Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (7): 694-703.doi: 10.17521/cjpe.2015.0066

• Orginal Article • Previous Articles     Next Articles

Inversion of subtropical forest stand characteristics by integrating very high resolution imagery acquired from UAV and LiDAR point-cloud

XU Zi-Qian1,2, CAO Lin1,2, RUAN Hong-Hua1,2,*(), LI Wei-Zheng3, JIANG Sheng4   

  1. 1College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China
    2Co-innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
    3Advanced Analysis and Testing Center of Nanjing Forestry University, Nanjing 210037, China
    4College of Geography Science, Nanjing Normal University, Nanjing 210046, China
  • Online:2015-07-22 Published:2015-07-01
  • Contact: Hong-Hua RUAN
  • About author:

    # Co-first authors

Abstract: Aims We applied the integrated very high resolution imagery acquired from Unmanned Aerial Vehicles (UAV) and Light Detection and Ranging (LiDAR) point-loud data to estimate the stand characteristics of a naturally- regenerated forest in a subtropical area. Methods The high precision digital elevation model (DEM) of the forest was constructed base on LiDAR point-cloud and the inverse distance weighted interpolation method. The 3D point-cloud of forest canopy layer was constructed from UAV image pairs, with information from DEM height information normalization, for canopy height and density. With the above effort, we developed a prediction model to estimate Lorey’s height, stand density, basal area, and volume. Important findings The quantitative metrics generated from this study appeared very sensitive to Lorey’s height, followed by volume and basal area. Using UAV as a flexible and rapid method for generating forest canopy characteristics, combined with topographic information from high precision LiDAR data, seems a viable, rapid, inexpensive, and flexible method in canopy research.

Key words: LiDAR, point cloud, stand characteristics, UAV

Fig. 1

UAV image of Niushan forest, with yellow circles showing the spatial locations of the sample plots. DEM, digital elevation model."

Table 1

One-variable volume equation for stand volume in Jiangsu Province"

树种 Tree species 公式 Formula 备注 Remark
杉木 Cunninghamia lanceolata V = A × DB × (E × D + G × lgD)C A = 0.000058777042, B = 1.9699831
C = 0.89646157, E = -2.2426
F = 0.2021, G = 6.6922
水杉 Metasequoia glyptostroboides V = A × DB × ((E + F × e (G × D))H)C A = 0.000058777042, B = 1.9699831
C = 0.89646157, E = 1.000438
F = -0.00024755, G = -0.07897864
H = 7101.252
侧柏 Platycladus orientalis A = 0.000091972184, B = 1.8639778
C = 0.83156779, E = 1.000084
F = -0.0000671125, G = -0.1223273
H = 29416.66
林分阔1 Broadleaf 1 (杨 Populus、栎 Quercus) A = 0.000050479055, B = 1.9085054
C = 0.99076507, E = 0.9236004
F = 0.0502109, G = -0.09686479
H = -37.80742
林分阔2 Broadleaf 2 (刺槐 Robinia pseudoacacia、刺桐Erythrina variegata、柳 Salix、杂 Other) A = 0.000050479055, B = 1.9085054
C = 0.99076507, E = 6.569053
F = -4.565682, G = -0.03200782
H = 1.697762

Table 2

Summary of plot-level characteristics"

Plot-level characteristics
统计量 Statistics (n = 30)
Range of variation
Lorey’s height (m)
7.00-31.65 22.99
Stand density (plant·hm-2)
1 146-3 950 2 560
Basal area (m2·hm-2)
2.48-13.23 6.41
Volume (m3·hm-2)
66.36-488.97 274.36

Fig. 2

Technical flow chart for this study."

Fig. 3

Procedures for processing the UAV data."

Table 3

List of independent variables for this study"

Independent variable
Dependent variable
Height percentile
(h10, h25, h30, h40, h60, h75, h85, h90)
Lorey’s树高 Lorey’s height (m)
林分密度 Stand density (plant·hm-2)
胸高断面积 Basal area (m2·hm-2)
蓄积量 Volume (m3·hm-2)
Point cloud density variables
(d10, d25, d30, d40, d60, d75, d85, d90)
高度均值 Average height (havg)
高度最值 Maximum/minimal height (hmax, hmin)

Fig. 4

Analysis of coefficients between point-cloud metrics and stand characteristics. h10, h25…h90, height percentile; havg, average height; hmax, maximum height; hmin, minimal height; d10, d25… d90, point cloud density."

