Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (8): 760-774.doi: 10.17521/cjpe.2015.0464

• Research Articles • Previous Articles     Next Articles

Stoichiometric characteristics of carbon, nitrogen and phosphorus in Phyllostachys edulis forests of China

Man-Yi DU1,2,3, Shao-Hui FAN1,2,*(), Guang-Lu LIU1,2,*(), Huan-Ying FENG1,2,3, Bao-Hua GUO1,2,*, Xiao-Lu TANG1,2   

  1. 1International Centre for Bamboo and Rattan, Beijing 100102, China

    2Key Laboratory of Science and Technology of Bamboo and Rattan, State Forestry Administration, Beijing 100102, China
    and
    3North China Foresty Experiment Center, Chinese Academy of Forestry, Beijing 102300, China
  • Online:2016-08-23 Published:2016-08-10
  • Contact: Shao-Hui FAN,Guang-Lu LIU,Bao-Hua GUO E-mail:fansh@icbr.ac.cn;liuguanglu@icbr.ac.cn

Abstract:

Aims Stoichiometric ratios of carbon (C), nitrogen (N) and phosphorus (P) are important characteristics of the ecological processes and functions. Studies on population ecological stoichiometry can refine the content of flora chemometrics, determine the limited nutrient, and provide data for process-based modeling over large scale. Phyllostachys edulis is an important forest type, whose area accounts for 74% of total bamboo forest area in Southern China. However, little is known about the ecological stoichiometric in P. edulis. This study aimed to reveal C:N, C:P and N:P stoichiometry characteristics of the “plant-soil-litter” continuum and to provide a better understanding nutrient cycling and stability mechanisms in P. edulis forest in China. Methods The data were collected from the published literature containing C、N、P content in leaf or surface soil (0-20 cm) or littefall in P. edulis forests. Important findings 1) The leaf C, N, P content were estimated at 478.30 mg·g-1, 22.20 mg·g-1, 1.90 mg·g-1 in P. edulis, and the corresponding C: N, C: P and N: P were 26.80, 299.60 and 14.40, respectively. Soil C, N, and P content in 0-20 cm were 21.53 mg·g-1, 1.66 mg·g-1, 0.41 mg·g-1, with ratios of 14.20 for C:N, 66.74 for C:P and 4.28 for N:P. The C, N and P contents were 438.49 mg·g-1, 13.39 mg·g-1, 0.86 mg·g-1 for litterfall, with the litter C:N, C:P and N:P being 25.53, 665.67, 22.55, respectively. 2) In the plant-soil-litter system in P. edulis forest, leaf had higher C:N, litter had higher C:P and N:P, while soil were the lowest. The N, P resorption rate was 39.68% and 54.74%, indicating that P. edulis forest growth and development was constrained by P or by both of N and P in China. 3) N content and N:P in leaf showed a tendency to increase with latitude, while the C:N of leaf declined with latitude. N:P of leaf increased with longitude, but the P content and the C:N of leaf showed a opposite trend. C: N of soil increased with longitude, whereas the N content of soil declined longitude. The N content of litter declined with longitude. 4) The leaf N content was negatively correlated with mean annual temperature and mean annual precipitation, but being more sensitive to temperature than precipitation. The positive correlations between N content and latitude support “Temperature-Plant Physiological” hypothesis, reflecting an adaptive strategy to environmental conditions.

Key words: leaf, soil, litterfall, latitude, longitude, ecological stoichiometry

Table 1

C, N and P stoichiometry of the forest-soil-litter system in Phyllostachys edulis forests"

因变量
Dependent
variable
n 最小值
Min
(mg·g-1)
最大值
Max
(mg·g-1)
平均值
Mean
(mg·g-1)
标准偏差
Standard
deviation
变异系数
Coefficient
of variation (%)
p (K-S检验)
p (K-S test)
叶片 Leaf C 32 417.10 544.20 478.30 33.69 7.04 0.980
N 68 6.00 32.50 22.20 5.57 25.03 0.107
P 66 0.60 6.50 1.90 1.24 65.19 0.137
N:P 74 3.22 32.17 14.40 6.16 42.66 0.505
C:N 14 17.55 60.09 26.80 12.12 45.23 0.233
C:P 12 192.00 565.94 299.60 139.77 46.65 0.080
土壤 Soil C 95 8.11 45.05 21.53 8.47 39.34 0.832
N 85 0.49 3.99 1.66 0.72 43.14 0.953
P 41 0.07 0.79 0.41 0.16 38.04 0.087
N:P 41 1.29 7.83 4.28 1.78 41.44 0.670
C:N 81 5.35 32.12 14.20 4.51 31.80 0.784
C:P 41 23.61 224.86 66.74 39.32 58.92 0.600
凋落物 Litter C 12 394.50 517.90 438.49 31.67 7.22 0.511
N 21 5.40 30.20 13.39 6.76 50.50 0.892
P 20 0.30 2.20 0.86 0.58 67.74 0.742
N:P 20 3.00 54.25 22.55 15.18 67.32 0.989
C:N 9 14.52 44.74 25.53 9.63 37.72 0.923
C:P 8 219.25 1 096.25 665.67 324.97 48.82 0.639

