Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (12): 1146-1155.doi: 10.17521/cjpe.2015.0111

• Orginal Article • Previous Articles     Next Articles

Characteristics of nitrogen and phosphorus stoichiometry across components of forest ecosystem in Shaanxi Province

CUI Gao-Yang1, CAO Yang2,3, CHEN Yun-Ming2,3,*()   

  1. 1Research Center of Institute of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China
    2State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
    and 3Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
  • Online:2015-12-31 Published:2015-12-01
  • Contact: Yun-Ming CHEN E-mail:ymchen@ms.iswc.ac.cn
  • About author:

    # Co-first authors

Abstract:

Aims Nitrogen (N) and phosphorus (P) stoichiometry between vegetation, litter, and soil were important for understanding biogeochemical cycles in terrestrial ecosystems, but remain poorly understood. Here, our aims were to study characteristics of N and P stoichiometry for the plant, litter, and soil and the interactions between its components across forest ecosystems in Shaanxi Province.Methods A total of 121 sampling sites, covering the most main forest types in Shaanxi, were established across the whole province in 2012. And N and P concentration of vegetation (tree and understory), litter and soil layers were measured for each site.Important findings 1) There were significant differences in the N and P stoichiometry among the forest ecosystem components (p < 0.05). N and P contents were higher in understory and litter layer, and lower in tree and soil. Whereas the N:P was slightly different, highest in litter and lowest in the soil layer, with little differences among remaining components. The contents of N, P and N:P ranged from 0.72 to11.99 mg·g-1, 0.47 to 1.07 mg·g-1, and 1.86 to 14.84, respectively. Within top 1 m soil layer N content and N:P decreased with soil depth (p < 0.05), however the P content did not exhibit significant changes. 2) N and P contents, and N:P of each component were higher in broadleaf forest than in coniferous forest, although the difference is not significant. 3) N was positively correlated with P content except for soil and N:P was negatively correlated with P content, but positively correlated with N content within each component. In addition, there was a significant positive correlation for N and P stoichiometric characteristics between litter layer and tree, herb, soil layer. 4) Although spatial pattern of N and P contents, and N:P differed in relation to longitude, latitude, and elevation for forest ecosystem components, a stable distribution was exhibited in general.

Key words: N, P, forest ecosystem, coniferous forest, broadleaf forest, spatial variation

Fig. 1

Distribution of sampling sites in the Shaanxi Province."

Fig. 2

N and P concentrations and their ratio of each component in forest ecosystem (A, B, C) and in each layer of soil (D, E, F) in Shaanxi Province. T, B, H, L and S represent tree, bush, herb, litter and soil, respectively. 1, 2, 3, 4 and 5 at the X-axis of Fig. 2F represent 0-10, 10-20, 20-30, 30-50 and 50-100 cm soil layers, respectively. Different lowercase letters indicate significant differences (p < 0.05). The error bars express standard error of the mean."

Table 1

N and P content and their ratio of ecosystem components within broadleaf forest and coniferous forest in Shaanxi Province (mean ± SE)"

生态系统组分
Ecosystem component
N P N:P
阔叶林
Broadleaf forest
针叶林
Coniferous forest
阔叶林
Broadleaf forest
针叶林
Coniferous forest
阔叶林
Broadleaf forest
针叶林
Coniferous forest
乔木 Tree 4.91 ± 0.28A 3.51 ± 0.19B 0.52 ± 0.02A 0.38 ± 0.02B 10.21 ± 0.46A 9.41 ± 0.46A
灌木 Bush 10.09 ± 0.53A 7.33 ± 0.79B 0.92 ± 0.04A 0.80 ± 0.08A 11.73 ± 0.50A 10.24 ± 1.18A
草本 Herb 10.83 ± 0.40A 10.25 ± 0.47A 1.12 ± 0.06A 0.86 ± 0.06B 10.75 ± 0.36A 13.40 ± 1.03B
枯落物 Litter 12.68 ± 0.32A 9.47 ± 0.35B 0.89 ± 0.02A 0.72 ± 0.05B 14.85 ± 0.40A 14.78 ± 1.03A
土壤 Soil 0.73 ± 0.03A 0.66 ± 0.06A 0.53 ± 0.05A 0.41 ± 0.03A 1.84 ± 0.11A 1.92 ± 0.20A

