Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (12): 1166-1175.doi: 10.17521/cjpe.2015.0113

• Orginal Article • Previous Articles     Next Articles

Short-term nitrogen fertilization decreased root and microbial respiration in a young Cunninghamia lanceolata plantation

WANG Qing-Kui1,2,*, LI Yan-Peng1,3, ZHANG Fang-Yue1,3, HE Tong-Xin1,3   

  1. 1State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    2Huitong National Research Station of Forest Ecosystem, Huitong, Hunan 418307, China
    and 3University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2015-12-31 Published:2015-12-01
  • Contact: Qing-Kui WANG
  • About author:

    # Co-first authors


Aims As the primary pathway for CO2 emission from terrestrial ecosystems to the atmosphere, soil respiration is estimated to be 80 Pg C·a-1 to 100 Pg C·a-1, equivalent to 10 fold of fossil fuel emissions. As an important management practice in plantation forests, fertilization does not only increase primary production but also affects soil respiration. To investigate how nitrogen (N) fertilization affects total soil, root and microbial respiration, a N fertilization experiment was conducted in a five-year-old Cunninghamia lanceolata plantation in Huitong, Hunan Province, located in the subtropical region. MethodsOne year after fertilization, soil respiration was monitored monthly by LI-8100 from July 2013 to June 2014. Soil temperature and water content (0-5 cm soil depth) were also measured simultaneously. Available soil nutrients, fine root biomass and microbial communities were analyzed in June 2013. Important findings Total soil, root and microbial respiration rates were 22.7%, 19.6%, and 23.5% lower in the fertilized plots than in the unfertilized plots, respectively. The temperature sensitivity (Q10) of soil respiration ranged from 1.81 to 2.04, and the Q10 value of microbial respiration decreased from 2.04 in the unfertilized plots to 1.84 in the fertilized plots. However, neither the Q10 value nor the patterns of total soil respiration were affected by N fertilization. In the two-factor model, soil temperature and moisture accounted for 69.9%-79.7% of the seasonal variations in soil respiration. These results suggest that N fertilization reduces the response of soil organic carbon decomposition to temperature change and may contribute to the increase of soil carbon storage under global warming in subtropical plantations.

Key words: Cunninghamia lanceolata plantation, soil carbon emission, heterotrophic respiration, nitrogen fertilization, temperature sensitivity

Table 1

Property of soils (0-10 cm) and growth conditions of young Cunninghamia lanceolata plantation before fertilization"

全碳 Total C
全氮 Total N (g·kg-1) 全磷 Total P (g·kg-1) pH 容重 Bulk density (g·cm-3) 树高
Tree height (m)
胸径 Diameter at breast height (cm)
对照 Control 17.2 1.43 0.339 4.50 1.28 5.71 8.27
施氮 N fertilization 18.6 1.55 0.334 4.33 1.22 6.01 8.64

Fig. 1

Influence of N fertilization and root trenching on soil temperature and water content (0-5 cm) in a young Cunninghamia lanceolata plantation (mean ± SD)."

Table 2

Effect of N fertilization on soil nutrient availability, biomass, C and N content of fine roots in a young Cunninghamia lanceolata plantation"

Mineral N (mg·kg-1)
Available P (mg·kg-1)
pH 细根生物量
Fine root biomass (g·m-2)
细根碳氮含量 C and N content in fine root (g·kg-1)
碳 C 氮 N C:N
对照 Control 4.94 4.93 4.39 151.1 439.5 6.28 69.9
施氮 N fertilization 13.16 6.49 4.11 102.6 436.2 8.80 49.6
p <0.001 >0.05 <0.01 <0.05 >0.05 <0.01 <0.01

Table 3

Effect of N fertilization on soil microbial biomass C (MBC) and microbial community composition in a young Cunninghamia lanceolata plantation"

Bacteria (nmol·g-1)
Gram-positive bacteria (nmol·g-1)
对照 Control 234 26.25 10.61 2.47 3.99 12.09
施氮 N fertilization 155 19.94 6.76 2.95 3.55 8.90
p <0.001 <0.05 <0.05 >0.05 >0.05 <0.05

Fig. 2

Influence of N fertilization on total soil, microbial and root respiration in a young Cunninghamia lanceolata plantation (mean ± SD)."