Table 2

Latitudinal patterns of carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in plant-soil-litter"

因变量
Dependent
variable
截距
Intercept
斜率
Slope
R2 p n
叶片 C 2.619 0.002 0.019 0.449 32
Leaf N -0.037 0.047 0.368 <0.001 68
P 0.657 -0.015 0.012 0.390 66
N:P -0.313 0.048 0.120 0.002 74
C:N 3.069 -0.057 0.602 <0.001 14
C:P -5 806.047 201.231 0.204 0.141 12
土壤 C 1.252 0.002 0.000 0.835 95
Soil N -0.131 0.011 0.015 0.270 85
P -0.456 0.001 0.000 0.937 41
N:P 0.005 0.021 0.070 0.098 41
C:N 1.239 -0.004 0.003 0.621 81
C:P 1.385 0.014 0.026 0.316 41
凋落物 C 2.697 -0.002 0.007 0.798 12
Litter N 63.793 -1.668 0.178 0.057 21
P -0.084 -0.002 0.000 0.955 20
N:P 3.152 -0.064 0.074 0.247 20
C:N 2.304 -0.032 0.074 0.479 9
C:P 4 613.437 -135.896 0.299 0.161 8

Table 3

Longitudinal patterns of carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in plant-soil-litter"

因变量
Dependent
variable
截距
Intercept
斜率
Slope
R2 p n
叶片 C 2.842 -0.001 0.047 0.232 32
Leaf N 1.171 0.001 0.001 0.790 68
P 4.070 -0.033 0.253 <0.001 66
N:P -2.650 0.032 0.246 <0.001 74
C:N 14.897 -0.113 0.513 0.004 14
C:P 11.947 -0.080 0.184 0.164 12
土壤 C 2.669 -0.012 0.032 0.084 95
Soil N 2.115 -0.016 0.053 0.035 85
P 1.025 -0.012 0.029 0.290 41
N:P 2.131 -0.013 0.036 0.235 41
C:N -0.275 0.012 0.051 0.044 81
C:P 0.469 0.011 0.022 0.353 41
凋落物 C 2.563 0.001 0.016 0.698 12
Litter N 2.883 -0.060 0.209 0.037 21
P -0.561 0.003 0.002 0.858 20
N:P -0.124 0.011 0.010 0.669 20
C:N 3.037 -0.014 0.196 0.232 9
C:P 6.433 -0.031 0.415 0.085 8

Table 4

Linear regression relationship between leaf nitrogen (N) and phosphorus (P) contents and the environmental factors"

N P
斜率
Slope
R2 n 斜率
Slope
R2 n
年平均气温 MAT -0.324 0.205*** 68 -0.144 0.015 66
年降水量 MAP -0.308 0.191*** 68 -0.281 0.057 66
年平均气温+年降水量
MAT + MAP
0.226*** 68 0.065 66

Table 5

Comparisons of C:N, C:P and N:P of Phyllostachys edulis leaf in China to previous studies"

研究区域 Study area C:N C:P N:P 数据来源 Reference
全国毛竹林 National bamboo forest 26.80 299.60 14.40 This study
全球 Global 23.80* 300.90* 13.80 Elser et al., 2000a, 2000b; Reich & Oleksyn, 2004
NSTEC 13.50* Ren et al., 2007
29.10 313.9 11.50 Ren et al., 2012
浙江天童山 Tiantongshan, Zhejiang 42.10 758.00 18.00 Yan et al., 2010
48.40 678.00 14.00 Yan et al., 2010
30.70 338.00 11.00 Yan et al., 2010
滇池流域 Dianchi area 37.71 267.50 8.60 Yan et al., 2011
黄土高原 Losses Plateau 21.20 312.00 15.40 Zheng & Shangguan, 2006
塔克拉玛干沙漠 Taklimakan Desert 17.50 249.00 15.00 Li et al., 2013
北京及周边 Beijing and surrounding area 17.30 242.00 13.90 Han et al., 2009
福建万木林 Wanmulin, Fujian 18.49* Lin et al., 2011
杭州湾滨海湿地 Hangzhou Bay Coastal Wetlands 16.49 Wu et al., 2010
松嫩平原 Songnen Plain 13.00 Song et al., 2012

Table 6

Comparisons of soil C:N, C:P and N:P in Phyllostachys edulis forest in China to previous studies"

研究区域 Study area C:N C:P N:P 数据来源 Reference
全国毛竹林 National bamboo forest 14.20 66.74 4.28 This study
全球森林0-10 cm Global forest 0-10 cm 12.40 81.90 6.60 Cleveland & Liptzin, 2007
全球草地0-10 cm Global grassland 0-10 cm 11.80 64.30 5.60 Cleveland & Liptzin, 2007
中国极寒高原 Cold plateau of China 11.70 24.00 2.70 Tian et al., 2010
中国有机土 Organic soil in China 14.90 131.60 8.00 Tian et al., 2010
黄土高原0-10 cm Loess Plateau 0-10 cm 12.92 22.85 1.88 Zhang et al., 2013
塔克拉玛干沙漠 Taklimakan Desert 14.80 2.69 0.18 Li et al., 2013
南亚热带森林0-10 cm Sub-tropical forest in South China 0-10 cm 2.30 Liu et al., 2010
2.50 Liu et al., 2010
3.60 Liu et al., 2010

