Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (4): 388-397.doi: 10.17521/cjpe.2015.0038

• Orginal Article • Previous Articles     Next Articles

Optimization and evaluation of vegetation photosynthesis and respiration model using the measurements collected from the forest site of subtropical coniferous-evergreen

LIU Cheng1,*(), HUANG Jian-Ping1,**(), DIAO Yi-Wei1, WEN Xue-Fa2, XIAO Wei1, ZHANG Mi1, LEE Xu-Hui1, LIU Shou-Dong1   

  1. 1Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China
    2Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101,China
  • Received:2014-09-04 Accepted:2015-01-10 Online:2015-04-21 Published:2015-04-01
  • Contact: Cheng LIU,Jian-Ping HUANG E-mail:chengliu6542@gmail.com;hjpfwj@gmail.com
  • About author:

    # Co-first authors

Abstract: <i>Aims</i>

Determination of carbon cycling model parameters is critical to simulate the net ecosystem CO2 exchange (NEE). The objectives of this study were to determine the parameters of vegetation photosynthesis and respiration model (VPRM) and improve the calculation of NEE to benefit regional modeling of CO2.

<i>Methods</i>

Two schemes are examined in optimization of the parameters in VPRM. Two years CO2 flux and meteorological observational data in 2010-2011 at the Qianyanzhou (QYZ) eddy tower site are used to determine the parameters in VPRM and another full year flux observational data in 2012 are used to evaluate the model performance. Several statistics metrics are calculated to evaluate the model performance on NEE simulations.

<i>Important findings</i>

The results indicate, traditional method with Michaelis-Menten equation is not suitable to determine the parameters of VPRM, whereas the method with parameters retrieved from the VPRM calculation equation provides much more reasonable results. The parameter of maximum light use efficiency (λ) is critical for the VPRM calculation of NEE. Our result is larger than the typical value of C3 plant (1/6), but consistent with the other studies. Using the optimized parameters, VPRM is able to capture NEE variations for different seasons. The statistics calculation with one-year NEE simulation shows that, the mean bias is -0.86 μmol·m-2·s-1 and correlation coefficient is 0.72. Overall, the VPRM performs much better in growing season than the non-growing season when the peak value of NEE is underestimated by 52%. The VPRM simulated NEE shows better agreement with observations on sunny days than rainy or cloudy days.

Key words: net ecosystems exchange (NEE), parameter optimization, Qianyanzhou, vegetation photosynthesis and respiration model

Fig. 1

Schematic diagram of the vegetation photosynthesis respiration model (VPRM). EVI, enhanced vegetation index; GEE, gross ecosystem CO2 exchange; LSWI, land surface water index; NEE, net ecosystem CO2 exchange; PAR, photosynthetically active radiation; R, respiration; T, temperature."

Table 1

A comparison of the parameters derived from two schemes at Qianyanzhou site"

方案
Scheme
λ PAR0 (μmol·m-2·s-1) α (μmol CO2·m-2·s-1·℃-1) β (μmol CO2·m-2·s-1)
1 0.048 514 0.164 0.906
2 0.203 345 0.164 0.906

Fig. 2

A comparison of VPRM-simulated net ecosystem CO2 exchange (NEE-VPRM) with observed NEE (NEE-Obs) for year 2012 at Qianyanzhou site. +, simulated NEE with optimized parameters of scheme 1; ·, simulated NEE with optimized parameters of scheme 2; Solid black line, 1:1 line."

Table 2

Statistical analysis between simulated net ecosystem CO2 exchange (NEE) and observed NEE"

2012年
Year 2012
斜率
Slope
截距
Intercept
(μmol·m-2·s-1)
R平方值
R square
均方根误差
Root mean squared error (μmol·m-2·s-1)
平均误差
Mean bias
(μmol·m-2·s-1)
有效数据
Valid
data
方案一
Scheme 1
全年0.5 h NEE All year 0.5 h NEE 0.17 2.44 0.51 9.58 6.68 5 909
生长旺季时刻平均 Mean diurnal variation during the peak growing season 0.27 3.49 0.97 8.01 5.63 48
非生长旺季时刻平均 Mean diurnal variation during the non-peak growing season 0.06 1.78 0.61 4.12 2.24 48
方案二
Scheme 2
全年0.5 h NEE All year 0.5 h NEE 0.73 -2.23 0.52 6.23 -0.86 5 909
生长旺季时刻平均 Mean diurnal variation during the peak growing season 0.92 0.65 0.96 1.72 0.87 48
非生长旺季时刻平均 Mean diurnal variation during the non-peak growing season 0.50 0.66 0.89 2.15 0.91 48

Fig. 3

A comparison between the observed and modeled mean diurnal variation of net ecosystem CO2 exchange (NEE) during the peak growing season (April to September) of 2012 at Qianyanzhou site. NEE-Obs, observed NEE; NEE-Mod, simulated NEE with optimized parameters of scheme 2."