Fig. 3

N and P concentrations and their ratio of tree (A), bush (B), herb (C), litter (D), soil (E) in three forest ecosystems in Shanxi Province. The number of sampling plot for Robinia pseudoacacia forest, Pinus tabuliformis forest and Quercus variabilis forest was 12, 13, and 25, respectively. Different lowercase letters indicate significant differences among forest types (p < 0.05). The error bars express standard error of the mean."

Table 2

Correlation relationship of N and P stoichiometry between litter and tree, bush, herb and soil components in forest ecosystem in Shaanxi Province"

枯落物层 Litter layer
N P N:P
乔木层 Tree layer 0.29** 0.36*** 0.28**
灌木层 Bush layer 0.08 -0.10 0.01
草本层 Herb layer 0.45*** 0.45*** 0.34***
土壤层 Soil layer 0.28** 0.32*** 0.30**

Table 3

Correlation relationships of N and P stoichiometry within tree, bush, herb, litter and soil components in forest ecosystem in Shaanxi Pro- vince"

n N:P
乔木层
Tree layer
灌木层1)
Bush layer
草本层
Herb layer
枯落物层Litter layer 土壤层
Soil layer
N 121 0.58*** 0.57*** 0.17 0.32*** 0.55***
P 121 -0.40*** -0.39*** -0.58*** -0.70*** -0.66***
r 121 0.42*** 0.42*** 0.54*** 0.36*** 0.10

Table 4

Spatial pattern analysis of N and P stoichiometry within ecosystem component in relation to latitude, longitude, and elevation in Shaanxi Province"

生态系统组分
Ecosystem component
n N P N:P
斜率 Slope R2 p 斜率 Slope R2 p 斜率 Slope R2 p
经度 乔木层 Tree layer 121 0.02 0.001 0.80 -0.03 0.001 0.72 -0.04 0.001 0.70
Longitude 灌木层 Bush layer* 106 0.04 0.001 0.71 0.03 0.001 0.76 0.02 <0.001 0.88
草本层 Herb layer 121 -0.12 0.03 0.05 -0.26 0.07 0.004 0.16 0.03 0.07
枯落物层 Litter layer 121 -0.08 0.006 0.42 -0.18 0.03 0.05 0.10 0.01 0.25
土壤层 Soil layer 121 -0.06 0.004 0.51 0.02 0.001 0.80 -0.02 0.001 0.80
纬度 乔木层 Tree layer 121 0.33 0.11 < 0.001 0.02 < 0.001 0.86 0.22 0.05 0.01
Latitude 灌木层 Bush layer* 106 -0.10 0.01 0.30 -0.22 0.05 0.02 0.02 0.001 0.80
草本层 Herb layer 121 -0.07 0.004 0.47 -0.15 0.02 0.11 0.14 0.02 0.12
枯落物层 Litter layer 121 -0.11 0.01 0.22 0.07 0.004 0.47 -0.18 0.03 0.04
土壤层 Soil layer 121 -0.13 0.02 0.17 0.17 0.03 0.06 -0.39 0.15 < 0.001
海拔 乔木层 Tree layer 121 0.01 <0.001 0.92 -0.09 0.01 0.31 0.11 0.01 0.19
Elevation 灌木层 Bush layer* 106 0.02 <0.001 0.86 0.06 0.003 0.57 -0.01 < 0.001 0.89
草本层 Herb layer 121 0.09 0.007 0.35 -0.04 0.002 0.66 <0.001 < 0.001 0.99
枯落物层 Litter layer 121 0.17 0.03 0.06 -0.02 < 0.001 0.82 0.06 0.004 0.47
土壤层 Soil layer 121 0.48 0.23 < 0.001 -0.03 0.001 0.73 0.21 0.04 0.02

Table 5

Comparisons of N and P stoichiometric characteristics of vegetation in Shaanxi Province with others studies"