Table 7

Comparisons of C: N, C: P and N: P of Phyllostachys edulis litter in China to previous studies"

研究区域 Study area C:N C:P N:P 数据来源 Reference
全国毛竹林 National bamboo forest 25.53 665.67 22.55 This study
全球森林 Global forest 57.3 1175.60 20.30 McGroddy et al, 2004
吉林长白山 Changbai Mountain, Jilin 39.43 552.00 14.00 Wang et al., 2011
广东鼎湖山 Dinghu Mountain, Guangdong 29.57 1035.00 35.00 Wang et al., 2011
云南西双版纳 Xishuangbanna, Yunnan 30.12 723.00 24.00 Wang et al., 2011
江西千烟洲 Qianyanzhou, Jiangxi 72.22 1950.00 27.00 Wang et al., 2011
浙江天童山 Tiantongshan, Zhejiang 59.77 777.00 13.00 Yan et al., 2010
49.36 691.00 14.00 Yan et al., 2010
40.50 567.00 14.00 Yan et al., 2010
[1] Aerts R, Chapin III F (2000). The mineral nutrition of wild plants revisited. Advances in Ecological Research, 30, 1-67.
[2] Ågren GI (2004). The C:N:P stoichiometry of autotrophs— Theory and observations. Ecology Letters, 7, 185-191.
[3] An Z, Niu DC, Wen HY, Yang Y, Zhong HR, Fu H (2011). Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China. Chinese Journal of Plant Ecology, 35, 801-807. (in Chinese with English abstract)[安卓, 牛的草, 文海燕, 杨益, 张洪荣, 傅华 (2011). 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响. 植物生态学报, 35, 801-807.]
[4] Bai JH, Deng W, Zhu YM, Luan ZQ, Zhang YX (2003). Spatial distribution characteristics and ecological effects of carbon and nitrogen of soil in Huolin River catchment wetland. Chinese Journal of Applied Ecology, 14, 1494-1498. (in Chinese with English abstract)[白军红, 邓伟, 朱颜明, 栾兆擎, 张玉霞 (2003). 霍林河流域湿地土壤碳氮空间分布特征及生态效应. 应用生态学报, 14, 1494-1498.]
[5] Cao J, Zhang YL, Liu YH (2002). Changes in forest biomass carbon storage in Hainan Island over the last 20 years. Geographical Research, 21, 551-560. (in Chinese with English abstract)[曹军, 张镱锂, 刘燕华 (2002). 近20年海南岛森林生态系统碳储量变化. 地理研究, 21, 551-560.]
[6] Chen FS, Hu XF, Ge G (2007). Leaf N:P stoichiometry and nutrient resorption efficiency of Ophiopogon japonicus in Nanchang City. Acta Prataculturae Sinica, 16(4), 47-54. (in Chinese with English abstract)[陈伏生, 胡小飞, 葛刚 (2007). 城市地被植物麦冬叶片氮磷化学计量比和养分再吸收效率. 草业学报 16(4), 47-54.]
[7] Chen FS, Niklas KJ, Zeng DH (2011). Important foliar traits depend on species-grouping: Analysis of a remnant temperate forest at the Keerqin sandy lands, China. Plant and Soil, 340, 337-345.
[8] Cleveland CC, Liptzin D (2007). C: N: P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252.
[9] Cui Q, Lü XT, Wang QB, Han XG (2010). Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe. Plant and Soil, 334, 209-219.
[10] Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, Le Cain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 196, 807-815.
[11] Ding XH, Luo SZ, Liu JW, Li K, Liu GH (2012). Longitude gradient changes on plant community and soil stoichiometry characteristics of grassland in Hulunbeir. Acta Ecologica Sinica, 32, 3467-3476. (in Chinese with English abstract)[丁小慧, 罗淑政, 刘金巍, 李魁, 刘国华 (2012). 呼伦贝尔草地植物群落与土壤化学计量学征沿经度梯度变化. 生态学报, 32, 3467-3476.]
[12] Du MY, Fan SH, Liu GL, Qi LH, Guo BH, Tang XL, Xiao FM (2013). Effects of land use change on soil labile organic carbon in central Jiangxi of China. Chinese Journal of Applied Ecology, 24, 2897-2904. (in Chinese with English abstract)[杜满义, 范少辉, 刘广路, 漆良华, 郭宝华, 唐晓鹿, 肖复明 (2013). 土地利用方式转变对赣中地区土壤活性有机碳的影响. 应用生态学报, 24, 2897-2904.]
[13] Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
[14] Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL (2000a). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
[15] Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000b). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550.
[16] Fan SH, Xiao FM, Wang SL, Sun WH, Yu XJ, Shen ZQ (2009). Fine root biomass and turnover in moso bamboo plantation in Huitong forest station, Hunan Province. Scientia Silvae Sinicae, 45(7), 1-6. (in Chinese with English abstract)[范少辉, 肖复明, 汪思龙, 苏文会, 于小军, 申正其 (2009). 毛竹林细根生物量及其周转. 林业科学, 45(7), 1-6.]
