Chin J Plan Ecolo ›› 2003, Vol. 27 ›› Issue (5): 684-689.doi: 10.17521/cjpe.2003.0100

• Research Articles • Previous Articles     Next Articles

Distribution Dynamics of Artemisia halodendron Absorbent Roots in Different Kinds of Sandy Land

LIU Shi-Gang, PIAO Shun-ji, AN Mao-Zhu, LIU Fang   

  • Online:2003-05-10 Published:2003-05-10
  • Contact: SHEN Wei-Jun

Abstract:

Artemisia halodendron an important semi-shrub used for preventing drift-sand and sand storms, degraded significantly in the desert succession series from shifting sandy land to fixed sandy land in the Horqin Sandy Land. In order to find one of the vital reasons of its degradation, growth and distribution of absorbent roots (fine roots, diameter<1 mm) of A. halodendron in relation to soil moisture were studied in shifting sandy land and fixed sandy land with trench and root augur methods. Differences between distribution (0-90 cm depth) of its absorbent roots before a raining period and that after the raining period were compared. 1) In the dry season, soil moisture in the rhizosphere increased with depth. It increased much more in shifting sandy land than in fixed sandy land. Soil moisture in the rhizosphere decreased with depth after the raining period. It decreased more rapidly in fixed sandy land than in shifting sandy land. 2) There was more dry weight of main roots in the 0-15 cm layer than in the other layers. This phenomenon was more obvious in shifting sandy land than in fixed sandy land. 3) In the dry season, there was a larger proportion of fine roots dry weight in 0-45 cm in fixed sandy land (84.9%) than in shifting sandy land (61.9%). In the rainy period, the dry weight of the fine roots of A. halodendron in 0-15 cm layer mounted up more rapidly than in the other layers. Furthermore, the fine roots of A. halodendron in shifting sandy land grew more rapidly than the ones in fixed sandy land. The reaction of the fine roots of A. halodendron to precipitation was less sensitive in fixed sandy land than in shifting sandyland, which was a disadvantage of amending of root’s distribution and sucking up of soil moisture.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Bingyu Zhang;Xiaohua Su*;Xiangming Zhou. Gene Regulation in Flower Development in the Forest[J]. Chin Bull Bot, 2008, 25(04): 476 -482 .
[2] ZHAO Da-Zhong;YONG Wei-Dong;CHONG Kang;TAN Ke-Hui. Minireview of Research Advances on Flowering in Higher Plant[J]. Chin Bull Bot, 1999, 16(02): 157 -162 .
[3] Zhang Fu-ren and Mo Ri-gen. A Simple Technique for Observing Fracture Surface of Pollen Grains by SEM[J]. Chin Bull Bot, 1992, 9(03): 63 -64 .
[4] He Guan-fu. Retrospect and Prospect of Plant Chemotaxonomy in China[J]. Chin Bull Bot, 1983, 1(02): 7 -13 .
[5] Jing Jiang Shuan Han Chunpeng Song. SB202190 Modulate Salicylic Acid-induced H2O2 Generation SB202190 Modulate Salicylic Acid-induced H2O2 Generation[J]. Chin Bull Bot, 2007, 24(04): 444 -451 .
[6] Hui Zhang;Wenkai Tang;Xin Tan;Lulu Gong;Xuebao Li. Progresses in the Study of Gene Regulation of Cotton Fiber Development[J]. Chin Bull Bot, 2007, 24(02): 127 -133 .
[7] Suxia Xu;Liangsheng Wang;Qingyan Shu;Minghua Su;Qingyun Huang;Wenhui Zhang;Gongshe Liu . Progress of Study of the Biology of the Resource Plant Bougainvillea[J]. Chin Bull Bot, 2008, 25(04): 483 -490 .
[8] Wang Wen-tsai. An Introduction to Four Important Current Systems of Classification of the Angiosperms[J]. Chin Bull Bot, 1990, 7(03): 1 -18 .
[9] He Xin-hua. Irom Nutrition in Plants[J]. Chin Bull Bot, 1992, 9(04): 24 -28 .
[10] Han Xian-zhong;Zhang Zhi-guo;Liu Hua and Zhao Li hong. Preliminary Research on the Growth Conditions of Adventitious Roots of GENTIANA MANSHUR CA[J]. Chin Bull Bot, 1990, 7(03): 49 -51 .