Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (3): 187-199.doi: 10.17521/cjpe.2015.0343

• Research Articles •     Next Articles

Effects of clipping and fertilization on the temporal dynamics of species diversity and functional diversity and their relationships in an alpine meadow

Bin-Bin KONG1, Xin-Hua WEI1, Jia-Li DU1, Ying-Nian LI2, Zhi-Hong ZHU1,*()   

  1. 1College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China

    2Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
  • Received:2015-09-08 Revised:2016-02-06 Online:2016-03-25 Published:2016-04-11
  • Contact: Zhi-Hong ZHU E-mail:zhuzhihong@snnu.edu.cn

Abstract: Aims

Strong disturbance and environment stress have significant influence on species diversity (SD) and functional diversity (FD) in plant community. However, the changes in SD, FD and their relationships over time remain controversial. Previous studies showed that the SD-FD relationship along disturbance gradients can represent positive correlation, negative correlation and/or sigmoid curve, respectively. Our aim here is to explore the temporal dynamics patterns of SD and FD in a community experienced disturbance. Particularly, we explored how specific disturbance factor and/or disturbance intensity affect the SD-FD relationship over time.

Methods

The experiment was conducted in the alpine Kobresia humilis meadow at Haibei Research Station of the Chinese Academy of Sciences with clipping (unclipping, stubbled 3 cm and 1 cm) and fertilizing (12.75 g·m-2·a-1 urea + 3.06 g·m-2·a-1 ammonium phosphate) treatments from 2007 to 2013. GLMRMANOVA regression analysis and ANCOVA were used for analyzing the effects of different treatment factors and their interaction on SD, FD, the patterns of temporal dynamics of SD and FD and their relationship over time.

Important findings

SD and FD significantly increase with increasing clipping intensity. In contrast, fertilization decreased SD and increased feebly FD. During the experiment period, SD declined with time while FD increased. The SD-FD relationship was positively correlated in unclipped and moderate clipped plots, but was not correlated in heavy clipped plots. The slope of SD(x)-FD(y) relationship declined with the increase in clipping intensity. In contrast, fertilization did not change the shape and slope of the SD(x)-FD(y) relationship. The effects of the interaction of clipping and fertilization on SD and FD were not significant, and the slope changes along clipping gradients were identical in fertilized and unfertilized plots. These results suggest that clipping disturbance may induce trait divergence rather than trait convergence in this meadow community, while the strong interspecific competition resulted from fertilizing may not significantly intensify the trait divergence. These findings were inconsistent with the predictions of plant community assembly theory. Compared with fertilizing disturbance, clipping disturbance should play a more important role in shaping the SD-FD relationship.

Key words: clipping, fertilization, plant functional traits, species diversity, functional diversity

Fig. 1

The design of treatments (left) and layout of subplot (right). I, II, III, IV, and V represent different blocks. F, fertilizing; NF, no fertilizing. HC, heavy clipping; MC, moderate clipping; NC, no clipping."

Table 1

Multivariate ANCOVA for the effects of clipping and fertilizing on the species diversity (SD) and functional diversity (FD) in the alpine meadow during 2008-2013"

变异来源1) Source of variance1) 自由度
Degree of freedom (m, n)2)
SD FD
F-test p F-test p
协变量 Covariable D2007 1, 1 21.098 <0.001** 8.431 0.005*
主区 Whole plot C
B
2, 2
2, 2
19.802
0.220
<0.001**
0.803
21.050
1.134
<0.001**
0.326
副区 Subplot F
C × F
C × B
1, 1
2, 2
4, 4
6.856
0.313
3.341
0.010*
0.732
0.013*
3.490
1.868
2.479
0.065
0.160
0.049*

Fig. 2

Effects of clipping and fertilizing on the species diversity (SD) and functional diversity (FD) (mean ± SE) in the alpine meadow community. F, HC, MC, NC, and NF represent fertilizing, heavy clipping, moderate clipping, no clipping, and no fertilizing, respectively. The same letter above standard error bars indicates no difference among treatments (p > 0.05), while different letters indicate significant differences between treatments (p < 0.05)."