类型 Types N (mg·g-1) P (mg·g-1) N:P 文献 Reference
陕西省 乔木 Tree 4.59 (121) 0.49 (121) 10.03 (121)
乔木叶片 Tree leaf 16.73 (121) 1.29 (121) 13.87 (121)
灌木 Bush1) 9.46 (106) 0.90 (106) 11.38 (106) This study
灌木叶片 Bush leaf 13.54 (106) 1.08 (106) 13.52 (106)
草本 Herb 10.70 (121) 1.07 (121) 11.32 (121)
草本叶片 Herb leaf 14.66 (121) 1.38 (121) 12.17 (121)
黄土高原植物叶片 Plants leaf in Loess Plateau 24.1 (126) 1.6 (126) 15.4 (126) Zheng & Shangguan, 2007
长白山针阔混交林 Changbai Shan needle broad-leaved mixed forest 17.63 (21) 1.45 (21) 13.0 (21) Wang et al., 2011
西双版纳热带季雨林 Xishuangbanna tropical monsoon forest 21.49 (36) 1.05 (36) 19 (36) Wang et al., 2011
鼎湖山南亚热带常绿阔叶林 Dinghushan subtropical evergreen broad-leaved forest 19.82 (21) 1.02 (21) 22 (21) Wang et al., 2011
中亚热带天童常绿阔叶林 Middle subtropical Tiantong evergreen broad-leaved forest 11.5 (14) 0.63 (14) 17.8 (14) Yan et al., 2010
中亚热带天童常绿针叶林 Middle subtropical Tiantong evergreen coniferous forest 9.98 (16) 0.66 (16) 14.2 (16) Yan et al., 2010
中亚热带天童落叶阔叶林 Middle subtropical Tiantong deciduous broad-leaved forest 14.7 (14) 1.3 (14) 11.1 (14) Yan et al., 2010
中国植物叶片 Chinese plants leaf 19.09 (554) 1.56 (647) 15.39 (546) Ren et al., 2007
中国植物叶片 Chinese plants leaf 20.24 (554) 1.46 (745) 16.3 (547) Han et al., 2005
全球植物叶片 Global plants leaf 20.09 (1 251) 1.77 (923) 13.8 (894) Reich & Oleksyn, 2004
全球植物叶片 Global plants leaf 20.62 (398) 1.99 (406) 12.7 (325) Elser et al., 2000a
[1] Bott T, Meyer GA, Young EB (2008). Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments.New Phytologist, 180, 631-641.
[2] Chen YH, Han WX, Tang LY, Tang ZY, Fang JY (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form.Ecography, 36, 178-184.
[3] Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass?Biogeochemistry, 85, 235-252.
[4] Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000a). Nutritional constraints in terrestrial and freshwater food webs.Nature, 408, 578-580.
[5] Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000b). Biological stoichiometry from genes to ecosystems.Ecology Letters, 3, 540-550.
[6] Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266.
[7] Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168, 377-385.
[8] Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China.Ecology Letters, 14, 788-796.
[9] Hedin LO, Vitousek PM, Matson PA (2003). Nutrient losses over four million years of tropical forest development.Ecology, 84, 2231-2255.
[10] Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005). Plant allometry, stoichiometry and the temperature-dependence of primary productivity.Global Ecology and Biogeography, 14, 585-598.
[11] Li A, Guo DL, Wang ZQ, Liu HY (2010). Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: A hierarchical pattern.Functional Ecology, 24, 224-232.
[12] Liu XZ, Zhou GY, Zhang DQ, Liu SZ, Chu GW, Yan JH (2010). N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China.Chinese Journal of Plant Ecology, 34, 64-71.
(in Chinese with English abstract) [刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华 (2010). 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 34, 64-71.]
[13] Ma YZ, Zhong QL, Jin BJ, Lu HD, Guo BQ, Zheng Y, Li M, Cheng DL (2015). Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China.Chinese Journal of Plant Ecology, 39, 159-166.
(in Chinese with English abstract) [马玉珠, 钟全林, 靳冰洁, 卢宏典, 郭炳桥, 郑媛, 李曼, 程栋梁 (2015). 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子. 植物生态学报, 39, 159-166.]
[14] Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter.Ecological Monographs, 80, 89-106.
[15] McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial Redfield-type ratios.Ecology, 85, 2390-2401.
