Chin J Plan Ecolo ›› 2007, Vol. 31 ›› Issue (3): 497-504.doi: 10.17521/cjpe.2007.0062

Special Issue: Mangrove

• Research Articles • Previous Articles     Next Articles


MU Mei-Rong; JIANG Qiao-Lan; WANG Wen-Qing   

  1. School of Life Sciences, Xiamen University, Xiamen 361005, China
  • Online:2007-05-30 Published:2007-05-30
  • Contact: WANG Wen-Qing


Aims Mangrove plants are usually categorized as true mangrove plants and semi-mangrove plants on the basis of their distribution in inter-tidal regions. However, the identification of some fringe mangrove species found mainly on the landward transitional zones is controversial. Specific leaf area (SLA, leaf area per unit dry mass) and mass- and area-based leaf nitrogen concentrations (Nmass and Narea) are important leaf traits for plants, but relevant comparative research on true and semi-mangrove plants is unavailable. Our objective was to determine differences between the two groups and to classify the controversial species according to their leaf traits. Ultimately, this will assist in the management, protection and utilization of mangrove forest.
Methods Three individuals in similar growth sites were chosen for each species from Hainan Island. Fully expanded mature leaves were sampled from the upper canopy of all plants. Succulence (water content per unit leaf area), SLA, Nmass and Narea of mature leaves were studied for 33 species, representing all but three of the mangrove species in China. 
Important findings True mangrove plants accumulated more Cl and water per unit leaf area than semi-mangrove plants, except for Pemphis acidula, Hernandia sonora and Clerodendrum inerme. Cl and water content per unit leaf area of true mangrove plants were generally >2.5 mg·cm-2 and >2.4 g·dm-2, respectively. Cl concentrations were positively related to succulence for all mangrove species. True mangrove plants had low SLA (<100 cmg-1) and high Narea; however, semi-mangrove plants had high SLA (mean of 160.4 cmg-1). Pemphis acidula had much lower SLA than other semi-mangrove species. Our study suggested that there are significant differences between true mangrove plants and semi-mangrove plants in leaf Cl concentration, succulence, SLA, Nmass and Narea. Heritiera littoralis, Excoecaria agallocha, Acrostichum aureum and Acrostichum speciosum are better classified as semi-mangrove plants, while Acanthus ilicifolius and Acanthus ebrecteatus are classified as true mangrove plants, and Xylocarpus granatum needs further research.

No related articles found!
Full text



[1] Lin liang-qiu;Zhang Qing-qi and Wu Wen-shan. A Study on Pollen Morphology of Rosa laevigata and Its Nutrition Composition[J]. Chin Bull Bot, 1994, 11(04): 43 -44 .
[2] Jie Dong;Fenghui Qi;Yaguang Zhan. Establishment of the Suspension Culture System and Optimization of Biosynthesis of Gallic Acid in Acer ginnala[J]. Chin Bull Bot, 2008, 25(06): 734 -740 .
[3] Li Guo-zhen;Qin Ming-bo;Kang Ning-ling;Xie De-yu;Ye He-chun and Li Guo-feng. Tissue Culture and Chromosome Analysis of Arnebia euchroma[J]. Chin Bull Bot, 1992, 9(01): 37 -41 .
[4] Han Bi-wen. The Synthitic Activities of Roots and their Relation to the Above-grond Parts[J]. Chin Bull Bot, 1984, 2(23): 23 -25 .
[5] Guiling Wang;Zhiwei Qin;Xiuyan Zhou;Zhiyun Zhao. Genetic Analysis and SSR Markers of Tuberculate Trait in Cucumis sativus[J]. Chin Bull Bot, 2007, 24(02): 168 -172 .
[6] Hui Yang;Lizhe An;Zhiye Wang;Jianping Zhou;Xunling Wang. Effects of Enhanced UV-B Radiation on Pollen Activities of 2 Tomato Cultivars in Terms of Endogenous Hormone,Polyamine and Proline Levels in Stamens[J]. Chin Bull Bot, 2007, 24(02): 161 -167 .
[7] Hao Zhao;Zhao Xue-chen;Zheng Shu-jun and Qu Chun-ying. Winter Hardiness of Wheat Seedling at Differant Leaf-Age[J]. Chin Bull Bot, 1985, 3(05): 38 -40 .
[8] Chang Huey-ju;Guan Zhong-tian;Zhou Lin and Hsu Kuo-shih. Comparison of two natural cycad communities in China[J]. Chin Bull Bot, 1995, 12(专辑): 52 -58 .
[9] . Positional Information and Plant Development [J]. Chin Bull Bot, 2005, 22(03): 366 -374 .
[10] Deyong Ren, Guanghua He, Yinghua Ling, Xianchun Sang, Zhenglin Yang, Fangming Zhao. Analysis of Quantitative Trait Loci Additive and Epistasis Effects for Panicle Length with Single Segment Substitution Lines in Rice[J]. Chin Bull Bot, 2010, 45(06): 662 -669 .