Table 2

ANOVA for the differences of species diversity (SD) and functional diversity (FD) during 2008-2013"

群落1)
Community1)
SD FD 自由度
Degree of freedom
(m, n)2)
F p F p
NC-NF
NC-F
MC-NF
MC-F
HC-NF
HC-F
10.319
132.360
14.392
91.636
13.920
55.714
0.002*
<0.001**
0.001**
<0.001**
<0.001**
<0.001**
11.652
1.310
28.214
10.884
40.676
24.987
0.001*
0.255
<0.001**
0.001**
<0.001**
<0.001**
(5,10)

Fig. 3

The changes in species diversity (SD) and functional diversity (FD) of six communities with time during 2008-2013. F, HC, MC, NC, and NF represent fertilizing, heavy clipping, moderate clipping, no clipping, and no fertilizing, respectively. Circles and dots indicates SD and FD, respectively. *, significant differences (p < 0.05) between years; **, significant differences (p < 0.001) between years."

Fig. 4

Relationships between species diversity and functional diversity in different treatment communities (2008-2013). F, HC, MC, NC, and NF represent fertilizing, heavy clipping, moderate clipping, no clipping, and no fertilizing, respectively."

Supplement

Qualitative functional traits and their categories for calculating functional diversity"

物种名称
Species name
性状及其分类状态 Trait name and their classification states
生长型
Growth form
植物类群
Plant groups
生活周期
Life cycle
植物倾斜度
Plant inclination
主要繁殖方式
Main reproduction modes
1 =散生 Scattered
2 =丛生 Bunched
3 =密丛生
Closely bunched
1 =禾草科 Gramineae
2 =莎草科 Cyperaceae
3 =豆科 Leguminosae
4 =杂类草 Forbs
0 =非多年生
Not perennial
1 =多年生
Perennial
1 =伏卧状 Prostrate
2 =莲座状 Rosette
3 =直立 Erect
0 =有性繁殖
Sexual reproduction
1 =营养繁殖
Vegetative propagation
披碱草 Elymus nutans 2 1 1 3 0
异针茅 Stipa aliena 3 1 1 3 1
矮生嵩草 Kobresia humilis 3 2 1 2 1
糙喙薹草 Carex scabrirostris 2 2 1 2 1
羊茅 Festuca ovina 3 1 1 3 1
早熟禾 Poa annua 2 1 0 3 0
草 Koeleria cristata 3 1 1 3 0
圆萼刺参 Morina chinensis 1 4 1 2 0
麻花艽 Gentiana straminea 1 4 1 1 0
美丽风毛菊 Saussurea pulchra 1 4 1 1 0
萎软紫菀 Aster flaccidus 1 4 1 2 0
肉果草 Lancea tibetica 1 4 1 1 0
钝苞雪莲 Saussurea nigrescens 1 4 1 2 0
高山唐松草 Thalictrum alpinum 1 4 1 2 0
雪白委陵菜 Potentilla nivea 1 4 1 2 1
芸香叶唐松草 Thalictrum rutifolium 1 4 1 3 0
高山豆 Tibetia himalaica 1 3 1 2 1
委陵菜 Potentilla chinensis 1 4 1 2 1
短腺小米草 Euphrasia regelii 1 4 1 3 0
青海苜蓿 Medicago archiducrisnicolai 1 3 1 2 1
湿地繁缕 Stellaria uda 1 4 0 2 1
钝裂银莲花 Anemone obtusiloba 1 4 1 2 1
皱边喉毛花 Comastoma polycladum 1 4 1 3 1
海乳草 Glaux maritima 1 4 1 3 1
二裂委陵菜 Potentilla bifurca 1 4 1 2 1
蒌蒿 Artemisia selengensis 1 4 1 3 0
蒲公英 Taraxacum mongolicum 1 4 1 1 1
灰果蒲公英 Taraxacum maurocarpum 1 4 1 1 1
黄芪 Astragalus sp. 1 3 1 2 1
甘肃棘豆 Oxytropis kansuensis 1 3 1 2 1
黄花棘豆 Oxytropis ochrocephala 1 3 1 2 1
宽苞棘豆 Oxytropis latibracteata 1 3 1 2 1
矮火绒草 Leontopodium nanum 2 4 1 1 1
美丽毛茛 Ranunculus pulchellus 1 4 1 3 0
棉毛茛 Ranunculus membranaceus 1 4 1 3 0
西伯利亚蓼 Polygonum sibiricum 1 4 1 3 0
三脉梅花草 Parnassia trinervis 1 4 1 3 0
细叶亚菊 Ajania tenuifolia 1 4 1 3 0
刺芒龙胆 Gentiana aristata 1 4 0 2 1
线叶龙胆 Gentiana lawrencei 1 4 1 2 1
偏翅龙胆 Gentiana pudica 1 4 0 2 1
