Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (2): 206-216.doi: 10.17521/cjpe.2015.0020


• Orginal Article • Previous Articles    

A review of research on responses of leaf traits to climate change

WANG Chang-Shun1,3, WANG Shi-Ping1,2,*()   

  1. 1Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2Center of Excellence of the Tibetan Plateau Earth Science, Chinese Academy of Sciences, Beijing 100101, China
    3University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-09-16 Accepted:2015-01-10 Online:2015-03-10 Published:2015-02-01
  • Contact: Shi-Ping WANG
  • About author:

    # Co-first authors


Leaf traits reflect the highly adaptable and self-regulatory capacity of plants to complex environmental conditions. That how they respond to climate change is one of key topics in studies of plant adaptability. This review synthesizes the current understanding on the responses of leaf size, specific leaf mass, leaf nitrogen content and carbon isotopes to climate change. The responses of leaf traits to climate change vary with different leaf structures and ecological properties. Thus, a single leaf trait cannot be used to fully reflect the responses of plants to climate change. There are still a lot of uncertainties concerning the effects of climate change on leaf traits under different scales. Studies are relatively lacking in the alpine region. This review helps us to better understand the relationships between leaf traits and climate as well as the responses and adaptation of plants to climate change. It is critical to predict the variations and evolutionary strategies of plants in response to future climate change.

Key words: leaf size, leaf mass per area, leaf nitrogen content, carbon isotope

1 Aerts R, Chapin FS III (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67.
2 An YA, Wan SQ, Zhou XH, Subedar AA, Wallace LL, Luo YQ (2005). Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming.Global Change Biology, 11, 1733-1744.
3 Aranda I, Castro L, Pardos M, Gil L, Pardos JA (2005). Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (Quercus suber L.) seedlings.Forest Ecology and Management, 210, 117-129.
4 Atkins RF (2005). The LMA is a critical rescue device in airway emergencies.Anesthesia & Analgesia, 101, 1888-1889.
5 Atkinson LJ, Campbell CD, Zaragoza-Castells J, Hurry V, Atkin OK (2010). Impact of growth temperature on scaling relationships linking photosynthetic metabolism to leaf functional traits.Functional Ecology, 24, 1181-1191.
6 Bassin S, Werner RA, Sörgel K, Volk M, Buchmann N, Fuhrer J (2009). Effects of combined ozone and nitrogen deposition on the in situ properties of eleven key plant species of a subalpine pasture.Oecologia, 158, 747-756.
7 Boratyński A, Jasińska A, Boratyńska K, Iszkuło G, Piórkowska M (2009). Life span of needles of Pinus mugo Turra: Effect of altitude and species origin.Polish Journal of Ecology, 57, 567-572.
8 Boucek RE, Rehage JS (2014). Climate extremes drive changes in functional community structure.Global Change Biology, 20, 1821-1831.
9 Chen JG, Yang Y, Sun H (2011). Advances in the studies of responses of alpine plants to global warming.Chinese Journal of Applied and Environmental Biology, 17, 435-446.(in Chinese with English abstract)
[陈建国, 杨扬, 孙航 (2011). 高山植物对全球气候变暖的响应研究进展. 应用与环境生物学报, 17, 435-446.]
10 Cordell S, Goldstein G, Meinzer FC, Handley LL (1999). Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient.Functional Ecology, 13, 811-818.
11 Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California.Ecological Monographs, 79, 109-126.
12 Day TA, Ruhland CT, Xiong FS (2008). Warming increases aboveground plant biomass and C stocks in vascular-plant- dominated Antarctic tundra.Global Change Biology, 14, 1827-1843.
13 de Frenne P, Graae BJ, Kolb A, Shevtsova A, Baeten L, Brunet J, Chabrerie O, Cousins SAO, Decocq G, Dhondt R, Die- kmann M, Gruwez R, Heinken T, Hermy M, Öester M, Saguez R, Stanton S, Tack W, Vanhellemont M, Verheyen K (2011). An intraspecific application of the leaf-height- seed ecology strategy scheme to forest herbs along a latitudinal gradient.Ecography, 34, 132-140.
14 Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH (2010). Global patterns in leaf 13C discrimination and implications for studies of past and future climate.Proceedings of the National Academy of Sciences of the United States of America, 107, 5738-5743.