[16] Minden V, Kleyer M (2014). Internal and external regulation of plant organ stoichiometry.Plant Biology, 16, 897-907.
[17] Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth.Ecology Letters, 8, 636-642.
[18] Oleksyn J, Modrzýnski J, Tjoelker MG, Zytkowiak R, Reich PB, Karolewski P (1998). Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation.Functional Ecology, 12, 573-590.
[19] Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.Global Ecology and Biogeography, 18, 137-149.
[20] Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
[21] Reich PB, Oleksyn J, Tjoelker MG (1996). Needle respiration and nitrogen concentration in Scots pine populations from a broad latitudinal range: A common garden test with field-grown trees.Functional Ecology, 10, 768-776.
[22] Ren SJ, Yu GR, Tao B, Wang SQ (2007). Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC.Chinese Journal of Environmental Science, 28, 2665-2673.
(in Chinese with English abstract) [任书杰, 于贵瑞, 陶波, 王绍强 (2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28, 2665-2673.]
[23] Tao Y, Zhang YM (2015). Leaf and soil stoichiometry of four herbs in the Gurbantunggut Desert, China.Chinese Journal of Applied Ecology, 26, 659-665.
(in Chinese with English abstract) [陶冶, 张元明 (2015). 古尔班通古特沙漠4种草本植物叶片与土壤的化学计量特征. 应用生态学报, 26, 659-665.]
[24] Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data.Biogeochemistry, 98, 139-151.
[25] Townsend AR, Cleveland CC, Asner GP, Bustamante MMC (2007). Controls over foliar N:P ratios in tropical rain forests.Ecology, 88, 107-118.
[26] Wang JY, Wang SQ, Li RL, Yan JH, Sha LQ, Han SJ (2011). C:N:P stoichiometric characteristics of four forest types’ dominant tree species in China.Chinese Journal of Plant Ecology, 35, 587-595.
(in Chinese with English abstract) [王晶苑, 王绍强, 李纫兰, 闫俊华, 沙丽清, 韩士杰 (2011). 中国四种森林类型主要优势植物的C:N:P化学计量学特征. 植物生态学报, 35, 587-595.]
[27] Wang M, Moore TR (2014). Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type.Ecosystems, 17, 673-684.
[28] Wang SQ, Yu GR (2008). Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements.Acta Ecologica Sinica, 28, 3937-3947.
(in Chinese with English abstract) [王绍强, 于贵瑞 (2008). 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.]
[29] Woods HA, Makino W, Cotner JB, Hobbie SE, Harrison JF, Acharya K, Elser JJ (2003). Temperature and the chemical composition of poikilothermic organisms.Functional Ecology, 17, 237-245.
[30] Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005). Assessing the generality of global leaf trait relationships.New Phytologist, 166, 485-496.
[31] Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010). C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China.Chinese Journal of Plant Ecology, 34, 48-57.
(in Chinese with English abstract) [阎恩荣, 王希华, 郭明, 仲强, 周武 (2010). 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征. 植物生态学报, 34, 48-57.]
[32] Yuan ZY, Chen HYH (2012). A global analysis of fine root production as affected by soil nitrogen and phosphorus.Proceedings of the Royal Society B: Biological Sciences, 279, 3796-3802.
[33] Yuan ZY, Chen HYH, Reich PB (2011). Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus.Nature Communications, 2, 344.
[34] Zheng SX, Shangguan ZP (2007). Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China.Trees, 21, 357-370.