双柱头针蔺 Trichophorum distigmaticum 1 2 1 3 1
甘肃马先蒿 Pedicularis kansuensis 1 4 0 3 1
琴盔马先蒿 Pedicularis lyrata 1 4 0 3 1
乳白香青 Anaphalis lactea 2 4 0 2 1
铃铃香青 Anaphalis hancockii 2 4 0 2 1
湿生扁蕾 Gentianopsis paludosa 1 4 0 3 1
珠芽蓼 Polygonum viviparum 1 4 1 3 0
鸢尾 Iris tectorum 1 4 1 3 0
西藏沙棘 Hippophae tibetana 1 4 1 3 0
细蝇子草 Sliene gracilicaulis 1 4 1 2 1
藏异燕麦 Helictotrichon tibeticum 2 1 0 3 1
微孔草 Microula sikkimensis 2 4 0 3 0
刺果猪殃殃 Galium echinocarpum 1 4 0 2 1
双叉细柄茅 Ptilagrostis dichotoma 3 1 0 3 1
箭叶橐吾 Ligularia sagitta 1 4 1 3 0
黄帚橐吾 Ligularia virgaurea 1 4 1 3 0
披针叶野决明 Thermopsis lanceolata 1 4 1 3 0
草地老鹳草 Geranium pratense 2 4 1 3 0
黑柴胡 Bupleurum smithii 2 4 1 3 0
宽叶羌活 Notopterygium franchetii 1 4 1 3 0
香薷 Elsholtzia ciliata 1 4 0 3 0
蓝翠雀花 Delphinium caeruleum 1 4 1 3 0
矮生忍冬 Lonicera rupicola 2 4 1 3 0
长果婆婆纳 Veronica ciliata 1 4 1 3 0
鳞茎堇菜 Viola bulbosa 1 4 1 1 0
发草 Deschampsia cespitosa 3 1 1 3 0
露蕊乌头 Aconitum gymnandrum 1 4 0 3 0
小叶金露梅 Potentilla parvifolia 1 4 0 3 0
鸟足毛茛 Ranunculus brotherusii 1 4 1 3 0
四数獐牙菜 Swertia tetraptera 1 4 1 3 1
美花草 Callianthemum pimpinelloides 1 4 1 3 0
车前 Plantago asiatica 1 4 1 1 0
[1] Bakker ES, Olff H (2003). Impact of different-sized herbivores on recruitment opportunities for subordinate herbs in grassland.Journal of Vegetation Science, 14, 465-474.
[2] Biswas SR, Mallik AU (2010). Disturbance effects on species diversity and functional diversity in riparian and upland plant communities.Ecology, 91, 28-35.
[3] Biswas SR, Mallik AU (2011). Species diversity and functional diversity relationship varies with disturbance intensity.Ecosphere, 21-10.
[4] Canadell JG, Pataki DE, Pitelka LF (2007). Terrestrial Ecosystems in a Changing World. Springer, London.
[5] Chen C, Zhu ZH, Li YN, Yao TH, Pan SY, Wei XH, Kong BB, Du JL (2016). Effects of interspecific trait dissimilarity and species evenness on the relationship between species diversity and functional diversity in an alpine meadow. Acta Ecologica Sinica, 36, 661-674. (in Chinese with English abstract)[陈超, 朱志红, 李英年, 姚天华, 潘石玉, 卫欣华, 孔彬彬, 杜家丽 (2016). 高寒草甸种间性状差异和物种均匀度对物种多样性与功能多样性关系的影响. 生态学报, 36, 661-674.]
[6] Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California.Ecological Monographs, 79. 109-126.
[7] de Bello F, Lepš J, Sebastia MT (2006). Variations in species and functional plant diversity along climatic and grazing gradients.Ecography, 29, 801-810.
[8] de Bello F, Thuiller W, Lepš J, Choler P, Clément JS, Macek P, Sebastià MT, Lavorel S (2009). Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence.Journal of Vegetation Science, 20, 475-486.
[9] Díaz S, Cabido M (2001). Vive la différence: Plant functional diversity matters to ecosystem processes.Trends in Ecology & Evolution, 16, 646-655.
[10] Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM (2007). Incorporating plant functional diversity effects in ecosystem service assessments.Proceedings of the National Academy of Science of the United States of America, 104, 20684-20689.