Fig. 4

Regression analyses between the VPRM modeled net ecosystem CO2 exchange (NEE-VPRM) and observed NEE (NEE-Obs) during growing season (April to September) in year 2012 at Qianyanzhou site. Black circle: simulated NEE with optimized parameters of scheme 2; dotted line: 1:1 line."

Fig. 5

A comparison between the observed and modeled mean diurnal variation of net ecosystem CO2 exchange (NEE) during the non-peak growing season of 2012 at Qianyanzhou site. NEE-Obs, observed NEE; NEE-Mod, simulated NEE with optimized parameters of scheme 2."

Fig. 6

A comparison of simulated net ecosystem CO2 exchange (NEE) with observations at Qianyanzhou site during the day 184-190 of 2012 (sunny). NEE-Obs, observed NEE; NEE-Mod, simulated NEE with optimized parameters of scheme 2; GEE-Mod, simulated gross ecosystem CO2 exchange with optimized parameters of scheme 2; R-Mod,simulated respiration with optimized parameters of scheme 2."

Fig. 7

A comparison of simulated net ecosystem CO2 exchange (NEE) with observations at Qianyanzhou site during the day 152-158 of 2012 (cloudy). NEE-Obs, observed NEE; NEE-Mod, simulated NEE with optimized parameters of scheme 2; GEE-Mod, simulated gross ecosystem CO2 exchange with optimized parameters of scheme 2; R-Mod,simulated respiration with optimized parameters of scheme 2."