15 Dong TF, Feng YL, Lei YB, Zhang LK (2012). Comparison on leaf functional traits of main dominant woody species in wet and dry habitats.Chinese Journal of Ecology, 31, 1043-1049.(in Chinese with English abstract)
[董廷发, 冯玉龙, 类延宝, 张丽坤 (2012). 干旱和湿润生境中主要优势树种叶片功能性状的比较. 生态学杂志, 31, 1043-1049.]
16 Dunbar-Co S, Sporck MJ, Sack L (2009). Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation.International Journal of Plant Sciences, 170, 61-75.
17 Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB, Pearman PB, le Lay G, Piedallu C, Albert CH, Choler P, Coldea G, De Lamo X, Dirnböck T, Gégout JC, Gómez-García D, Grytnes JA, Heegaard E, Høistad F, Noguées-Bravo D, Normand S, Puşcaş M, Sebastià MT, Stanisci A, Theurillat JP, Trivedi MR, Vittoz P, Guisan A (2011). 21st century climate change threatens mountain flora unequally across Europe.Global Change Biology, 17, 2330-2341.
18 Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis.Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503-537.
19 Feng QH, Cheng RM, Shi ZM, Liu SR, Liu XL, He F, Cao HM (2011). Response of foliar δ13C of Quercus spinosa to altitudinal gradients.Acta Ecologica Sinica, 31, 3629-3637.(in Chinese with English abstract)
[冯秋红, 程瑞梅, 史作民, 刘世荣, 刘兴良, 何飞, 曹慧明 (2011). 巴郎山刺叶高山栎叶片δ13C对海拔高度的响应. 生态学报, 31, 3629-3637.]
20 Feng QH, Cheng RM, Shi ZM, Liu SR, Wang WX, Liu XL, He F (2013). Response of leaf functional traits and the relationships among them to altitude of Salix dissa in Balang Mountain.Acta Ecologica Sinica, 33, 2712-2718.(in Chinese with English abstract)
[冯秋红, 程瑞梅, 史作民, 刘世荣, 王卫霞, 刘兴良, 何飞 (2013). 巴郎山异型柳叶片功能性状及性状间关系对海拔的响应. 生态学报, 33, 2712-2718.]
21 Fonseca CR, Overton JM, Collins B, Westoby M (2000). Shifts in trait-combinations along rainfall and phosphorus gradients.Journal of Ecology, 88, 964-977.
22 Garnier E, Cordonnier P, Guillerm JL, Sonié L (1997). Specific leaf area and leaf nitrogen concentration in annual and perennial grass species growing in mediterranean old-fields.Oecologia, 111, 490-498.
23 Geng Y, Wang ZH, Liang CZ, Fang JY, Baumann F, Kühn P, Scholten T, He JS (2012). Effect of geographical range size on plant functional traits and the relationships between plant, soil and climate in Chinese grasslands.Global Ecology and Biogeography, 21, 416-427.
24 Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984). Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats.The American Naturalist, 124, 479-497.
25 Grime JP (2001). Plant functional types, communities and ecosystems. In: Press MC, Huntly WJ, Levin S eds. Ecology: Achievement and Challenge: 41st Symposium of the British Ecological Society. Blackwell Science, Oxford, UK. 161-181.
26 Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168, 377-385.
27 He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310.
28 He JS, Wang XP, Flynn DFB, Wang L, Schmid B, Fang JY (2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence.Ecology, 90, 2779-2791.
29 He JS, Wang XP, Schmid B, Flynn DFB, Li XF, Reich PB, Fang JY (2010). Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes.Journal of Plant Research, 123, 551-561.
30 He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006). A test of the generality of leaf trait relationships on the Tibetan Plateau.New Phytologist, 170, 835-848.
31 Heberling JM, Fridley JD (2012). Biogeographic constraints on the world-wide leaf economics spectrum.Global Ecology and Biogeography, 21, 1137-1146.
32 Hobbie SE, Miley TA, Weiss MS (2002). Carbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in northern Alaska.Ecosystems, 5, 761-774.
33 Hollister RD, Webber PJ, Tweedie CE (2005). The response of Alaskan arctic tundra to experimental warming: Differences between short- and long-term responses.Global Change Biology, 11, 525-536.
34 Hölscher D, Schmitt S, Kupfer K (2002). Growth and leaf traits of four broad-leaved tree species along a hillside gradient.Forstwissenschaftliches Centralblatt, 121, 229-239.
35 Hudson JMG, Henry GHR, Cornwell WK (2011). Taller and larger: Shifts in Arctic tundra leaf traits after 16 years of experimental warming.Global Change Biology, 17, 1013-1021.