[11] Grime JP (2006). Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and cones- quences.Journal of Vegetation Science, 17, 255-260.
[12] Grman E, Lau JA, Schoolmaster DR Jr, Gross KL (2010). Mechanisms contributing to stability in ecosystem function depend on the environmental context.Ecology Letters, 13, 1400-1410.
[13] Hooper DU (1998). The role of complementarity and competition in ecosystem responses to variation in plant diversity.Ecology, 79, 704-719.
[14] Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, La- vorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge.Ecological Monographs, 75, 3-35.
[15] Hooper DU, Vitousek PM (1997). The effects of plant composition and diversity on ecosystem processes.Science, 277, 1302-1305.
[16] Hu G, Jin Y, Liu JL, Yu MJ (2014). Functional diversity versus species diversity: Relationships with habitat heterogeneity at multiple scales in a subtropical evergreen broad-leaved forest.Ecological Research, 29, 897-903.
[17] Isbell FL, Polley HW, Wilsey BJ (2009). Biodiversity, productivity and the temporal stability of productivity: Patterns and processes.Ecology Letters, 12, 443-451.
[18] Lee CB, Chun JH, Cho HJ (2013). Elevational patterns and determinants of plant diversity in the Baekdudaegan Mountains, South Korea: Species vs. functional diversity.Ecology, 31, 3747-3759.
[19] Leibold MA (1998). Similarity and local co-existence of sp- ecies in regional biotas.Evolutionary Ecology, 12, 95-110.
[20] Lepš J (2004). What do the biodiversity experiments tell us about consequences of plant species loss in the real world?Basic and Applied Ecology, 5, 529-534.
[21] Lepš J, de Bello F, Lavorel S, Berman S (2006). Quantifying and interpreting functional diversity of natural comm- unities: Practical considerations matter.Preslia, 78, 481-501.
[22] Li XG, Zhu ZH, Zhou XS, Yuan FR, Fan RJ, Xu ML (2011). Effects of clipping, fertilizing and watering on the relationship between species diversity, functional diversity and primary productivity in alpine meadow of China.Chinese Journal of Plant Ecology, 35, 1136-1147. (in Chinese with English abstract)[李晓刚, 朱志红, 周晓松, 袁芙蓉, 樊瑞俭, 许曼丽 (2011). 刈割、施肥和浇水对高寒草甸物种多样性、功能多样性和初级生产力关系的影响. 植物生态学报, 35, 1136-1147.]
[23] Li Y, Zhu ZH (2013). Optimal plant traits and plant functional types responsible to clipping, fertilizing and watering in alpine meadow.Chinese Journal of Plant Ecology, 37, 384-396. (in Chinese with English abstract)[李燕, 朱志红 (2013). 高寒草甸对刈割、施肥和浇水发生响应的最优植物性状集和功能型. 植物生态学报, 37, 384-396.]
[24] Ma KP, Liu YM (1994). Measurement of biotic community diversity I: α diversity (Part 2).Chinese Biodiversity, 2, 231-239.
[25] MacArthur R, Levins R (1967). The limiting similarity, convergence, and divergence of coexisting species.The American Naturalist, 101, 377-385.
[26] Mason NW, de Bello F, Doležal J, Lepš J (2011). Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities.Journal of Ecology, 99, 788-796.