[1] Ahmadov R, Gerbig C, Kretschmer R, Koerner S, Neininger B, Dolman AJ, Sarrat C (2007). Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model. Journal of Geophysical Research: Atmospheres (1984-2012), 112(D22), doi: 10.1029/2007 JD008552.
[2] Ahmadov R, Gerbig C, Kretschmer R, Körner S, Rödenbeck C, Bousquet P, Ramonet M (2009). Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2.Biogeosciences, 6, 807-817.
[3] Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001). Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities.Bulletin of the American Meteorological Society, 82, 2415-2434.
[4] Clark KL, Gholz HL, Castro MS (2004). Carbon dynamics along a chronosequence of slash pine plantations in north Florida.Ecological Applications, 14, 1154-1171.
[5] Diao YW, Huang JP, Liu C, Cui J, Liu SD (2015). A modeling study of CO2 flux and concentrations over Yangtze River Delta with the WRF-GHG model.Chinese Journal of Atmosphere Sciences. doi: 10.3878/j.issn.1006-9895.1409.14127.(in Chinese with English abstract)
[刁一伟, 黄建平, 刘诚, 崔健, 刘寿东 (2015). 长三角地区净生态系统碳通量及大气二氧化碳浓度的数值模拟. 大气科学, doi: 10.3878/j.issn.1006-9895.1409.14127.]
[6] Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law B, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001). Gap filling strategies for long term energy flux data sets.Agricultural and Forest Meteorology, 107, 71-77.
[7] Goulden ML, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW, Wofsy SC (1997). Physiological responses of a black spruce forest to weather.Journal of Geophysical Research: Atmospheres (1984-2012), 102(D24), 28987-28996.
[8] Hansen MC, DeFries RS, Townshend JRG, Carroll M, Dimiceli C, Sohlberg RA (2003). Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm.Earth Interactions, 7(10), 1-15.
[9] Hilton TW, Davis KJ, Keller K, Urban NM (2013). Improving North American terrestrial CO2 flux diagnosis using spatial structure in land surface model residuals.Biogeosciences, 10, 4607-4625.
[10] Hollinger DY, Goltz SM, Davidson EA, Lee JT, Tu K, Valentine HT (1999). Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest.Global Change Biology, 5, 891-902.
[11] Huete AR, Liu HQ, Batchily K, Van Leeuwen W (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS.Remote Sensing of Environment, 59, 440-451.
[12] IPCC (2007). Climate change 2007: The physical science basis. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
[13] King DA, Turner DP, Ritts WD (2011). Parameterization of a diagnostic carbon cycle model for continental scale application.Remote Sensing of Environment, 115, 1653-1664.
[14] Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UKT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation.Agricultural and Forest Meteorology, 113, 97-120.
[15] Li HG, Wu J (2006). Uncertainty analysis in ecological studies: An overview. In: Wu J, Jones KB, Li H, Loucks OL eds. Scaling and Uncertainty Analysis in Ecology: Methods and Applications. Springer, Dordrecht, The Netherlands. 45-66.
[16] Liu YF, Yu GR, Wen XF, Wang YH, Song X, Li J, Sun XM, Yang FT, Chen YR, Liu QJ (2006). Seasonal dynamics of CO2 fluxes from subtropical plantation coniferous ecosystem.Science in China Series D: Earth Science, 49, 99-109.
[刘允芬, 于贵瑞, 温学发, 王迎红, 宋霞, 李菊, 孙晓敏, 杨风亭, 陈永瑞, 刘琪璟 (2006). 千烟洲中亚热带人工林生态系统CO2通量的季节变异特征. 中国科学D辑: 地球科学, 36, 91-102.]
[17] Mahadevan P, Wofsy SC, Matross DM, Xiao XM, Dunn AL, Lin JC, Gerbig C, Munger JW, Chow VY, Gottlieb EW (2008). A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Global Biogeochemical Cycles, 22, GB2005, doi: 10.1029/2006GB002735.
[18] Mi N, Yu GR, Wang PX, Wen XF, Sun XM, Zhang LM, Song X, Wang SS (2007). Modeling seasonal variation of CO2 flux in a subtropical coniferous forest using the EALCO model. Journal of Plant Ecology (in Chinese), 31, 1119-1131.(in Chinese with English abstract)
[米娜, 于贵瑞, 王盘兴, 温学发, 孙晓敏, 张雷明, 宋霞, 王树森 (2007). 基于EALCO模型对中亚热带人工针叶林CO2通量季节变异的模拟. 植物生态学报, 31, 1119-1131.]
[19] Monteith JL (1972). Solar radiation and productivity in tropical ecosystems.Journal of Applied Ecology, 9, 747-766.
[20] Pillai D, Gerbig C, Ahmadov R, Rödenbeck C, Kretschmer R, Koch T, Thompson R, Neininger B, Lavrié JV (2011). High-resolution simulations of atmospheric CO2 over complex terrain-representing the Ochsenkopf mountain tall tower.Atmospheric Chemistry and Physics, 11, 7445-7464.
[21] Potter CS, Klooster SA (1998). Interannual variability in soil trace gas (CO2, N2O, NO) fluxes and analysis of controllers on regional to global scales.Global Biogeochemical Cycles, 12, 621-635.
[22] Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993). Terrestrial ecosystem production: a process model based on global satellite and surface data.Global Biogeochemical Cycles, 7, 811-841.
[23] Turner DP, Ritts WD, Styles JM, Yang Z, Cohen WB, Law BE, Thornton PE (2006). A diagnostic carbon flux model to monitor the effects of disturbance and interannual variation in climate on regional NEP.Tellus B, 58, 476-490.
[24] Veroustraete F, Sabbe H, Eerens H (2002). Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data.Remote Sensing of Environment, 83, 376-399.
[25] Wofsy SC, Harriss RC (2002). The North American Carbon Program (NACP). Report of the NACP Committee of the US Interagency Carbon Cycle Science Program. US Global Change Research Program, Washington, DC.