Table 4

Parameters of different soil respiration models in a young Cunninghamia lanceolata plantation"

Rs = aebT Rs = aW + b Rs = aebTWc
a b R2 a b R2 a b c R2
Total soil respiration
对照 Control 0.474 0.067 0.714 -0.022 2.242 0.055 0.182 0.070 0.308 0.712
施氮 N fertilization 0.425 0.059 0.694 -0.018 1.760 0.065 0.165 0.066 0.288 0.699
Microbial respiration
对照 Control 0.335 0.071 0.795 -0.023 1.920 0.101 0.156 0.067 0.273 0.797
施氮 N fertilization 0.319 0.061 0.721 -0.052 1.161 0.010 0.117 0.064 0.314 0.738

Fig. 3

Annual flux of total soil, microbial and root respiration in a young Cunninghamia lanceolata plantation (mean ± SD)."

Fig. 4

Relationship of total soil and microbial respiration with soil temperature in the fertilized and unfertilized plots."

Fig. 5

Effect of N fertilization on the temperature sensitivity (Q10) of total soil and microbial respiration in a young Cunninghamia lanceolata plantation (mean ± SD)."

[1] Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems.BioScience, 48, 921-934.
[2] Bond-Lamberty B, Thompson A (2010). Temperature- associated increases in the global soil respiration record.Nature, 464, 579-582.
[3] Borken W, Savage K, Davidson EA, Trumbore SE (2006). Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil.Global Change Biology, 12, 177-193.
[4] Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest.Forest Ecology and Management, 196, 43-56.
[5] Burton AJ, Pregitzer KS, Ruess RW, Hendrick RL, Allen MF (2002). Root respiration in North American forests: Effects of nitrogen concentration and temperature across biomes.Oecologia, 131, 559-568.
[6] Cleveland CC, Townsend AR (2006). Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.Proceedings of the National Academy of Sciences of the United States of America, 103, 10316-10321.
[7] Deluca TH, Nilsson MC, Zackrisson O (2002). Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden.Oecologia, 133, 206-214.
[8] Department of Forest Resources Management, State Forestry Administration (2010). The 7th national forest inventory and status of forest resources.Forest Resources Management, (1), 1-8.
(in Chinese with English abstract) [国家林业局森林资源管理司 (2010). 第七次全国森林资源清查及森林资源状况. 林业资源管理, (1), 1-8.]
[9] Fan YX, Yang YS, Guo JF, Yang ZJ, Chen GS, Xie JS, Zhong XJ, Xu LL (2014). Changes in soil respiration and its temperature sensitivity at different successional stages of evergreen broadleaved forests in mid-subtropical China.Chinese Journal of Plant Ecology, 38, 1155-1165.
(in Chinese with English abstract) [范跃新, 杨玉盛, 郭剑芬, 杨智杰, 陈光水, 谢锦升, 钟小剑, 徐玲琳 (2014). 中亚热带常绿阔叶林不同演替阶段土壤呼吸及其温度敏感性的变化. 植物生态学报, 38, 1155-1165.]
[10] Fang C, Moncrieff JB (2001). The dependence of soil CO2 efflux on temperature.Soil Biology & Biochemistry, 33, 155-165.
[11] Fox TR (2000). Sustained productivity in intensively managed forest plantations.Forest Ecology and Management, 138, 187-202.
[12] Frey SD, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E, Burton A, Caldwell BA, Crow S, Goodale CL, Grandy AS, Finzi A, Kramer MG, Lajtha K, LeMoine J, Marin M, McDowell WH, Minocha R, Sadowsky JJ, Templer PH, Wickings K (2014). Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests.Biogeochemistry, 121, 305-316.
[13] Han TF, Zhou GY, Li YL, Liu JX, Zhang DQ (2011). Partitioning soil respiration in lower subtropical forests at different successional stages in southern China.Chinese Journal of Plant Ecology, 35, 946-954.
(in Chinese with English abstract) [韩天丰, 周国逸, 李跃林, 刘菊秀, 张德强 (2011). 中国南亚热带森林不同演替阶段土壤呼吸的分离量化. 植物生态学报, 35, 946-954.]
[14] Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration.Nature, 411, 789-792.
[15] Janssens IA, Dieleman W, Luyssaert S, Subke J-A, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze E-D, Tang J, Law BE (2010). Reduction of forest soil respiration in response to nitrogen deposition.Nature Geoscience, 3, 315-322.
[16] Jia SX, Wang ZQ, Mei L, Sun Y, Quan XK, Shi JW, Yu SQ, Sun HL, Gu JC (2007). Effect of nitrogen fertilization on soil respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Journal of Plant Ecology (Chinese Version), 31, 372-379.
(in Chinese with English abstract) [贾淑霞, 王政权, 梅莉, 孙玥, 全先奎, 史建伟, 于水强, 孙海龙, 谷加存 (2007). 施肥对落叶松和水曲柳人工林土壤呼吸的影响. 植物生态学报, 31, 372-379.]
[17] Lee KH, Jose S (2003). Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient.Forest Ecology and Management, 185, 263-273.