[27] Mayfield MM, Levine JM (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities.Ecology Letters, 13, 1085-1093.
[28] Niu KC, Choler P, de Bello F (2014). Fertilization decreases species diversity but increases functional diversity: A three-year experiment in a Tibetan alpine meadow.Agriculture, Ecosystems & Environment, 182, 106-112.
[29] Pan SY, Kong BB, Yao TH, Wei XH, Li YN, Zhu ZH (2015). Effects of clipping and fertilizing on the relationship between functional diversity and aboveground net primary productivity in alpine meadow. Chinese Journal of Plant Ecology, 39, 867-877. (in Chinese with English abstract)[潘石玉, 孔彬彬, 姚天华, 卫欣华, 李英年, 朱志红 (2015). 刈割和施肥对高寒草甸功能多样性与地上净初级生产力关系的影响. 植物生态学报, 39, 867-877.]
[30] Pausas JG, Lavorel S (2003). A hierarchical deductive approach for functional types in disturbed ecosystems.Journal of Vegetation Science, 14, 409-416.
[31] Pillar VD, Duarte LS, Sosinski EE, Joner F (2009). Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients.Journal of Vegetation Science, 20, 334-348.
[32] Qiao AH, Han JG, Gong AQ, Li W, Wang YW, Qing GJ, Guo SD, Wu JM, Zhao DZ (2006). Effect of nitrogen fertilizer application on Elymus nutans seed quality and yield in Qinghai-Tibet Plateau.Acta Agrestia Sinica, 14(1), 48-51. (in Chinese with English abstract)[乔安海, 韩建国, 巩爱岐, 李伟, 王赟文, 秦歌菊, 郭树栋, 吴精明, 赵殿智 (2006). 氮肥对垂穗披碱草种子产量和质量的影响. 草地学报, 14(1), 48-51.]
[33] Rajaniemi TK (2002). Why dose fertilization reduce plant species diversity? Testing three competition-based hypotheses.Journal of Ecology, 90, 316-324.
[34] Sasaki T, Lauenroth WK (2011). Dominant species, rather than diversity, regulates temporal stability of plant communities.Oecologia, 166, 761-768.
[35] Sasaki T, Okubo S, Okayasu T, Jamsran M, Ohkuro T, Takeuchi K (2009). Two-phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands.Ecology, 90, 2598-2608.
[36] Sonnier G, Shipley B, Navas ML (2010). Quantifying relation- ships between traits and explicitly measured gradients of stress and disturbance in early successional plant commu- nities.Journal of Vegetation Science, 21, 1014-1024.
[37] Thompson K, Petchey OL, Askew AP, Dunnett NP, Beckerman AP, Willis AJ (2010). Little evidence for limiting similarity in a long-term study of a roadside plant community.Journal of Ecology, 98, 480-487.
[38] Tilman D (1987). Secondary succession and the pattern of plant dominance along experimental nitrogen gradients.Ecological Monographs, 57, 189-214.
[39] Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composi- tion on ecosystem processes.Science, 277, 1300-1302.
[40] Verdier MB, Navas ML, Vellend M, Violle C, Fayolle A, Garnier E (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland.Journal of Ecology, 100, 1422-1433.
[41] Wang CT, Long RJ, Wang QJ, Jing ZC, Ding LM (2005). Re- lationship between species diversity and productivity in four types of alpine meadow plant communities.Acta Phytoecologica Sinica, 24, 483-487. (in Chinese with English abstract)[王长庭, 龙瑞军, 王启基, 景增春, 丁路明 (2005). 高寒草甸不同草地群落物种多样性与生产力关系研究. 植物生态学报, 24, 483-487.]