36 IPCC (Intergovernmental Panel on Climate Change) (2013). Working group I contribution to the IPCC fifth assessment report climate change 2013: The physical science basis. In: Thomas FS, Dahe Q, Gian-Kasper P, Melinda MBT, Simon KA, Judith B eds. Observations: Atmosphere and Surface. Cambridge University Press, Cambridge, UK.
37 Jentsch A, Kreyling J, Beierkuhnlein C (2007). A new generation of climate change experiments: Events, not trends.Frontiers in Ecology and the Environment, 5, 365-374.
38 Kim E, Donohue K (2013). Local adaptation and plasticity of Erysimum capitatum to altitude: Its implications for responses to climate change.Journal of Ecology, 101, 796-805.
39 Kogami H, Hanba YT, Kibe T, Terashima I, Masuzawa T (2001). CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes.Plant, Cell & Environment, 24, 529-538.
40 Korner C (1999). Physiological Plant Ecology. 2nd edn. Springer-Verlag, New York. 297-311.
41 Lambers H, Poorter H (1992). Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences.Advances in Ecological Research, 23, 187-261.
42 Lilley JM, Bolger TP, Peoples MB, Gifford RM (2001). Nutritive value and the nitrogen dynamics of Trifolium subterraneum and Phalaris aquatica under warmer, high CO2 conditions.New Phytologist, 150, 385-395.
43 Lobell DB, Schlenker W, Costa-Roberts J (2011). Climate trends and global crop production since 1980.Science, 333, 616-620.
44 Long WX, Zang RG, Schamp BS, Ding Y (2011). Within- and among-species variation in specific leaf area drive community assembly in a tropical cloud forest.Oecologia, 167, 1103-1113.
45 Lopez-Iglesias B, Villar R, Poorter L (2014). Functional traits predict drought performance and distribution of Mediterranean woody species.Acta Oecologica, 56, 10-18.
46 Luo L, Shen GZ, Xie ZJ, Yu J (2011). Leaf functional traits of four typical forests along the altitudinal gradients in Mt. Shennongjia.Acta Ecologica Sinica, 31, 6420-6428.(in Chinese with English abstract)
[罗璐, 申国珍, 谢宗强, 喻杰 (2011). 神农架海拔梯度上4种典型森林的乔木叶片功能性状特征. 生态学报, 31, 6420-6428.]
47 Luo TX, Zhang L, Zhu HZ, Daly C, Li MC, Luo J (2009). Correlations between net primary productivity and foliar carbon isotope ratio across a Tibetan ecosystem transect.Ecography, 32, 526-538.
48 Luomala EM, Laitinen K, Kellomäki S, Vapaavuori E (2003). Variable photosynthetic acclimation in consecutive cohorts of Scots pine needles during 3 years of growth at elevated CO2 and elevated temperature.Plant, Cell & Environment, 26, 645-660.
49 Lusk CH, Falster DS, Jara-Vergara CK, Jimenez-Castillo M, Saldana-Mendoza A (2008). Ontogenetic variation in light requirements of juvenile rainforest evergreens.Functional Ecology, 22, 454-459.
50 McCulloh KA, Sperry JS (2005). Patterns in hydraulic architecture and their implications for transport efficiency.Tree Physiology, 25, 257-267.
51 McDonald PG, Fonseca CR, Overton JMC, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades?Functional Ecology, 17, 50-57.
52 Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009). Greenhouse-gas emission targets for limiting global warming to 2 °C.Nature, 458, 1158-1196.
53 Milla R, Reich PB (2007). The scaling of leaf area and mass: The cost of light interception increases with leaf size.Proceedings of the Royal Society B, 274, 2109-2114.
54 Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos, 90, 517-524.
55 Navarro T, El Oualidi J, Taleb MS, Pascual V, Cabezudo B, Milla R (2010). Leaf patterns, leaf size and ecologically related traits in high Mediterranean mountain on the Moroccan high atlas.Plant Ecology, 210, 275-290.
56 Oleksyn J, Reich PB, Zytkowiak R, Karolewski P, Tjoelker MG (2002). Needle nutrients in geographically diverse Pinus sylvestris L. populations.Annals of Forest Science, 59, 1-18.
57 Oleksyn J, Reich PB, Zytkowiak R, Karolewski P, Tjoelker MG (2003). Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations.Oecologia, 136, 220-235.
58 Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.Global Ecology and Biogeography, 18, 137-149.
59 Pakeman RJ (2013). Intra-specific leaf trait variation: Management and fertility matter more than the climate at continental scales.Folia Geobotanica, 48, 355-371.