Table 4

The integrated models and their accuracy assessments"

林分特征变量 Stand characteristics 联合提取估算模型 Combined extraction estimation models R2 RMSE rRMSE (%)
Lorey’s树高 Lorey’s height (H)(m) H = 0.23 + 0.579havg + 0.346h90 0.86 0.13 6.47
林分密度 Stand density (N)(plant·hm-2) N = 596.552 + 414.135h60 - 346.586h30 0.29 0.69 27.04
胸高断面积 Basal area (G)(m2·hm-2) lnG = 2.752lnh60 - 1.841lnh10 - 1.126 0.53 0.28 16.38
蓄积量 Volume (V)(m3·hm-2) lnV = 2.499 + 1.429lnh90 + 0.7lnd90 0.59 0.40 6.93

Fig. 5

Comparison of field-measured characteristics and the estimates from model (the dotted line is 1:1 validation line)."

[1] Azzari G, Goulden ML, Rusu RB (2013). Rapid characterization of vegetation structure with a microsoft kinect sensor.Sensors, 13, 2384-2398.
[2] Cao L, Dai JS, Xu JX, Xu ZQ, She GH (2014). Optimized extraction of forest parameters in subtropical forests based on airborne small footprint LiDAR technology.Journal of Beijing Forestry University, 36(5), 13-21.
(in Chinese with English abstract) [曹林, 代劲松, 徐建新, 许子乾, 佘光辉 (2014). 基于机载小光斑 LiDAR 技术的亚热带森林参数信息优化提取. 北京林业大学学报, 36(5), 13-21.]
[3] Cao L, She GH, Dai JS, Xu JX (2013). Status and prospects of the LiDAR-based forest biomass estimation. Journal of Nanjing Forestry University (Natural Sciences Edition), 37(3), 163-169.
(in Chinese with English abstract) [曹林, 佘光辉, 代劲松, 徐建新 (2013). 激光雷达技术估测森林生物量的研究现状及展望. 南京林业大学学报(自然科学版), 37(3), 163-169.]
[4] Dandois JP, Ellis EC (2013). High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision.Remote Sensing of Environment, 136, 259-276.
[5] Duncanson L, Niemann KO, Wulder M (2010). Integration of GLAS and Landsat TM data for aboveground biomass estimation.Canadian Journal of Remote Sensing, 36, 129-141.
[6] Fu T, Pang Y, Huang QF, Liu QW, Xu GC (2011). Prediction of subtropical forest parameters using airborne laser scanner.Journal of Remote Sensing, 15, 1092-1104.
(in Chinese with English abstract) [付甜, 庞勇, 黄庆丰, 刘清旺, 徐光彩 (2011). 亚热带森林参数的机载激光雷达估测. 遥感学报, 15, 1092-1104.]
[7] Harwin S, Lucieer A (2012). Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from Unmanned Aerial Vehicle (UAV) imagery.Remote Sensing, 4, 1573-1599.
[8] He QS, Chen EX, Cao CX, Liu QW, Pang Y (2009). A study of forest parameters mapping technique using airborne LIDAR data.Advances in Earth Science, 24, 749-755.
(in Chinese with English abstract) [何祺胜, 陈尔学, 曹春香, 刘清旺, 庞勇 (2009). 基于LIDAR数据的森林参数反演方法研究. 地球科学进展, 24, 748-755.]
[9] Jiang XJ, Song ZF, Wu QH (2010). Conversion method between local independent coordinate system and WGS-84 coordinate system as well as its applications.Railway Investigation and Surveying, 36(4), 8-10, 13.
(in Chinese with English abstract) [蒋小军, 宋占峰, 吴清华(2010). 地方独立坐标系与WGS-84坐标系转换方法及应用. 铁道勘察, 36(4), 8-10, 13.]
[10] Lefsky MA, Cohen WB, Spies TA (2001). An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon.Canadian Journal of Forest Research, 31, 78-87.
[11] Li DR, Wang CW, Hu YM, Liu SG (2012). General review on remote sensing-based biomass estimation.Geomatics and Information Science of Wuhan University, 37, 631-635.
(in Chinese with English abstract) [李德仁, 王长委, 胡月明, 刘曙光 (2012). 遥感技术估算森林生物量的研究进展. 武汉大学学报(信息科学版), 37, 631-635.]
[12] Liu DQ, Fan WY, Li MZ (2012). Estimation of forest stand parameters and biomass by small-footprint LIDAR.Journal of Northeast Forestry University, 40(1), 39-43.
(in Chinese with English abstract) [刘东起, 范文义, 李明泽 (2012). 利用小光斑激光雷达估测林分参数和生物量. 东北林业大学学报, 40(1), 39-43.]
[13] Lucieer A, Turner D, King DH, Robinson SA (2014). Using an Unmanned Aerial Vehicle (UAV) to capture micro- topography of Antarctic moss beds.International Journal of Applied Earth Observation and Geoinformation, 27, 53-62.
[14] Mathews AJ, Jensen JLR (2013). Visualizing and quantifying vineyard canopy LAI using an Unmanned Aerial Vehicle (UAV) collected high density structure from motion point cloud.Remote Sensing, 5, 2164-2183.
[15] Morgenroth J, Gomez C (2014). Assessment of tree structure using a 3D image analysis technique—A proof of concept.Urban Forestry & Urban Greening, 13, 198-203.
[16] Næsset E (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data.Remote Sensing of Environment, 80, 88-99.
[17] Pang Y, Li ZY (2012). Inversion of biomass components of the temperate forest using airborne Lidar technology in Xiaoxing’an Mountains, Northeastern of China.Chinese Journal of Plant Ecology, 36, 1095-1105.
(in Chinese with English abstract) [庞勇, 李增元 (2012). 基于机载激光雷达的小兴安岭温带森林组分生物量反演. 植物生态学报, 36, 1095-1105.]