[17] Fang JY, Piao SL, Zhao SQ (2001). The carbon sink: The role of the middle and high latitudes terrestrial ecosystem in the northern Hemisphere. Acta Phytoecologica Sinica, 25, 594-602. (in Chinese with English abstract)[方精云, 朴世龙, 赵淑清 (2001). CO2失汇与北半球中高纬度陆地生态系统的碳汇. 植物生态学报, 25, 594-602.]
[18] Gu DX, Chen SL, Huang YQ (2011). Effects of soil nitrogen and phosphonium on leaf nitrogen and phosphonium stoichiometric characteristics and chlorophyll content of Oligostachyum lubricum. Chinese Journal of Plant Ecology, 35, 1219-1225. (in Chinese with English abstract)[顾大形, 陈双林, 黄玉清 (2011). 土壤氮磷对四季竹叶片氮磷化学计量特征和叶绿素含量的影响. 植物生态学报, 35, 1219-1225.]
[19] Guo BH (2014). Ecological Stoichiometry Characteristics of Carbon, Nitrogen and Phosphorus in Phyllostachys pubescens Forest of Different Productivity Levels. PhD dissertation, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract)[郭宝华 (2014). 不同生产力水平毛竹林碳氮磷生态化学计量特征研究. 博士学位论文, 中国林业科学研究, 北京.]
[20] Guo BH, Liu GL, Fan SH, Du MY, Sun WH (2014). Distribution patterns and stoichiometry characteristics of C, N, P in Phyllostachys edulis forests of different productivity levels. Scientia Silvae Sinicae, 50(6), 1-9. (in Chinese with English abstract)[郭宝华, 刘广路, 范少辉, 杜满义, 苏文会 (2014). 不同生产力水平毛竹林碳氮磷的分布格局和计量特征. 林业科学, 50(6), 1-9.]
[21] Guo JF, Yang YS, Chen GS, Lin P, Xie JZ (2006). A review on litter decomposition in forest ecosystem. Scientia Silvae Sinicae, 42(4), 93-100 . (in Chinese with English abstract)[郭建芬, 杨玉盛, 陈光水, 林鹏, 谢锦忠 (2006). 森林凋落物分解研究进展. 林业科学, 42(4), 93-100.]
[22] Güsewell S, Koerselman W, Rspagen JTA (2003). Biomass N:P ratios as indicators of nutrient limitation of plant populations in wetlands. Ecological Applications, 13, 372-384.
[23] Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266.
[24] Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
[25] Han WX, Fang JY, Peter BR, Woodwar FI, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
[26] Han WX, Tang LY, Chen YH, Fang JY (2013). Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants. PLOS ONE, 8, e83366. doi: 10.1371/journal.pone.0083366.
[27] Han WX, Wu Y, Tang LY, Chen YH, Li LP, He JS, Fang JY (2009). Leaf carbon, nitrogen and phosphorus stoich- iometry across plant species in Beijing and its periphery. Acta Scientiarum Naturalium Universitatis Pekinensis, 45, 855-860. (in Chinese with English abstract)[韩文轩, 吴漪, 汤璐瑛, 陈雅涵, 李利平, 贺金生, 方精云 (2009). 北京及周边地区植物叶的碳氮磷元素计量特征. 北京大学学报(自然科学版), 45, 855-860.]
[28] He JS, Han XG (2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. (in Chinese with English abstract)[贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
[29] Hong JT, Wu JB, Wang XD (2013). Effects of global climate change on the C, N, and P stoichiometry of terrestrial plants. Chinese Journal of Applied Ecology, 24, 2658-2665. (in Chinese with English abstract)[洪江涛, 吴建波, 王小丹 (2013). 全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响. 应用生态学报, 24, 2658-2665.]
[30] Jackson RB, Mooney H, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
[31] Jiang ZH (2002). Bamboo and Rattan in the World. Liaoning Science and Technology Press, Shenyang. (in Chinese)[江泽慧 (2002). 世界竹藤. 辽宁科学技术出版社, 沈阳.]
[32] Killingbeck KT (1996). Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
[33] Koerselman W, Meuleman AF (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
[34] Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Franco AC, Goldstein G, Meinzer FC (2007). Nutrient resorption and patterns of litter production and decomposition in a neotropical savanna. Functional Ecology, 21, 1034-1043.
[35] Ladanai S, Ågren GI, Olsson BA (2010). Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems, 13, 302-316.
[36] Li CJ, Lei JQ, Xu XW, Tang QL, Gao P, Wang YD (2013). The stoichiometric characteristics of C, N, P for artificial plants and soil in the hinterland of Taklimakan Desert. Acta Ecologica Sinica, 33, 5760-5767. (in Chinese with English abstract)[李从娟, 雷加强, 徐新文, 唐清亮, 高培, 王永东 (2013). 塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征. 生态学报, 33, 5760-5767.]
[37] Li MR, Sha LQ (2005). Soil nitrogen mineralization under different land use patterns in Xishuangbanna. Chinese Journal of Applied Ecology, 16, 54-58. (in Chinese with English abstract)[李明锐, 沙丽清 (2005). 西双版纳不同土地利用方式下土壤氮矿化作用研究. 应用生态学报, 16, 54-58.]
