植物生态学报 ›› 2019, Vol. 43 ›› Issue (3): 245-257.DOI: 10.17521/cjpe.2018.0311

所属专题: 生态化学计量

• 研究论文 • 上一篇    下一篇

云南哀牢山两种常见半寄生植物的生态化学计量特征及其与寄主的关系

汤丹丹1,2,吴毅1,2,刘文耀1,*(),胡涛1,2,黄俊彪1,2,张婷婷1,2   

  1. 1 中国科学院西双版纳热带植物园热带森林生态学重点实验室, 云南勐腊 666303
    2 中国科学院大学, 北京 100049
  • 收稿日期:2018-12-07 修回日期:2019-03-01 出版日期:2019-03-20 发布日期:2019-04-23
  • 通讯作者: 刘文耀
  • 基金资助:
    国家自然科学基金(31770496);国家自然科学基金(41471050);中国科学院生物多样性保护策略项目(ZSSD-016);中国科学院"135项目"(2017XTBG-T01)

Ecological stoichiometry of two common hemiparasite plants and their relationship with host trees in Ailao Mountain, Yunnan, China

TANG Dan-Dan1,2,WU Yi1,2,LIU Wen-Yao1,*(),HU Tao1,2,HUANG Jun-Biao1,2,ZHANG Ting-Ting1,2   

  1. 1 CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-12-07 Revised:2019-03-01 Online:2019-03-20 Published:2019-04-23
  • Contact: LIU Wen-Yao
  • Supported by:
    Supported by the National Natural Science Foundation of China(31770496);Supported by the National Natural Science Foundation of China(41471050);Biodiversity Conservation Strategy Program of Chinese Academy of Sciences(ZSSD-016);The "135 Program" of Chinese Academy of Sciences(2017XTBG-T01)

摘要:

为深入探究半寄生植物与其寄主间的养分关系, 在云南哀牢山徐家坝地区选取两种常见半寄生植物椆树桑寄生(Loranthus delavayi)和柳叶钝果寄生(Taxillus delavayi), 研究其寄主枝条-吸器-寄生枝条-寄生叶片间的碳(C)、氮(N)、磷(P)生态化学计量特征关系。结果表明: 1)两种半寄生植物的寄主枝条-吸器-寄生枝条-寄生叶片这一连续体的C、N、P生态化学计量特征变化趋势并不完全相同, 具有物种自身的特性。2)同一半寄生植物的寄主枝条具有相似的C、N、P生态化学计量特征, 寄主物种对半寄生植物的生态化学计量特征没有显著影响。3)寄主枝条的C、N、P生态化学计量特征间具有紧密的相关关系, 吸器弱于寄主枝条, 寄生枝条弱于吸器, 寄生叶片的N、P含量相关关系不显著。4)寄主枝条与寄生叶片间的C含量存在极显著负相关关系。5)吸器与寄主枝条间的C、N、P生态化学计量特征存在紧密的相关关系, 但在生态化学计量特征的数值上吸器与寄生枝条更为接近。吸器作为连接寄主与寄生植物的关键部位, 其与寄主枝条极为显著的相关关系体现了寄主枝条养分对寄生植物的重要性, 而吸器在元素含量、计量比的数值以及相互关系上与寄生枝条更为相似, 则体现了吸器作为寄生植物器官具有与寄生枝条相似的生理功能。通过对寄主枝条-吸器-寄生枝条-寄生叶片C、N、P生态化学计量特征的分析, 为深入研究半寄生植物的养分利用策略与生态适应性提供了重要的基础资料。

关键词: 半寄生植物, 生态化学计量学, 枝条, 吸器, 叶片

Abstract:

Aims The objectives of this study were to characterize the carbon (C) : nitrogen (N) : phosphorus (P) stoichiometry of the “host branches-haustorias-parasitic branches-parasitic leaves” continuum and to better understand nutrient relationship between hemiparasite plants and their hosts.


Methods The study site is located in the Xujiaba area of Ailao Mountain, Yunnan Province. Two common hemiparasite plants Loranthus delavayi and Taxillus delavayi were selected, and the C, N and P concentrations of host branches, haustorias, parasitic branches and parasitic leaves were measured.


Important findings The results showed that, the tendency of C, N, P stoichiometry characteristics of host branches-haustorias-parasitic branches-parasitic leaves were species specific, and were not identical between the two hemiparasites. The host branches of the same parasitic plant have similar C, N, and P stoichiometry characteristics, and the host species have no significant effect on the stoichiometry of hemiparasites. There was a close coupling relationship between the C, N, P stoichiometry characteristics in the host branches, and the haustorias was weaker than the host branch, the parasitic branch was weaker than the haustorias, and there was no significant correlation between the N and P concentrations in the parasitic leaf. There was a significant negative correlation between the host branches and the parasitic leaves of C concentration. The C, N, P stoichiometry characteristics of the haustorias were more similar to the parasitic branches, and it had a very significant positive correlation with the host branches. As a key part of the host and parasitic plants, the haustorias had a significant correlation with the host branches, which reflected the importance of the host branch nutrients to the parasitic plants. The element stoichiometry and their relationship of the haustorias were more similar to those of the parasitic branches, which embodied that haustorias as a parasitic plant organ had physiological functions similar to those of the parasitic branches. These results provided important data for in-depth study of nutrient utilization strategies and ecological adaptability of hemiparasitic plants.

Key words: hemiparasite, ecological stoichiometry, branch, haustoria, leaf