2000 μmol·m-2·s-1)之间存在显著差异, 说明光强对Rd具有较大影响。在2% O2条件下, 经饱和光强充分活化而断光后, 以上4种作物叶片的暗呼吸速率(Rn)均随着时间的推移而下降, 说明光强并未抑制暗呼吸速率。试验结果表明, Rd的降低是由于CO2被重新回收利用所导致, CO2回收利用率随光强的升高而增大, 从低光强(50 μmol·m-2·s-1)到高光强(2000 μmol·m-2·s-1), 小麦、大豆、玉米和千穗谷的回收利用率范围变动分别为22.65%-52.91%、22.40%-55.31%、54.24%-87.59%和72.43%-90.07%。

关键词: CO2回收利用, 抑制, 光下暗呼吸, 光呼吸

Abstract:

Aims Despite the increasing attention given to the rate of mitochondrial respiration under light (Rd), considerable confusion persists over whether mitochondrial respiration in the dark (Rn) is inhibited by light and whether Rd is affected by light intensity. The objective of this study is to test the hypotheses: 1)Rn is not inhibited by light; 2) the rate of Rd changes with light intensity; and 3) the photosynthetic refixation of CO2 produced by Rn accounts for the apparent disparity between Rd and Rn.
Methods In the present study, 0.02 mol·mol-1 O2 (i.e. 2% O2) was used to saturate Rn and to inhibit photorespiration (Rp). By using combined gas exchange measurements and a low O2 (2% O2) method, the post-illumination CO2 release rate of Rn, photosynthetic rate (Pn) in response to photosynthetically active radiation (PAR) in 2% O2 at either 380 or 0 μmol·mol-1 CO2, of C3 (Triticum aestivum and Glycine max) and C4(Zea mays and Amaranthus hypochondriacus) plants, were measured.
Important finding Rn was not inhibited by light. At 2% O2 and 0 μmol·mol-1 CO2, the measured parameters could be used to accurately estimate Rd when CO2 concentration was set for 0 μmol·mol-1. Rd decreased with increasing light intensity. Although Rd was lower in the dark, this could be accounted for by photosynthetic re-fixing of respiratory CO2. For all plants tested, CO2recovery rates increased with increasing light intensity (from 50 and 2 000 μmol·m-2·s-1).

Key words: CO2 re-fixed, inhibition, mitochondrial respiration in the light, photorespiration