[18] Pang Y, Li ZY, Chen EX, Sun GQ (2005). Lidar remote sensing technology and its application in forestry.Scientia Silvae Sinicae, 41(3), 129-136.
(in Chinese with English abstract) [庞勇, 李增元, 陈尔学, 孙国清 (2005). 激光雷达技术及其在林业上的应用. 林业科学, 41(3), 129-136.]
[19] Popescu SC (2007). Estimating biomass of individual pine trees using airborne LiDAR.Biomass and Bioenergy, 31, 646-655.
[20] Turner D, Lucieer A, Watson C (2012). An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery based on Structure from Motion (SFM) point clouds.Remote Sensing, 4, 1392-1410.
[21] Wallace L, Lucieer A, Watson C, Turner D (2012). Development of a UAV-LiDAR system with application to forest inventory.Remote Sensing, 4, 1519-1543.
[22] Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications.Geomorphology, 179, 300-314.
[23] Wulder MA, White JC, Stinson G, Hilker T, Kurz WA, Coops NC, St-Onge B, Trofymow JA (2010). Implications of differing input data sources and approaches upon forest carbon stock estimation.Environmental Monitoring and Assessment, 166, 543-561.
[24] Xu SQ, Zhang XF, Zhou KF, Zhao TY (2007). Discussion of the seven-parameter coordinate transformation between WGS-84 and BJ-54.Geomatics & Spatial Information Technology, 30(5), 33-38, 42.
(in Chinese with English abstract) [徐仕琪, 张晓帆, 周可法, 赵同阳 (2007). 关于利用七参数法进行WGS-84和BJ-54坐标转换问题的探讨. 测绘与空间地理信息, 30(5), 33-38, 42.]
[25] Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P (2014). Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods.European Journal of Agronomy, 55, 89-99.
[26] Zhao F (2007). Forest Parameter Extraction Using LiDAR Data and Digital Camera Image. PhD dissertation, Chinese Academy of Forestry, Beijing.
(in Chinese) [赵峰 (2007). 机载激光雷达数据和数码相机影像林木参数提取研究. 博士学位论文. 中国林业科学研究院, 北京.]
[1] Hai-Yan YI Yujin Zhao 朝菊 郑. Forest species diversity mapping based on clustering algorithm [J]. Chin J Plant Ecol, 2020, 44(预发表): 0-0.
[2] Qing-Hua GUO Yu TianHU qin Ma Kexin Xu Qiuli Yang Qianhui Sun Yumei Li Yanjun Su. The Advances for the New Remote Sensing Technology in Ecosystem Ecology Research [J]. Chin J Plant Ecol, 2020, 44(4生态技术与方法专辑): 0-0.
[3] Li Qiang, Wang Bin, Deng Yun, Lin Luxiang, Dawa Zhaxi, Zhang Zhiming. Correlation between spatial distribution of forest canopy gaps and plant diversity indices in Xishuangbanna tropical forests [J]. Biodiv Sci, 2019, 27(3): 273-285.
[4] Li Jie,Li Weiyue,Fu Jing,Gao Jun,Yang Lei,He Weihang. Using low-altitude UAV remote sensing to identify national park functional zoning boundary: A case study in Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 42-50.
[5] Qinghua Guo, Tianyu Hu, Yuanxi Jiang, Shichao Jin, Rui Wang, Hongcan Guan, Qiuli Yang, Yumei Li, Fangfang Wu, Qiuping Zhai, Jin Liu, Yanjun Su. Advances in remote sensing application for biodiversity research [J]. Biodiv Sci, 2018, 26(8): 789-806.
[6] Qian Lei, Jinya Li, Keming Ma. Applications of remote sensing technology in avian ecology [J]. Biodiv Sci, 2018, 26(8): 862-877.
[7] Zhongyi Zhou, Ran Liu, Shuna Shi, Yanjun Su, Wenkai Li, Qinghua Guo. Ecological niche modeling with LiDAR data: A case study of modeling the distribution of fisher in the southern Sierra Nevada Mountains, California [J]. Biodiv Sci, 2018, 26(8): 878-891.
[8] Liu Fangzheng, Du Jinhong, Zhou Yue, Huang Zhipang, Li Yanpeng, Wang Wei, Xiao Wen. Monitoring technology and practice on protected area biodiversity by integrating unmanned aerial vehicle (UAV) and ground approaches [J]. Biodiv Sci, 2018, 26(8): 905-917.
[9] Qinghua Guo, Jin Liu, Yumei Li, Qiuping Zhai, Yongcai Wang, Fangfang Wu, Tianyu Hu, Huawei Wan, Huiming Liu, Wenming Shen. A near-surface remote sensing platform for biodiversity monitoring: perspectives and prospects [J]. Biodiv Sci, 2016, 24(11): 1249-1266.
[10] Qinghua Guo,Fangfang Wu,Tianyu Hu,Linhai Chen,Jin Liu,Xiaoqian Zhao,Shang Gao,Shuxin Pang. Perspectives and prospects of unmanned aerial vehicle in remote sensing monitoring of biodiversity [J]. Biodiv Sci, 2016, 24(11): 1267-1278.
[11] XU Ting,CAO Lin,SHEN Xin,SHE Guang-Hui. Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data [J]. Chin J Plan Ecolo, 2015, 39(4): 309-321.
[12] PANG Yong and LI Zeng-Yuan. Inversion of biomass components of the temperate forest using airborne Lidar technology in Xiaoxing’an Mountains, Northeastern of China [J]. Chin J Plan Ecolo, 2012, 36(10): 1095-1105.
[13] TangYa, Chen Jianzhong. An investigation on the probable causes for the endangerment of Plagiopteron suaveolens Griffith [J]. Biodiv Sci, 1995, 03(2): 74-78.
Full text