[38] Lin ZB, Yan PY, Yang ZJ, Wan XH, Chen GS (2011). Leaf nitrogen and phosphorus stoichiometry across 101 woody species in Wanmulin, Fujian Province. Journal of Subtropical Resource and Environment, 6(1), 32-38. (in Chinese with English abstract)[林志斌, 严平勇, 杨智杰, 万晓华, 陈光水 (2011). 福建万木林101种常见木本植物叶片N, P化学计量学特征. 亚热带资源与环境学报, 6(1), 32-38.]
[39] Liu CJ, Berg B, Kutsch W, Westman C, Ilvesnieme H, Shen XH, Shen GR, Chen XB (2006). Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests. Global Ecology and Biogeography, 15, 438-444.
[40] Liu GH, Fu BJ, Fang JY (2000). Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta Ecologica Sinica, 20, 733-740. (in Chinese with English abstract)[刘国华, 傅伯杰, 方精云 (2000). 中国森林碳动态及其对全球碳平衡的贡献. 生态学报, 20, 733-740.]
[41] Liu GL (2009). Long Term Productivity of Bamboo Forest. PhD dissertation, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract)[刘广路 (2009). 毛竹林长期生产力保持机制研究. 博士学位论文, 中国林业科学研究院, 北京.]
[42] Liu WD, Su JR, Li SF, Zhang ZJ, Li ZW (2010). Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province. Acta Ecologica Sinica, 30, 6581-6590. (in Chinese with English abstract)[刘万德, 苏建荣, 李帅锋, 张志钧, 李忠文 (2010). 云南普洱季风常绿阔叶林演替系列植物和土壤C, N, P化学计量特征. 生态学报, 30, 6581-6590.]
[43] Liu WJ, Chen SY, Hu FZ, Sa N (2012). Distributions pattern of phosphorus, potassium and influencing factors in the upstream of Shule river basin. Acta Ecologica Sinica, 32, 5429-5437. (in Chinese with English abstract)[刘文杰, 陈生云, 胡凤祖, 莎娜 (2012). 疏勒河上游土壤磷和钾的分布及其影响因素. 生态学报, 32, 5429-5437.]
[44] Liu XZ, Zhou GY, Zhang DQ, Liu SZ, Chu GW, Yan JH (2010). N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 34, 64-71. (in Chinese with English abstract)[刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华 (2010). 南亚热带森林不同演替阶段植物与土壤中N, P的化学计量特征. 植物生态学报, 34, 64-71.]
[45] Liu YJ, Li Q, Ma MD (2010). Comparison of soil nutrient storage of forest vegetation type in northwest of Sichuan Province. Journal of Soil and Water Conservation, 24(5), 146-152. (in Chinese with English abstract)[刘跃建, 李强, 马明东 (2010). 四川西北部主要森林植被类型土壤养分库比较研究. 水土保持学报, 24(5), 146-152.]
[46] Lü XT, Han XG (2010). Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant & Soil, 327, 481-491.
[47] Lü XT, Kong DL, Pan QM, Simmons ME, Han XG (2012). Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia, 168, 301-310.
[48] Lu YW, Duan BL, Zhang XL, Korpelainen H, Li CY (2009). Differences in growth and physiological traits of Populus cathayana populations as affected by enhanced UV-B radiation and exogenous ABA. Environmental and Experimental Botany, 66, 100-109.
[49] Ma YZ, Zhong QL, Jin BJ, Lu HD, Guo BQ, Zheng Y, Li M, Cheng DL (2015). Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China. Chinese Journal of Plant Ecology, 39, 159-166. (in Chinese with English abstract)[马玉珠, 钟全林, 靳冰洁, 卢宏典, 郭炳桥, 郑媛, 李曼, 程栋梁 (2015). 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子. 植物生态学报, 39, 159-166.]
[50] McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial Redfield-type ratios. Ecology, 85, 2390-2401.
[51] Mclauchlan KK, Hobbie SE, Post WM (2006). Conversion from agriculture to grassland builds soil organic matter on decadal timescales. Ecological Applications, 16, 143-153.
[52] Michaels AF (2003). The ratios of life. Science, 300, 906-907.
[53] Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Fuchslueger L, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2012). Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 93, 770-782.
[54] Niu DC, Li Q, Jiang SG, Chang PJ, Fu H (2013). Seasonal variations of leaf C:N:P stoichiometry of six shrubs in desert of China’s Alxa Plateau. Chinese Journal of Plant Ecology, 37, 317-325. (in Chinese with English abstract)[牛得草, 李茜, 江世高, 常佩静, 傅华 (2013). 阿拉善荒漠区6种主要灌木植物叶片C:N:P化学计量比的季节变化. 植物生态学报, 37, 317-325.]