[18] Lu RK (2000). Methods of Soil Agricultural Chemistry Analysis. Chinese Agricultural Science and Technology Press, Beijing.
(in Chinese) [鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.]
[19] Mei L, Wang ZQ, Zhang XJ, Yu LZ, Du Y (2008). Effects of nitrogen fertilization on fine root biomass production and turnover of Fraxinus mandshurica plantation.Chinese Journal of Ecology, 27, 1663-1668.
(in Chinese with English abstract) [梅莉, 王政权, 张秀娟, 于立忠, 杜英 (2008). 施氮肥对水曲柳人工林细根生产和周转的影响. 生态学杂志, 27, 1663-1668.]
[20] Mo JM, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China.Global Change Biology, 14, 403-412.
[21] Olsson P, Linder S, Giesler R, Högberg P (2005). Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration.Global Change Biology, 11, 1745-1753.
[22] Persson H, Ahlström K, Clemensson-Lindell A (1998). Nitrogen addition and removal at Gårdsjön-effects on fine-root growth and fine-root chemistry.Forest Ecology and Management, 101, 199-205.
[23] Phillips RP, Fahey TJ (2007). Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils.New Phytologist, 176, 655-664.
[24] Pregitzer KS, King JS, Burton AJ, Brown SE (2000). Responses of tree fine roots to temperature.New Phytologist, 147, 105-115.
[25] Pregitzer KS, Zak DR, Curtis PS, Kubiske M, Teeri JA, Vogel CS (1995). Atmospheric CO2, soil nitrogen and turnover of fine roots.New Phytologist, 129, 579-585.
[26] Rustad LE, Huntington TG, Boone RD (2000). Controls on soil respiration: Implications for climate change.Biogeochemistry, 48, 1-6.
[27] Samuelson L, Mathew R, Stokes T, Feng YC, Aubrey D, Coleman M (2009). Soil and microbial respiration in a loblolly pine plantation in response to seven years of irrigation and fertilization.Forest Ecology and Management, 258, 2431-2438.
[28] Schindlbacher A, Wunderlich S, Borken W, Kitzler B, Zechmeister-Boltenstern S, Jandl R (2012). Soil respiration under climate change: Prolonged summer drought offsets soil warming effects.Global Change Biology, 18, 2270-2279.
[29] Sheng H, Yang YS, Yang ZJ, Chen GS, Xie JS, Guo JF, Zou SQ (2010). The dynamic response of soil respiration to land-use changes in subtropical China.Global Change Biology, 16, 1107-1121.
[30] Sun ZZ, Liu LL, Ma YC, Yin GD, Zhao C, Zhang Y, Piao SL (2014). The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil.Agricultural and Forest Meteorology, 197, 103-110.
[31] Treseder KK (2008). Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies.Ecology Letters, 11, 1111-1120.
[32] Tu LH, Hu TX, Zhang J, Li XW, Hu HL, Liu L, Xiao YL (2013). Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem.Soil Biology & Biochemistry, 58, 255-264.
[33] Tyree MC, Seiler JR, Aust WM, Sampson DA, Fox TR (2006). Long-term effects of site preparation and fertilization on total soil CO2 efflux and heterotrophic respiration in a 33-year-old Pinus taeda L. plantation on the wet flats of the Virginia Lower Coastal Plain.Forest Ecology and Management, 234, 363-369.
[34] Wang CH, Chen FQ, Wang Y, Li JQ (2011). Soil heterotrophic respiration and its sensitivity to soil temperature and moisture in Liquidambar formosana and Pinus massoniana forests in hilly areas of southeast Hubei Province, China.Chinese Journal of Applied Ecology, 22, 600-606.
(in Chinese with English abstract) [王传华, 陈芳清, 王愿, 李俊清 (2011). 鄂东南低丘马尾松林和枫香林土壤异养呼吸及温湿度敏感性. 应用生态学报, 22, 600-606.]
[35] Wang M, Li QR, Xiao DM, Dong BL (2004). Effects of soil temperature and soil water content on soil respiration in three forest types in Changbai Mountain.Journal of Forestry Research, 15, 113-118.
[36] Wang QK, He TX, Wang SL, Liu L (2013). Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest. Agricultural and Forest Meteorology, 178-179, 152-160.
[37] Welp LR, Randerson JT, Liu HP (2007). The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems.Agricultural and Forest Meteorology, 147, 172-185.
[38] Wu JJ, Yang ZJ, Liu XF, Xiong DC, Lin WS, Chen CQ, Wang XH (2014). Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations.Chinese Journal of Plant Ecology, 38, 45-53.
(in Chinese with English abstract) [吴君君, 杨智杰, 刘小飞, 熊德成, 林伟盛, 陈朝琪, 王小红 (2014). 米槠和杉木人工林土壤呼吸及其组分分析. 植物生态学报, 38, 45-53.]
[39] Xu JD (2014). The 8th forest resources inventory results and analysis in China.Forestry Economics, (3), 6-8.
(in Chinese with English abstract) [徐济德 (2014). 我国第八次森林资源清查结果及分析. 林业经济, (3), 6-8.]
[40] Yang J, Li LH (2003). Soil respiration and its measuring method.Chinese Journal of Plant, (5), 36-37.
