植物生态学报 ›› 2012, Vol. 36 ›› Issue (8): 849-858.DOI: 10.3724/SP.J.1258.2012.00849

• 研究论文 • 上一篇    下一篇

大麦种子对盐的发芽响应模型

张红香*(), 田雨, 周道玮, 郑伟, 王敏玲   

  1. 中国科学院东北地理与农业生态研究所, 长春 130012
  • 收稿日期:2011-11-08 接受日期:2012-04-05 出版日期:2012-11-08 发布日期:2012-08-21
  • 通讯作者: 张红香
  • 作者简介:* E-mail: zhanghongxiang@heigae.ac.cn

Research on modeling germination response to salinity of barley seeds

ZHANG Hong-Xiang*(), TIAN Yu, ZHOU Dao-Wei, ZHENG Wei, WANG Min-Ling   

  1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
  • Received:2011-11-08 Accepted:2012-04-05 Online:2012-11-08 Published:2012-08-21
  • Contact: ZHANG Hong-Xiang

摘要:

为了明确盐对种子发芽影响的渗透效应和离子效应共同作用方式以及量化种子发芽对盐的响应, 以两个大麦(Hordeum vulgare)品种‘Cask’和‘County’为研究对象, 设置4个恒定温度(5、12、20和27 ℃)、5个等渗的NaCl和聚乙二醇(PEG)浓度梯度(-0.45、-0.88、-1.32、-1.76和-2.20 MPa, 蒸馏水作对照), 做常规发芽实验。结果显示: (1)两个品种在NaCl溶液中比在等渗的PEG溶液中发芽率高且发芽速度快; (2) NaCl和PEG分别作为渗透剂计算出的水势模型参数值差异很大, 说明水势模型不能用来描述种子发芽对盐的响应; (3)大麦种子在盐溶液中的发芽速率与盐浓度成显著的负相关直线关系, 因此我们修订了水势模型, 将修订后的模型命名为盐度模型, 用来量化盐对大麦种子发芽的影响。与水势模型计算出的发芽时间相比, 盐度模型计算出的50%种子发芽时间与大麦种子实际发芽时间更接近; (4)大麦种子在等渗的NaCl和PEG溶液中发芽速率差异随着水势降低, 先增加后降低。据此我们提出盐的渗透效应和离子效应共同作用于种子发芽的3种情况: 第一种在低盐条件下, 主要是渗透效应起负作用; 第二种情况在中盐条件下, 渗透效应和离子效应共同起作用, 离子效用的正作用强于渗透效应的负作用; 第三种情况在高盐条件下, 离子效应逐渐开始起离子毒害的负作用。

关键词: 大麦, 离子效应, 模型, 渗透效应, 盐, 种子发芽

Abstract:

Aims Salinization is a worldwide problem, and some researchers focus on the effect of salt on seed germination. The results are variable, and quantifying germination response to salt is significant. Furthermore, seed germination is affected by salinity, as a result of both osmotic and ion effects. How the two effects act together is unclear. Thus our objectives are to propose a model to accurately describe the effect of salt on seed germination and to clarify the role of the osmotic and the ion effect act under different salinities.
Methods Two varieties of barley (Hordeum vulgare) seeds (‘Cask’ and ‘County’) were cultured in five binate iso-osmotic polyethylene glycol (PEG) and NaCl solutions (-0.45, -0.88, -1.32, -1.76 and -2.20 MPa, distilled water as the control) at four constant temperatures of 5, 12, 20 and 27 °C. Germination time courses were recorded and germination rates (the reciprocal of germination time) were calculated. The hydrotime model and the new salinity model were used to calculate the parameters and test which was the better fit.
Important findings Results indicated that not only were seeds in saline conditions able to germinate at lower osmotic potentials than seeds germinating in an isotonic PEG-6000 solution, but that they were also able to do so faster. The hydrotime parameters of the NaCl treatments had great differences with the isotonic PEG treatments, which indicated the hydrotime model cannot describe salt effects on seed germination well. Barley seed germination rates in salt solutions were negatively linear with salinity. We proposed a salinity model to quantify germination response to salt. The germination time calculated from the salinity model approached the real data, compared to that calculated from the hydrotime model. Differences of germination rates in NaCl and the isotonic PEG treatments increased and then decreased with decreasing water potential. We suggest three situations of function mode by the osmotic and ion effects of salt. First, at low salinities the osmotic effect acts as the main negative role. Second, at medium salinities the two effects act together, with the positive ion effect stronger than the negative osmotic effect. Third, at high salinities the ion effect begins to harm the germination process.

Key words: barley (Hordeum vulgare), ion effect, model, osmotic effect, salinity, seed germination