[42] Wang CT, Long RJ, Wang QL, Cao GM, Shi JJ, Du YG (2008). Response of plant diversity and productivity to soil resources changing under grazing disturbance on an alpine meadow.Acta Ecologica Sinica, 28, 4144-4152. (in Chinese with English abstract)[王长庭, 龙瑞军, 王启兰, 曹广民, 施建军, 杜岩功 (2008). 放牧扰动下高寒草甸植物多样性、生产力对土壤养分条件变化的响应. 生态学报, 28, 4144-4152.]
[43] Wang HD, Zhang LL, Zhu ZH (2013). Effects of clipping and fertilizing on the relationships between species diversity and ecosystem functioning and mechanisms of community stability in alpine meadow. Chinese Journal of Plant Ecology, 37, 279-295. (in Chinese with English abstract)[王海东, 张璐璐, 朱志红 (2013). 刈割、施肥对高寒草甸物种多样性与生态系统功能关系的影响及群落稳定性机制. 植物生态学报, 37, 279-295.]
[44] Weiher E, Clarke GDP, Keddy PA (1998). Community assembly rules, morphological dispersion, and the coexistence of plant species.Oikos, 309-322.
[45] Weiher E, Keddy PA (1995). The assembly of experimental wetland plant communities.Oikos, 323-335.
[46] Yamauchi A, Yamamura N (2004). Herbivory promotes plant production and reproduction in nutrient-poor conditions: Effects of plant adaptive phenology.The American Naturalist, 163, 138-153.
[47] Yang HJ, Jiang L, Li LH, Li A, Wu MY, Wan SQ (2012). Diversity-dependent stability under mowing and nutrient addition: Evidence from a 7-year grassland experiment.Ecology Letters, 15, 619-626.
[48] Yang ZL, van Ruijven J, Du GZ (2011). The effects of long-term fertilization on the temporal stability of alpine meadow communities.Plant and Soil, 345, 315-324.
[49] Zhao XQ (2009). Global Change and Ecological System in Alpine Meadow. Science Press, Beijing. 78 (in Chinese)[赵新全 (2009). 高寒草甸生态系统与全球变化. 科学出版社, 北京. 78.]
[50] Zhu ZH, Wang XA, Li YN, Wang G, Guo H (2012). Predicting plant traits and functional types response to grazing in an alpine shrub meadow on the Qinghai-Tibet Plateau.Science China Earth Sciences, 55, 837-851.
[1] Shitong Wang,Yaozhan Xu,Teng Yang,Xinzeng Wei,Mingxi Jiang. Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 277-288.
[2] Dan Liu,Zhongling Guo,Xiaoyang Cui,Chunnan Fan. Comparison of five associations of Taxus cuspidata and their species diversity [J]. Biodiv Sci, 2020, 28(3): 340-349.
[3] Zhenyuan Liu,Xingliang Meng,Zhengfei Li,Junqian Zhang,Jing Xu,Senlu Yin,Zhicai Xie. Diversity assessment and protection strategies for the mollusk community in the southern Dongting Lake [J]. Biodiv Sci, 2020, 28(2): 155-165.
[4] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow [J]. Biodiv Sci, 2020, 28(2): 107-116.
[5] Xia Li,Wanze Zhu,Shouqin Sun,Shumiao Shu,Zheliang Sheng,Jun Zhang,Ting Liu,Zhicai Zhang. Influence of habitat on the distribution pattern and diversity of plant community in dry and warm valleys of the middle reaches of the Dadu River, China [J]. Biodiv Sci, 2020, 28(2): 117-127.
[6] DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43.
[7] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 22-32.