[55] Piao HC, Liu CQ, Zhu SF, Zhu JM (2005). Variations of C4 and C3 plant N:P ratios influenced by nutrient stoichiometry in limestone and sandstone area of Guizhou. Quaternary Sciences, 25, 552-560. (in Chinese with English abstract)[朴河春, 刘丛强, 朱书法, 朱建明 (2005). 贵州石灰岩和砂岩地区C4和C3植物营养元素的化学计量对N/P比值波动的影响. 第四纪研究, 25, 552-560.]
[56] Planchet E, Rannou O, Rlcoult C, Boutet-Mercey S, Mala- Grondard A, Limaml AM (2011). Nitrogen metabolism responses to water deficit act through both abscisic acid (ABA)-dependent and independent pathways in Medicago truncatula during post-germination. Journal of Experi- mental Botany, 62, 605-615.
[57] Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
[58] Ren SJ, Yu GR, Jiang CM, Fang HJ, Sun XM (2012). Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the North South Transect of East China. Chinese Journal of Applied Ecology, 23, 581-586. (in Chinese with English abstract)[任书杰, 于贵瑞, 姜春明, 方华军, 孙晓敏 (2012). 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征. 应用生态学报, 23, 581-586.]
[59] Ren SJ, Yu GR, Tao B, Wang SQ (2007). Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC. Envirmental Science, 28, 2665-2673. (in Chinese with English abstract)[任书杰, 于贵瑞, 陶波, 王绍强 (2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28, 2665-2673.]
[60] Song YT, Zhou DW, Li Q, Wang P, Huang YX (2012). Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China. Chinese Journal of Plant Ecology, 36, 222-230. (in Chinese with English abstract)[宋彦涛, 周道玮, 李强, 王平, 黄迎新 (2012). 松嫩草地80种草本植物叶片氮磷化学计量特征. 植物生态学报, 36, 222-230.]
[61] State Forestry Administration (2014). China Forest Resources Report. China Forestry Publishing House, Beijing. (in Chinese)[国家林业局 (2014). 中国森林资源报告. 中国林业出版社, 北京.]
[62] Tang GY, Li K, Sun YY, Zhang CH (2010). Soil labile organic carbon contents and their allocation characteristics under different land uses at dry-hot valley. Enviromental Science, 31, 1365-1371. (in Chinese with English abstract)[唐国勇, 李昆, 孙永玉, 张春华 (2010). 干热河谷不同利用方式下土壤活性有机碳含量及其分配特征. 环境科学, 31, 1365-1371.]
[63] Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534.
[64] Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CA (2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 98, 139-151.
[65] Vitousek PM (2003). Stoichiometry and flexibility in the Hawaiian model system. In: Melillo JM, Field CB, Moldan B eds. Interactions of the Major Biogeochemical Cycles: Global Change and Human Impacts. Island Press, Washington. 117-133
[66] Wang JY, Wang SQ, Li RL, Yan JH, Sha LQ, Han SJ (2011). C:N:P stoichiometric characteristics of four forest types’ dominant tree species in China. Chinese Journal of Plant Ecology, 35, 587-595. (in Chinese with English abstract)[王晶苑, 王绍强, 李纫兰, 闫俊华, 沙丽清, 韩士杰 (2011). 中国四种森林类型主要优势植物的C:N:P化学计量学特征. 植物生态学报, 35, 587-595.]
[67] Wang WQ, Xu LL, Zeng CS, Tong C, Zhang LH (2011). Carbon, nitrogen and phosphorus ecological stoichiometric ratios among live plant-litter-soil systems in estuarine wetland. Acta Ecologica Sinica, 31, 7119-7124. (in Chinese with English abstract)[王维奇, 徐玲琳, 曾从盛, 仝川, 张林海 (2011). 河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征. 生态学报, 2011, 7119-7124.]
[68] Wang XX, Liu L, Zhang J, Wang YK, Wen GS, Gao RF, Gao Y, Zhang RM (2012). Changes of photosynthetic pigment and photosynthetic enzyme activity in stems of Phyllostachys pubescens during rapid growth stage after shooting. Chinese Journal of Plant Ecology, 36, 456-462. (in Chinese with English abstract)[王星星, 刘琳, 张洁, 王玉魁, 温国胜, 高荣孚, 高岩, 张汝民 (2012). 毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化. 植物生态学报, 36, 456-462.]
[69] Weng J, Gu HH, Wang ZH, Zhao MS, Song XZ (2015). The effects of nitrogen deposition on ecological stoichiometry of leaf of Moso bamboo with extensive management. Ecological Science, 34(2), 63-70. (in Chinese with English abstract)[翁俊, 顾鸿昊, 王志坤, 赵明水, 宋新章 (2015). 氮沉降对毛竹叶片生态化学计量特征的影响. 生态科学, 34(2), 63-70.]
[70] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
[71] Wu JS, Jiang PK, Wang ZL (2008). The effects of Phy- llostachys pubescens expansion on soil fertility in national nature reserve of mount Tianmu. Acta Agriculturae Universitatis Jiangxiensis, 30, 689-692. (in Chinese with English abstract)[吴家森, 姜培坤, 王祖良 (2008). 天目山国家级自然保护区毛竹扩张对林地土壤肥力的影响. 江西农业大学学报, 30, 689-692.]