[26] Xiao XM, Boles S, Liu JY, Zhang DF, Liu ML (2002). Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data.Remote Sensing of Environment, 82, 335-348.
[27] Xiao XM, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang QY, Moore B (2004b). Satellite-based modeling of gross primary production in an evergreen needleleaf forest.Remote Sensing of Environment, 89, 519-534.
[28] Xiao XM, Zhang QY, Braswell B, Urbanski S, Boles S, Wofsy S, Moore B, Ojima D (2004a). Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data.Remote Sensing of Environment, 91, 256-270.
[29] Xiao XM, Zhang QY, Hollinger D, Aber J, Moore B (2005a). Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data.Ecological Applications, 15, 954-969.
[30] Xiao XM, Zhang QY, Saleska S, Hutyra L, de Camargo P, Wofsy S, Frolking S, Boles S, Keller M, Moore B (2005b). Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest.Remote Sensing of Environment, 94, 105-122.
[31] Yuan W, Liu S, Cai W, Dong W, Chen J, Arain A, Blanken PD, Cescatti A, Wohlfahrt G, Georgiadis T, Genesio L, Gianelle D, Grelle A, Kiely G, Knohl A, Liu D, Marek M, Merbold L, Montagnani L, Panferov O, Peltoniemi M, Rambal S, Raschi A, Varlagin A, Xia J (2013). Are vegetation-specific model parameters required for estimating gross primary production?Geoscientific Model Development Discussions, 6, 5475-5488.
[32] Yuan WP, Cai WW, Xia JZ, Liu SG, Dong WJ, Merbold L, Law B, Arain A, Beringer J, Bernhofer C, Black A, Blanken PD, Cescatti A, Chen Y, Francois L, Gianelle D, Janssens IA, Jung M, Kato T, Kiely G, Liu D, Marcolla B, Montagnani L, Raschi A, Roupsard O, Varlagin A, Wohlfahrt G (2014). Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agricultural and Forest Meteorology, 192-193, 108-120.
[33] Yuan WP, Liu SG, Yu GR, Bonnefond JM, Chen JQ, Davis K, Desai AR, Goldstein AH, Gianelle D, Rossi F, Suyker AE, Verma SB (2010). Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data.Remote Sensing of Environment, 114, 1416-1431.
[34] Yuan WP, Liu SG, Zhou GS, Zhou GY, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu YM, Law BE, Stoy PC, Vesala T, Wofsy SC, other AmeriFlux collaborators (2007). Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes.Agricultural and Forest Meteorology, 143, 189-207.
[35] Zhang DQ, Shi PL, Zhang XZ (2005). Some advance in the main factors controlling soil respiration.Advances in Earth Science, 20, 778-785.(in Chinese with English abstract)
[张东秋, 石培礼, 张宪洲 (2005). 土壤呼吸主要影响因素的研究进展. 地球科学进展, 20, 778-785.]
[36] Zhang L, Yu GR, Luo YQ, He HL, Zhang LM (2009). Carbon cycle modeling of a broad-leaved Korean pine forest in Changbai mountain of China using the model-data fusion approach.Chinese Journal of Plant Ecology, 33, 1044-1055.(in Chinese with English abstract)
[张黎, 于贵瑞, Luo YQ, 何洪林, 张雷明 (2009). 基于模型数据融合的长白山阔叶红松林碳循环模拟. 植物生态学报, 33, 1044-1055.]
[37] Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Song X, Liu YF, Guan DX, Yan JH, Zhang YP (2006). Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China.Science in China Series D: Earth Sciences, 49(2), 47-62.
[38] Zhu WQ, Chen YH, Xu D, Li J (2005). Advances in terrestrial net primary productivity (NPP) estimation models.Chinese Journal of Ecology, 24, 296-300.(in Chinese with English abstract)
[朱文泉, 陈云浩, 徐丹, 李京 (2005). 陆地植被净初级生产力计算模型研究进展. 生态学杂志, 24, 296-300.]
[1] Ying Liu, Baozhang Chen,Jing Chen,Guang Xu . Applicability of Evapotranspiration Simulation Models for Forest Ecosystems in Qianyanzhou [J]. Chin Bull Bot, 2016, 51(2): 226-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 2000, 17(06): 572 .
[2] Zhao yu-jin;Wang Tai and Tong Zhe. A Simplified Method for Extraction of Endogenous IAA ABA and GAs from Rice Leave[J]. Chin Bull Bot, 1994, 11(04): 52 -55 .
[3] Ni Jian and Wu Ji-you. Prospection of Hidden Deposit Using Spectral Reflectance of Plant Leaves Surface[J]. Chin Bull Bot, 1997, 14(01): 36 -40 .
[4] . Analysis of Wild Lotus with RAPD Markers[J]. Chin Bull Bot, 2005, 22(增刊): 64 -67 .
[5] Lin Peng, Lu Chang-yi, Wang Gong-li, Chen Huan-Xiong. Study on Dynamics of Litter Fall of Bruguiera sexangula Mangrove in Hainan Island,China[J]. Chin J Plan Ecolo, 1990, 14(1): 69 -74 .
[6] MA Yang, WANG Xue-Qin, ZHANG Bo, LIU Jin-Hui, HAN Zhang-Yong, and TANG Gang-Liang. Effects of wind erosion and sand burial on water relations and photosynthesis in Alhagi sparsifolia in the southern edge of the Taklimakan Desert[J]. Chin J Plan Ecolo, 2014, 38(5): 491 -498 .
[7] Jie Ming. Biosphere Project at the International Institute for Applied Systems Analysis[J]. Chin J Plan Ecolo, 1990, 14(1): 93 -94 .
[8] Zhi-Cheng CHEN, Xian-Chong WAN. The relationship between the reduction of nonstructural carbohydrate induced by defoliator and the growth and mortality of trees[J]. Chin J Plan Ecolo, 2016, 40(9): 958 -968 .
[9] Fan Li,Huanjun Zhang,Zhenbo Lü,Bingqing Xu,Liang Zheng. Species composition and community diversity of nekton in Laizhou Bay, China[J]. Biodiv Sci, 2013, 21(5): 537 -546 .
[10] Chunfa Zhou, Daqing Zhou, Xiangkun Kong, Wenhong Deng. Differentiating nest sites characteristics of four sympatric cavity-nesting birds[J]. Biodiv Sci, 2012, 20(6): 716 -724 .