[8] Yibo Tan,Wenhui Shen,Zi Fu,Wei Zheng,Zhiyang Ou,Zhangqiang Tan,Yuhua Peng,Shilong Pang,Qinfei He,Xiaorong Huang,Feng He. Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests [J]. Biodiv Sci, 2019, 27(9): 970-983.
[9] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. Distribution, community structures and species diversity of larch forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 742-752.
[10] QIN Hao,ZHANG Yin-Bo,DONG Gang,ZHANG Feng. Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China [J]. Chin J Plant Ecol, 2019, 43(9): 762-773.
[11] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 825-833.
[12] Zihong Chen,Yuanbing Wang,Yongdong Dai,Kai Chen,Ling Xu,Qingcheng He. Species diversity and seasonal fluctuation of entomogenous fungi of Ascomycota in Taibaoshan Forest Park in western Yunnan [J]. Biodiv Sci, 2019, 27(9): 993-1001.
[13] Tolgor Bau, Xueshan Wang, Peng Zhang. Floristic of agarics and boletus in the Greater and Lesser Khinggan Mountains [J]. Biodiv Sci, 2019, 27(8): 867-873.
[14] Jiao Meng, Li Jing, Zhao Huifeng, Wu Chunsheng, Zhang Aibing. Species diversity and global distribution of Limacodidae (Lepidoptera) using online databases [J]. Biodiv Sci, 2019, 27(7): 778-786.
[15] Zhang Mingming,Yang Zhaohui,Wang Cheng,Wang Jiaojiao,Hu Canshi,Lei Xiaoping,Shi Lei,Su Haijun,Li Jiaqi. Camera-trapping survey on mammals and birds in Fanjingshan National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(7): 813-818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Bingyu Zhang;Xiaohua Su*;Xiangming Zhou. Gene Regulation in Flower Development in the Forest[J]. Chin Bull Bot, 2008, 25(04): 476 -482 .
[2] Cai Ji-jiong and Wang Zi-qing. A Preliminary Report on Pollen Morphology and Constituent of Pinus massoniana[J]. Chin Bull Bot, 1988, 5(03): 167 -169 .
[3] Zhang Fu-ren and Mo Ri-gen. A Simple Technique for Observing Fracture Surface of Pollen Grains by SEM[J]. Chin Bull Bot, 1992, 9(03): 63 -64 .
[4] MA Yue-Ping CHEN Fan DAI Si-Lan. Studies of LEAFY Homologue Genes in Higher Plants[J]. Chin Bull Bot, 2005, 22(05): 605 -613 .
[5] Lin Zhong-Ping. Isolating of DNA from Plant Materials[J]. Chin Bull Bot, 1984, 2(04): 44 -46 .
[6] Liu Rong-zhen and Wang Hou. The Effect of Ammonia Humic Acid Fertilizers on the Activity of End-Group Oxidase of Rice Seeding in Sludge[J]. Chin Bull Bot, 1985, 3(06): 21 -23 .
[7] LI Xin-Rong;CHEN Zhong-Xin;CHEN Xu-Dong and DONG Xue-Jun. Study on the Interconnections Among Several Communities of Desert Shrubs in West Ordos Plateau[J]. Chin Bull Bot, 1998, 15(01): 56 -62 .
[8] . [J]. Chin Bull Bot, 1994, 11(专辑): 45 .
[9] Li Ru-juan;Shang Zong-yan and Zhang Ji-zu. The Chromosome Observation on 3 Species in the Genus Gynostemma[J]. Chin Bull Bot, 1989, 6(04): 245 -247 .
[10] Tai Wang;Qian Qian;Ming Yuan;Xiaojing Wang;Weicai Yang;Lijia Qu;Hongzhi Kong;Yinong Xu;Gaoming Jiang;Kang Chong. Research Advances on Plant Science in China in 2009[J]. Chin Bull Bot, 2010, 45(03): 265 -306 .