60 Palmroth S, Holm Bach L, Nordin A, Palmqvist K (2014). Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs.Oecologia, 175, 457-470.
61 Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, Iglesias A, Jaramillo CA, Johnson KR, Jordan GJ, Kraft NJB, Lovelock EC, Lusk CH, Niinemets U, Penuelas J, Rapson G, Wing SL, Wright IJ (2011). Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications.New Phytologist, 190, 724-739.
62 Pierce S, Brusa G, Sartori M, Cerabolini BEL (2012). Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies.Annals of Botany, 109, 1047-1053.
63 Pontes LDS, Soussana JF, Louault F, Andueza D, Carrère P (2007). Leaf traits affect the above-ground productivity and quality of pasture grasses.Functional Ecology, 21, 844-853.
64 Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis.New Phytologist, 182, 565-588.
65 Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species.Ecology, 87, 1733-1743.
66 Ramírez-Valiente JA, Sánchez-Gómez D, Aranda I, Valladares F (2010). Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities.Tree Physiology, 30, 618-627.
67 Read QD, Moorhead LC, Swenson NG, Bailey JK, Sanders NJ (2014). Convergent effects of elevation on functional leaf traits within and among species.Functional Ecology, 28, 37-45.
68 Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
69 Reich PB, Walters MB, Ellsworth DS (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems.Ecological Monographs, 62, 365-392.
70 Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998). Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional groups.Oecologia, 114, 471-482.
71 Roche P, Díaz-Burlinson N, Gachet S (2004). Congruency analysis of species ranking based on leaf traits: Which traits are the more reliable? Plant Ecology, 174, 37-48.
72 Rose L, Rubarth MC, Hertel D, Leuschner C (2013). Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows.Journal of Vegetation Science, 24, 239-250.
73 Royer DL, Meyerson LA, Robertson KM, Adams JM (2009). Phenotypic plasticity of leaf shape along a temperature gradient in Acer rubrum.PLoS ONE, 4, e7653.
74 Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms.American Journal of Botany, 97, 438-445.
75 Ryser P (1996). The importance of tissue density for growth and life span of leaves and roots: A comparison of five ecologically contrasting grasses.Functional Ecology, 10, 717-723.
76 Scheepens JF, Frei ES, Stöcklin J (2010). Genotypic and environmental variation in specific leaf area in a widespread alpine plant after transplantation to different altitudes.Oecologia, 164, 141-150.
77 Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture.Plant Physiology, 156, 832-843.
78 Shipley B, Lechowicz MJ, Wright I, Reich PB (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum.Ecology, 87, 535-541.
79 Song LN, Zhu JJ, Li MC, Yan T, Zhang JX (2012). Needles stable Carbon isotope composition and traits of Pinus sylvestris var. mongolica insparse wood grassland in South edge of Keerqin Sandy Land under the conditions of differentprecipitation.Chinese Journal of Applied Ecology, 23, 1435-1440.(in Chinese with English abstract)
[宋立宁, 朱教君, 李明财, 闫涛, 张金鑫 (2012). 不同降水条件下科尔沁沙地南缘疏林草地樟子松针叶δ13C和叶性状特征. 应用生态学报, 23, 1435-1440.]
80 Song LL, Fan JW, Wu SH (2011). Research advances on changes of leaf traits along an altitude gradient.Progress in Geography, 30, 1431-1439.(in Chinese with English abstract)
[宋璐璐, 樊江文, 吴绍洪 (2011). 植物叶片性状沿海拔梯度变化研究进展. 地理科学进展, 30, 1431-1439.]
81 Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization.Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392.
82 Tjoelker MG, Oleksyn J, Reich PB (1999). Acclimation of respiration to temperature and CO2 in seedlings of boreal tree species in relation to plant size and relative growth rate.Global Change Biology, 5, 679-691.
83 Valladares F, Sánchez-Gómez D (2006). Ecophysiological traits associated with drought in Mediterranean tree seedlings: Individual responses versus interspecific trends in eleven species.Plant Biology, 8, 688-697.
84 Villar R, Merino J (2001). Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems.New Phytologist, 151, 213-226.
85 Vitasse Y, Lenz A, Kollas C, Randin CF, Hoch G, Körner C (2014). Genetic vs. non-genetic responses of leaf morphology and growth to elevation in temperate tree species.Functional Ecology, 28, 243-252.