[72] Wu TG, Wu M, Liu L, Xiao JH (2010). Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China. Chinese Journal of Plant Ecology, 34, 23-28. (in Chinese with English abstract)[吴统贵, 吴明, 刘丽, 萧江华 (2010). 杭州湾滨海湿地3种草本植物叶片N, P化学计量学的季节变化. 植物生态学报, 34, 23-28.]
[73] Xu WQ, Chen X, Luo GP, Wang T, Lin Q (2009). Soil orgaic carbon storage and its spatial distribution characteristic in the Sangong River watershed of arid region. Journal of Natural Resources, 24, 1740-1747. (in Chinese with English abstract)[许文强, 陈曦, 罗格平, 王涛, 蔺卿(2009). 干旱区三工河流域土壤有机碳储量及空间分布特征. 自然资源学报, 24, 1740-1747. ]
[74] Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010). C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China. Chinese Journal of Plant Ecology, 34, 48-57. (in Chinese with English abstract)[阎恩荣, 王希华, 郭明, 仲强, 周武 (2010). 浙江天童常绿阔叶林, 常绿针叶林与落叶阔叶林的C:N:P化学计量特征. 植物生态学报, 34, 48-57.]
[75] Yan K, Fu DG, He F, Duan CQ (2011). Leaf nutrient stoichiometry of plants in the phosphorus-enriched soils of the Lake Dianchi watershed, southwestern China. Chinese Journal of Plant Ecology, 35, 353-361. (in Chinese with English abstract)[阎凯, 付登高, 何峰, 段昌群 (2011). 滇池流域富磷区不同土壤磷水平下植物叶片的养分化学计量特征. 植物生态学报, 35, 353-361.]
[76] Yang JJ, Zhang XR, Ma LS, Chen YN, Dang YH, An SS (2014). Ecological stoichiometric relationships between components of Robinia pseudoacacia forest in Loess Plateau. Acta Pedologica Sinica, 51, 133-142. (in Chinese with English abstract)[杨佳佳, 张向茹, 马露莎, 陈亚南, 党延辉, 安韶山 (2014). 黄土高原刺槐林不同组分生态化学计量关系研究. 土壤学报, 51, 133-142.]
[77] Zeng DP, Jiang LL, Zeng CS, Wang WQ, Wang C (2013). Reviews on the ecological stoichiometry characteristics and its applications. Acta Ecologica Sinica, 33, 5484-5492. (in Chinese with English abstract)[曾冬萍, 蒋利玲, 曾从盛, 王维奇, 王纯 (2013). 生态化学计量学特征及其应用研究进展. 生态学报, 33, 5484-5492.]
[78] Zeng ZX, Wang KL, Liu XL, Zeng FP, Song TQ, Peng WX, Zhang H, Du H (2015). Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi. Chinese Journal of Plant Ecology, 39, 682-693. (in Chinese with English abstract)[曾昭霞, 王克林, 刘孝利, 曾馥平, 宋同清, 彭晚霞, 张浩, 杜虎 (2015). 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 39, 682-693.]
[79] Zhang LX, Bai YF, Han XG (2003). Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica, 45, 1009-1018.
[80] Zhang LX, Bai YF, Han XG (2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica, 46, 259-270.
[81] Zhang WY, Fan JW, Zhong HP, Hu ZM, Song LL, Wang N (2010). The nitrogen: phosphorous stoichiometry of different plant functional groups for dominant species of typical steppes in China. Acta Agrestia Sinica, 18, 503-509. (in Chinese with English abstract)[张文彦, 樊江文, 钟华平, 胡中民, 宋璐璐, 王宁 (2010). 中国典型草原优势植物功能群氮磷化学计量学特征研究. 草地学报, 18, 503-509.]
[82] Zhang XR, Ma LS, Chen YN, Yang JJ, An SS (2013). Ecological stoichiometry characteristics of Robinia Pseudoacacia forest soil in different latitudes of Loess Plateau. Acta Pedologica Sinica, 50, 818-825. (in Chinese with English abstract)[张向茹, 马露莎, 陈亚南, 杨佳佳, 安韶山 (2013). 黄土高原不同纬度下刺槐林土壤生态化学计量学特征研究. 土壤学报, 50, 818-825.]
[83] Zhao HY, Li YL, Wang XY, Mao W, Zhao XY, Zhang TH (2010). Variations in leaf traits of 52 plants in Horqin sand land. Journal of Desert Research, 30, 1292-1298. (in Chinese with English abstract)[赵红洋, 李玉霖, 王新源,a) 毛伟, 赵学勇, 张铜会 (2010). 科尔沁沙地52种植物叶片性状变异特征研究. 中国沙漠, 30, 1292-1298.]
[84] Zhao MS, Zhang GL, Li DC, Zhao YG (2013). Variability of soil organic matter and its main factors in Jiangsu Province. Acta Ecologica Sinica, 33, 5058-5066. (in Chinese with English abstract)[赵明松, 张甘霖, 李德成, 赵玉国 (2013). 江苏省土壤有机质变异及其主要影响因素. 生态学报, 33, 5058-5066.]
[85] Zhao Q, Zeng DH (2005). Phosphorus cycling in terrestrial ecosystems and its contrilling factors. Acta Phytoecologica Sinica, 29, 153-163. (in Chinese with English abstract)[赵琼, 曾德慧 (2005). 陆地生态系统磷素循环及其影响因素. 植物生态学报, 29, 153-163.]
[86] Zheng SX, Shangguan ZP (2006). The distribution pattern of leaf nutuient composition in the Loess Plateau. Progress in Natural Science, 16, 965-973. (in Chinese with English abstract)[郑淑霞, 上官周平 (2006). 黄土高原地区植物叶片养分组成的空间分布格局. 自然科学进展, 16, 965-973.]