(in Chinese) [杨晶, 李凌浩 (2003). 土壤呼吸及其测定法. 植物杂志, (5), 36-37.]
[41] Yu MJ, Xu XH, Li MH, Fu HL (2005). Biocycle of nitrogen in a Cyclobalanopsis glauca dominated evergreen broad leaved forest in East China.Acta Ecologica Sinica, 25, 740-748.
(in Chinese with English abstract) [于明坚, 徐学红, 李铭红, 付海龙 (2005). 青冈常绿阔叶林氮的生物循环. 生态学报, 25, 740-748.]
[42] Yu YC, Ding AF (2001). Effects of simulated acid rain on dissolution and transformation of aluminum in acid soils of south China.Soil and Environmental Sciences, 10(2), 87-90.
(in Chinese with English abstract) [俞元春, 丁爱芳 (2001). 模拟酸雨对酸性土壤铝溶出及其形态转化的影响. 土壤与环境, 10(2), 87-90.]
[43] Zhou CP, Ouyang H, Pei ZY, Xu XL (2003). Net soil nitrogen mineralization in Chinese forest ecosystems.Acta Phytoecologica Sinica, 27, 170-176.
[44] Zhu B, Cheng WX (2011). Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition.Global Change Biology, 17, 2172-2183.
[1] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[2] LI Wei-Jing, CHEN Shi-Ping, ZHANG Bing-Wei, TAN Xing-Ru, WANG Shan-Shan, YOU Cui-Hai. Partitioning of soil respiration components and evaluating the mycorrhizal contribution to soil respiration in a semiarid grassland [J]. Chin J Plan Ecolo, 2018, 42(8): 850-862.
[3] Kai-Jun YANG, Wan-Qin YANG, Yu TAN, Ruo-Yang HE, Li-Yan ZHUANG, Zhi-Jie LI, Bo TAN, Zhen-Feng XU. Short-term responses of winter soil respiration to snow removal in a Picea asperata forest of western Sichuan [J]. Chin J Plan Ecolo, 2017, 41(9): 964-971.
[4] Xiao-Gai GE, Ben-Zhi ZHOU, Wen-Fa XIAO, Xiao-Ming WANG, Yong-Hui CAO, Ming YE. Effects of biochar addition on dynamics of soil respiration and temperature sensitivity in a Phyllostachys edulis forest [J]. Chin J Plan Ecolo, 2017, 41(11): 1177-1189.
[5] Jian-Hua ZHANG, Zhi-Yao TANG, Hai-Hua SHEN, Jing-Yun FANG. Effects of nitrogen addition on soil respiration in shrublands in Mt. Dongling, Beijing, China [J]. Chin J Plan Ecolo, 2017, 41(1): 81-94.
[6] Qiang ZHANG, Jia-Xiang LI, Zong-Qiang XIE. Effects of nitrogen addition on soil respiration of Rhododendron simsii shrubland in the subtropical mountainous areas of China [J]. Chin J Plan Ecolo, 2017, 41(1): 95-104.
[7] Xiao-Jie LI, Xiao-Fei LIU, De-Cheng XIONG, Wei-Sheng LIN, Ting-Wu LIN, You-Wen SHI, Jin-Sheng XIE, Yu-Sheng YANG. Impact of litterfall addition and exclusion on soil respiration in Cunninghamia lanceolata plantation and secondary Castanopsis carlesii forest in mid-subtropical China [J]. Chin J Plan Ecolo, 2016, 40(5): 447-457.
[8] Xi Qiu, Mao-Kui LÜ, Jin-Xue HUANG, Wei LI, Ben-Jia ZHAO, Hao ZHANG, En-Xi WANG, Jin-Sheng XIE. Characteristics of soil organic carbon mineralization at different temperatures in severely eroded red soil [J]. Chin J Plan Ecolo, 2016, 40(3): 236-245.
[9] Xiang GU, Shi-Ji ZHANG, Wen-Hua XIANG, Lei-Da LI, Zhao-Dan LIU, Wei-Jun SUN, Xi FANG. Seasonal dynamics of active soil organic carbon in four subtropical forests in Southern China [J]. Chin J Plan Ecolo, 2016, 40(10): 1064-1076.
[10] YAO Hui,HU Xue-Yang,ZHU Jiang-Ling,ZHU Jian-Xiao,JI Cheng-Jun,FANG Jing-Yun. Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing [J]. Chin J Plan Ecolo, 2015, 39(9): 849-856.
[11] HE Tong-Xin,LI Yan-Peng,ZHANG Fang-Yue,WANG Qing-Kui. Effects of understory removal on soil respiration and microbial community composition structure in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2015, 39(8): 797-806.
[12] LI Yue, LIU Ying-Hui, SHEN Wei-Jun, XU Xia, TIAN Yu-Qiang. Responses of soil heterotrophic respiration to changes in soil temperature and moisture in a Stipa krylovii grassland in Nei Mongol [J]. Chin J Plan Ecolo, 2014, 38(3): 238-248.
[13] FAN Yue-Xin, YANG Yu-Sheng, GUO Jian-Fen*, YANG Zhi-Jie, CHEN Guang-Shui, XIE Jin-Sheng, ZHONG Xiao-Jian, and XU Ling-Lin. Changes in soil respiration and its temperature sensitivity at different successional stages of evergreen broadleaved forests in mid-subtropical China [J]. Chin J Plan Ecolo, 2014, 38(11): 1155-1165.
[14] WU Jun-Jun, YANG Zhi-Jie, LIU Xiao-Fei, XIONG De-Cheng, LIN Wei-Sheng, CHEN Chao-Qi, and WANG Xiao-Hong. Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations [J]. Chin J Plan Ecolo, 2014, 38(1): 45-53.
[15] XU Li, YU Shu-Xia, HE Nian-Peng, WEN Xue-Fa, SHI Pei-Li, ZHANG Yang-Jian, DAI Jing-Zhong, WANG Ruo-Meng. Soil C mineralization and temperature sensitivity in alpine grasslands of the Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2013, 37(11): 988-997.
Full text