[1] Ying Chen. Techniques and methods for field warming manipulation experiments in terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[2] Xian-hui TANG Yong-Le CHEN Fang LI. Water isotope analysis for tracing ecosystem processes: measurement techniques, ecological applications, and future challenges [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[3] Gui-Feng GAO. Techniques and methods of microbiomics and their applications [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[4] Qing-Hua GUO Yu TianHU qin Ma Kexin Xu Qiuli Yang Qianhui Sun Yumei Li Yanjun Su. The Advances for the New Remote Sensing Technology in Ecosystem Ecology Research [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[5] Jie Wei Changhua Chen Jing-Yuan WANG Xue-Fa WEN. Theory, hypothesis and application advance of chamber-based technology and methods in flux measurement [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[6] Zhao-Zhong FENG Yansen Xu Bo Shang. Review on FACE (Free-Air Concentration Enrichment) techniques, experimental approach and its application in the field of global change ecology [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[7] Yun-Ting FANG Dongwei liu ying Tu Shanlong Li Shannan Huang Zhi Quan Ang Wang. Applications of nitrogen stable isotope techniques in the study of nitrogen cycle in terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[8] Chao Yue JInfeng Chang. Developments and applications for terrestrial biosphere model [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[9] Qingsong Zhou Chao-Dong ZHU Zhi-Shu XIAO. Advances in techniques and methods of wildlife monitoring [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[10] Da TiGe Dongdong Wang Zhenke Zhu Liang Wei Xiaomeng Wei. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[11] Jiayu Zhao Wei XIAO Mi ZHANG Jing-Yuan WANG Xue-Fa WEN Xu-Hui LEE. Applications and prospect of the flux-gradient method in measuring the greenhouse gases and isotope fluxes [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[12] Xiao-Juan FENG YiYun Wang Ting Liu Juan JIA Guo-Hua DAI Tian MA Zong-Guang LIU. Biomarkers and their applications in ecosystem research [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[13] Zhao-Zhong FENG Li Pin You GuoZhang Zheng-zhen Li Qin Ping Long JinPeng Shuo Liu. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: Problems and prospective [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[14] Zhao-Zhong FENG Xiangyang Yuan Li Pin Bo Shang Qin Ping Tingjian Hu Shuo Liu. Progress in the Effects of Elevated Ground-Level Ozone on Terrestrial Ecosystem [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[15] Youting Ye. Effects of Global Change on Key Processes of Primary Production in Marine Ecosystems [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Ying-gen;Zhang Li-jun and Li yu. Studies on the Postharvest Physiology properties of Peach Fruits[J]. Chin Bull Bot, 1995, 12(04): 47 -49 .
[2] Zhou Shi-gong. Applications of Lanthanum in Botanical Research[J]. Chin Bull Bot, 1992, 9(02): 26 -29 .
[3] . [J]. Chin Bull Bot, 1996, 13(专辑): 105 .
[4] 杜维广 王彬如 谭克辉 郝迺斌. An Approach to the Breeding of Soybean with High Photosynthetic Efficiency[J]. Chin Bull Bot, 1984, 2(23): 7 -11 .
[5] ZHAO Yun-Yun ZHOU Xiao-Mei YANG Cai. Production of Hybrid F1 Between Avena magna and Avena nuda and It''s Identification[J]. Chin Bull Bot, 2003, 20(03): 302 -306 .
[6] . Professor Jiayang Li, a Plant Molecular Genetist[J]. Chin Bull Bot, 2003, 20(03): 370 -372 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 100 -101 .
[8] Qiong Jiang, Youning Wang, Lixiang Wang, Zhengxi Sun, Xia Li. Validation of Reference Genes for Quantitative RT-PCR Analysis in Soybean Root Tissue under Salt Stress[J]. Chin Bull Bot, 2015, 50(6): 754 -764 .
[9] MA Ke-Ming. Advances of the Study on Species Abundance Pattern[J]. Chin J Plan Ecolo, 2003, 27(3): 412 -426 .
[10] ZHANG Zhi-Meng, WAN Shu-Bo, NING Tang-Yuan, DAI Liang-Xiang. EFFECTS OF NITROGEN LEVEL ON NITROGEN METABOLISM AND CORRELATING ENZYME ACTIVITY IN PEANUT[J]. Chin J Plan Ecolo, 2008, 32(6): 1407 -1416 .