86 von Caemmerer S, Ludwig M, Millgate A, Farquhar GD, Price D, Badger M, Furbank RT (1997). Carbon isotope discrimination during C4 photosynthesis: Insights from transgenic plants.Australian Journal of Plant Physiology, 24, 487-494.
87 Wang GH (2007). Leaf trait co-variation, response and effect in a chronosequence.Journal of Vegetation Science, 18, 563-570.
88 Weih M (2001). Evidence for increased sensitivity to nutrient and water stress in a fast-growing hybrid willow compared with a natural willow clone.Tree Physiology, 21, 1141-1148.
89 Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159.
90 Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate.Global Ecology and Biogeography, 14, 411-421.
91 Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827.
92 Xu ZF, Hu TX, Wang KY, Zhang YB, Xian JR (2009). Short-term responses of phenology, shoot growth and leaf traits of four alpine shrubs in a timberline ecotone to simulated global warming, eastern Tibetan Plateau, China.Plant Species Biology, 24, 27-34.
93 Yang B, Wang JC, Zhang YB (2010). Effect of long-term warming on growth and biomass allocation of Abies faxoniana seedlings.Acta Ecologica Sinica, 30, 5994-6000.(in Chinese with English abstract)
[杨兵, 王进闯, 张远彬 (2010). 长期模拟增温对岷江冷杉幼苗生长与生物量分配的影响. 生态学报, 30, 5994-6000.]
94 Yang LD, Yang Y, Wang GX, Guo JY, Yang Y (2011). Short- term effects of warming on growth and stoichiometrical characteristics ofAbies fabiri (Mast.) Craib seedling in Gongga Mountain.Acta Ecologica Sinica, 31, 3668-3676.(in Chinese with English abstract)
[羊留冬, 杨燕, 王根绪, 郭剑英, 杨阳 (2011). 短期增温对贡嘎山峨眉冷杉幼苗生长及其CNP化学计量学特征的影响. 生态学报, 31, 3668-3676.]
95 Yang Y, Wang GX, Klanderud K, Yang LD (2011). Responses in leaf functional traits and resource allocation of a dominant alpine sedge (Kobresia pygmaea) to climate warming in the Qinghai-Tibetan Plateau permafrost region.Plant and Soil, 349, 377-387.
96 Yates MJ, Verboom GA, Rebelo AG, Cramer MD (2010). Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region.Functional Ecology, 24, 485-492.
97 Zhang L, Luo TX (2004). Advances in ecological studies on leaf lifespan and associated leaf traits.Acta Phytoec- ologica Sinica, 28, 844-852.(in Chinese with English abstract)
[张林, 罗天翔 (2004). 植物叶寿命及其相关叶性状的生态学研究进展. 植物生态学报, 28, 844-852.]
98 Zhang L, Luo TX, Liu XS, Wang Y (2012). Altitudinal variation in leaf construction cost and energy content of Bergenia purpurascens.Acta Oecologica, 43, 72-79.
99 Zhang P, Wang G, Zhang T, Chen NL (2010). Responses of foliar δ13C in Sabina przewalskii and Picea crassifolia to altitude and its mechanism in the Qilian Mountains, China.Chinese Journal of Plant Ecology, 34, 125-133.(in Chinese with English abstract)
[张鹏, 王刚, 张涛, 陈年来 (2010). 祁连山两种优势乔木叶片δ13C的海拔响应及其机理. 植物生态学报, 34, 125-133.]
100 Zhou YC, Fan JW, Zhong HP, Zhang WY (2013). Relation- ships between altitudinal gradient and plant carbon isotope composition of grassland communities on the Qinghai- Tibet Plateau, China.Science China: Earth Sciences, 56, 311-320.
[周咏春, 樊江文, 钟华平, 张文彦 (2013). 青藏高原草地群落植物碳同位素组成与海拔梯度的关系. 中国科学: 地球科学, 43, 120-130.]
101 Zhu JT, Li XY, Zhang XM, Zeng FJ, Yang SG (2010). Leaf functional traits of Ceratoides latens in northern slope of Kunlun mountain and its regional difference with the altitude.Journal of Desert Research, 30, 1325-1330.(in Chinese with English abstract)
[朱军涛, 李向义, 张希明, 曾凡江, 杨尚功 (2010). 昆仑山北坡驼绒藜叶片功能性状及其海拔差异性. 中国沙漠, 30, 1325-1330.]
102 Zhu Y, Siegwolf RTW, Durka W, Körner C (2010). Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients.Oecologia, 162, 853-863.