[87] Zheng SX, Shangguan ZP (2007). Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China. Trees, 21, 357-370.
[1] Wei Fu Hui Wu Aihua Zhao Zhipeng Hao Bao-Dong CHEN. The ecological impacts of nitrogen deposition on terrestrial ecosystems: Research progresses and prospects [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[2] Zhao-Zhong FENG Li Pin You GuoZhang Zheng-zhen Li Qin Ping Long JinPeng Shuo Liu. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: Problems and prospective [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[3] Da TiGe Dongdong Wang Zhenke Zhu Liang Wei Xiaomeng Wei. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem [J]. Chin J Plant Ecol, 2020, 44(4生态技术与方法专辑): 0-0.
[4] Ying Chen. Techniques and methods for field warming manipulation experiments in terrestrial ecosystems [J]. Chin J Plant Ecol, 2020, 44(4生态技术与方法专辑): 0-0.
[5] Xiao-Juan FENG YiYun Wang Ting Liu Juan JIA Guo-Hua DAI Tian MA Zong-Guang LIU. Biomarkers and their applications in ecosystem research [J]. Chin J Plant Ecol, 2020, 44(4生态技术与方法专辑): 0-0.
[6] Mengke Jia,Yili Guo,Dongxing Li,Bin Wang,Wusheng Xiang,Ailong Wang,Shengyuan Liu,Tao Ding,Fuzhao Huang,Shujun Wen,Shuhua Lu,Xiankun Li. Spatio-temporal dynamics of leaf litter in a karst seasonal rainforest in southwest Guangxi [J]. Biodiv Sci, 2020, 28(4): 455-462.
[7] Shitong Wang,Yaozhan Xu,Teng Yang,Xinzeng Wei,Mingxi Jiang. Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 277-288.
[8] . Geographical provenance variation of Caryopteris mongholica leaf anatomical structure and its significance in response to environmental changes [J]. Chin J Plant Ecol, 2020, 44(3): 0-0.
[9] Jianing Zhao, Yun Liang, Ying Liu, Yujue Wang, Qianru Yang, Chunwang Xiao. Patterns and Influence Factors of Fine Root Turnover in Forest Ecosystems [J]. Chin Bull Bot, 2020, 55(3): 308-317.
[10] Cheng-Fang LIN Hao-Wei SONG Yu-Sheng YANG. Response of leaf litter decomposition of different tree species to nitrogen addition in mid - subtropical forest [J]. Chin J Plant Ecol, 2020, 44(3): 0-0.
[11] Yang Bai,Shengwen Chen,Haiyuan Qian,Shunhai Yu,Yiming Xu,Zhixin Zhang,Chao Shen,Yuqi Chen,Meiqi Zhang,Jianping Yu,Ruiliang Zhu. Species diversity of epiphyllous liverworts in Qianjiangyuan National Park, Zhejiang [J]. Biodiv Sci, 2020, 28(2): 231-237.
[12] HU Shu-Ya,DIAO Hua-Jie,WANG Hui-Ling,BO Yuan-Chao,SHEN Yan,SUN Wei,DONG Kuan-Hu,HUANG Jian-Hui,WANG Chang-Hui. Response of soil respiration to addition of different forms of nitrogen and mowing in a saline-alkali grassland in the northern agro-pastoral ecotone [J]. Chin J Plant Ecol, 2020, 44(1): 70-79.
[13] WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92.
[14] JING Hong-Xia,SUN Ning-Xiao,Muhammad UMAIR,LIU Chun-Jiang,DU Hong-Mei. Stoichiometric characteristics of soils and dominant shrub leaves and their responses to water addition in different seasons in degraded karst areas in Southern Yunnan of China [J]. Chin J Plant Ecol, 2020, 44(1): 56-69.
[15] Yibo Tan,Wenhui Shen,Zi Fu,Wei Zheng,Zhiyang Ou,Zhangqiang Tan,Yuhua Peng,Shilong Pang,Qinfei He,Xiaorong Huang,Feng He. Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests [J]. Biodiv Sci, 2019, 27(9): 970-983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chin Bull Bot, 2004, 21(03): 360 -366 .
[5] . [J]. Chin Bull Bot, 1994, 11(专辑): 76 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[7] . [J]. Chin Bull Bot, 1994, 11(专辑): 8 -9 .
[8] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chin Bull Bot, 2009, 44(03): 371 -378 .
[9] Zili Wu, Mengyao Yu, Lu Chen, Jing Wei, Xiaoqin Wang, Yong Hu, Yan Yan, Ping Wan. Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network[J]. Chin Bull Bot, 2015, 50(2): 171 -179 .
[10] XU Zhen-Zhu, ZHOU Guang-Sheng, XIAO Chun-Wang, WANG Yu-Hui. INTERACIVE EFFECTS OF DOUBLED ATMOSPHERIC CO2 CONCENTRATIONS AND SOIL DROUGHT ON WHOLE PLANT CARBON ALLOCATION IN TWO DOMINANT DESERT SHRUBS[J]. Chin J Plan Ecolo, 2005, 29(2): 281 -288 .