[1] Cui Gao;Yuxia Chen;Ying Bao;Min Feng;Anming Lu. Studies on Sexual Organs and Embryological Development Morphology of Speirantha gardenii (Convallariaceae)[J]. Chin Bull Bot, 2010, 45(06): 705 -712 .
[2] Jiang Gao-ming. The Impact of Globae Increasing of CO2 on Plants[J]. Chin Bull Bot, 1995, 12(04): 1 -7 .
[3] Zhang Jun Han Bi-wen. Advance in the Study of Histochemical Localization for[J]. Chin Bull Bot, 1995, 12(专辑3): 131 -142 .
[4] Tang Yan-cheng. A Short Guide to the International Code of Botanical Nomenclature V.[J]. Chin Bull Bot, 1984, 2(04): 51 -57 .
[5] Xu Ji. The Protective Protein of Nitrogenase Against Oxygen Damage-Fe-S Protein[J]. Chin Bull Bot, 1986, 4(12): 1 -4 .
[6] . [J]. Chin Bull Bot, 2001, 18(05): 633 .
[7] Huang Zhao-xiang;Zheng Zhen-gui and Zhu Du. Ecological Effect of Taxodium ascendens-Oryza sativa Ecosystem(I) The Growing Characteristic of Taxodium Ascendens in the Ecosystem[J]. Chin Bull Bot, 1996, 13(02): 48 -51 .
[8] GU Rui-Sheng;LIU Qun-Lu;CHEN Xue-Mei and JIANG Xiang-Ning. Comparison and Optimization of the Methods on Protein Extraction and SDS-PAGE in Woody Plants[J]. Chin Bull Bot, 1999, 16(02): 171 -177 .
[9] Jiang Gao-ming. LI-6400 Portable Photosynthesis System: Principle, Function, Basic Operation and Main Problems and Solutions During Measurement[J]. Chin Bull Bot, 1996, 13(增刊): 72 -76 .
[10] Li Ling;Luo Yun-xiu;He Jian-hui and Pan Rui-chi. Promoting the Formation of Adventitious Roots in Cutting of Some Woody Plants by GL Reagent[J]. Chin Bull Bot, 1996, 13(增刊): 63 -65 .