[1] . Studies on physiology of floral induction and zearalenone[J]. Chin Bull Bot, 1995, 12(专辑3): 18 -29 .
[2] Wu Jian-feng. Lichen Ptant in Langskan Area Nantong[J]. Chin Bull Bot, 1993, 10(01): 62 .
[3] . [J]. Chin Bull Bot, 2000, 17(05): 478 .
[4] WANG Zheng-Feng ZHANG Jun-Li LI Ming-Guang WANG Bo-Sun HE Xing-Jin PENG Shao-Lin. Advances of Plant Molecular Ecology (Ⅰ)—— Genetic Structure and Hybridization[J]. Chin Bull Bot, 2001, 18(06): 635 -642 .
[5] Zhao Yu-hua. Effect of the Plant Cold-resister on Overcoming Rice Seedling Decay in Low Temperature Stress in our County[J]. Chin Bull Bot, 1994, 11(特辑): 97 -99 .
[6] Danlong Jing, Jiang Ma, Bo Zhang, Yiyang Han, Zhixiong Liu, Faju Chen. Expression Analysis of MwAG in Different Organs and Developmental Stages of Magnolia wufengensis[J]. Chin Bull Bot, 2013, 48(2): 145 -150 .
[7] Li Xiang-gan. The Population Characteristics and determination of Biomass in the Quercus acutissima Forest Community on Mount Lao[J]. Chin J Plan Ecolo, 1987, 11(1): 21 -31 .
[10] ZHOU Yong, ZHENG Lu-Yu, ZHU Min-Jie, LI Xia, REN An-Zhi, and GAO Yu-Bao. Effects of fungal endophyte infection on soil properties and microbial communities in the host grass habitat[J]. Chin J Plan Ecolo, 2014, 38(1): 54 -61 .