[1] Da TiGe Dongdong Wang Zhenke Zhu Liang Wei Xiaomeng Wei. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem [J]. Chin J Plant Ecol, 2020, 44(4生态技术与方法专辑): 0-0.
[2] ZHU Qi-Lin, XIANG Rui, TANG Li, LONG Guang-Qiang. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition [J]. Chin J Plan Ecolo, 2018, 42(6): 672-680.
[3] Gan Huang, Xiao Wang, Xuefeng Jin, Xiaojing Wang, Yaqin Wang. GRXC9 Negatively Regulates Leaf Size in Arabidopsis [J]. Chin Bull Bot, 2017, 52(5): 550-559.
[4] Zhi-Min LI, Chuan-Kuan WANG, Dan-Dan LUO. Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii [J]. Chin J Plan Ecolo, 2017, 41(11): 1140-1148.
[5] Ming-Xiu LIU, Guo-Lu LIANG. Research progress on leaf mass per area [J]. Chin J Plan Ecolo, 2016, 40(8): 847-860.
[6] Xin XIONG, Hui-Ling ZHANG, Jian-Ping WU, Guo-Wei CHU, Guo-Yi ZHOU, De-Qiang ZHANG. 13C and 15N isotopic signatures of plant-soil continuum along a successional gradient in Dinghushan Biosphere Reserve [J]. Chin J Plan Ecolo, 2016, 40(6): 533-542.
[7] Xiao-Lin SI, Wen-Yin WANG, Xiao-Gang GAO, Dang-Hui XU. Effects of nitrogen and silicon application on leaf nitrogen content and net photosynthetic rate of Elymus nutans in alpine meadow [J]. Chin J Plan Ecolo, 2016, 40(12): 1238-1244.
[8] CHEN Qing,WANG Yi-Dong,GUO Chang-Cheng,WANG Zhong-Liang. Foliar stable carbon isotope ratios of Phragmites australis and the relevant environmental factors in marsh wetlands in Tianjin [J]. Chin J Plan Ecolo, 2015, 39(11): 1044-1052.
[9] Shao-An PAN, Guo-Quan PENG, Dong-Mei YANG. Biomass allocation strategies within a leaf: Implication for leaf size optimization [J]. Chin J Plant Ecol, 2015, 39(10): 971-979.
[10] YANG Hao,LUO Ya-Chen. Responses of the functional traits in Cleistogenes squarrosa to nitrogen addition and drought [J]. Chin J Plan Ecolo, 2015, 39(1): 32-42.
[11] ZHANG Lin, YAN En-Rong, WEI Hai-Xia, LIU Xin-Sheng, SHEN Wei. Leaf nitrogen resorption proficiency of seven shrubs across timberline ecotones in the Sergymla Mountains, Southeast Xizang, China [J]. Chin J Plan Ecolo, 2014, 38(12): 1325-1332.
[12] YANG Dong-Mei, ZHAN Feng, and ZHANG Hong-Wei. Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China [J]. Chin J Plan Ecolo, 2012, 36(4): 281-291.
[13] Yanming Miao, Jinzhi Lü, Runcheng Bi, Guiqin Yan. Dynamic Changes of Traits of Leaves from Elaeagnus mollis [J]. Chin Bull Bot, 2012, 47(3): 257-263.
[14] SHANG Zhi-Yuan, WANG Jian, CUI Ming-Xing, and CHEN Zhen-Ju. Intra-annual variation in δ13C from tree rings of Pinus sylvestris var. mongolica and its response to climatic factors [J]. Chin J Plan Ecolo, 2012, 36(12): 1256-1267.
[15] Xianzhao Liu, Chaokui Li, Shujian Xu, Wenwen Wang, Guoan Wang, Lili Zhao. Carbon Isotope Composition of C3 Herbaceous Plants and Its Relation to Humidity Index in Arid and Humid Climate Zones in Northern China [J]. Chin Bull Bot, 2011, 46(6): 675-687.
Full text



[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[6] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[7] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .
[8] ZHANG Da-Yong, JIANG Xin-Hua. An Ecological Perspective on Crop Prduction[J]. Chin J Plan Ecolo, 2000, 24(3): 383 -384 .
[9] Gui Ji-xun, Zhu Ting-cheng. Study of Energy Flow Between Litter and Decomposers in Aneurolepidium chinese Grassland[J]. Chin J Plan Ecolo, 1992, 16(2): 143 -148 .
[10] YAN Xiu-Feng. Ecology of Plant secondary Metabolism[J]. Chin J Plan Ecolo, 2001, 25(5): 639 -640 .