Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (9): 902-911.doi: 10.17521/cjpe.2016.0029

• Research Articles • Previous Articles     Next Articles

Characteristics of methane emission fluxes in the Zoigê Plateau wetland on microtopography

Wen-Chang ZHOU1,2, Li-Juan CUI1,*(), Yi-Fei WANG1, Wei LI1, Xiao-Ming KANG1   

  1. 1Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China
    and
    2Hubei Academy of Forestry, Wuhan 430075, China
  • Received:2016-01-17 Accepted:2016-05-09 Online:2016-09-29 Published:2016-09-10
  • Contact: Li-Juan CUI E-mail:lkyclj@126.com

Abstract:

AimsThe Zoigê Plateau, as a very important wetland distribution region of China, was the major methane (CH4) emission center of the Qinghai-Xizang Plateau. The objective of this study is to study the effects of microtopographic changes on CH4 emission fluxes from five plots across three marshes in the littoral zone of the Zoigê Plateau wetland.
Methods CH4 emission fluxes were measured in five plots across three marshes in Zoigê Plateau wetland using the closed chamber method and Fast Greenhouse Gas Analyzer from May to October in 2014.
Important findings During the growing season, mean CH4 emission fluxes from the permanently flooded hollow (P-hollow) and hummock (P-hummock) in the Zoigê Plateau wetland were 68.48 and 40.32 mg·m-2·h-1, while mean CH4 emission fluxes from the seasonally flooded hollow (S-hollow) and hummock (S-hummock) were 2.38 and 0.63 mg·m-2·h-1. CH4 emission fluxes from non-flooded lawn was 3.68 mg·m-2·h-1. Mean CH4 emission fluxes from five plots across three sites was 23.10 mg·m-2·h-1, with a standard deviation of 30.28 mg·m-2·h-1 and the coefficient of variation was 131%. We also found that there was a significant and positive correlation between mean CH4 emission fluxes and mean water table depth in the five plots across three sites (R2 = 0.919, p < 0.01), indicating that water table depth was controlling the spatial variability of CH4 emission fluxes from the Zoigê Plateau wetland on microtopography. CH4 emission fluxes in the P-hollow, P-hummock, and S-hummock showed an obvious seasonal pattern, which was not observed in the lawn and S-hollow. However, CH4 emission peaks were observed in all the plots during summer and/or autumn, which could be closely related to the water table depth, soil temperature, and the magnitude of litter mass. In addition, we found that the CH4 emission flux in the P-hollow was much higher than the other four plots in the Zoigê Plateau wetland, suggesting that CH4 in the P-hollow could be often transported to the surface by ebullition and CH4 emission from the Zoigê Plateau wetland may be under estimated in the past.

Key words: CH4 emission flux, hummock, hollow, lawn, Zoigê Plateau wetland

Table 1

Soil physical and chemical properties from the Zoigê Plateau wetland on five microtopography (mean ± SD)"

样点 Plot pH
(0-10 cm depth)
土壤有机碳含量
Soil organic carbon content
(0-30 cm depth) (g·kg-1)
土壤容重
Bulk density
(0-30 cm depth) (g·cm-3)
总氮
Total nitrogen
(0-10 cm depth) (g·kg-1)
地上生物量
Aboveground biomass
(g·m-2)
P-hummock 7.6 ± 0.1 210.38 ± 47.29 0.29 ± 0.09 15.20 ± 3.50 127.16 ± 8.11
P-hollow 279.34 ± 35.54
Lawn 7.5 ± 0.3 143.21 ± 10.03 0.52 ± 0.08 18.05 ± 0.00 142.28 ± 95.61
S-hummock 7.5 ± 0.2 151.74 ± 74.15 0.40 ± 0.16 8.91 ± 3.85 189.74 ± 72.79
S-hollow 194.01 ± 50.07

Fig. 1

Seasonal variations of CH4 emission fluxes from Zoigê Plateau wetland on five microtopography in 2014 (mean ± SD). Lawn, transitional zones between permanently flooded and seasonally flooded sites; P-hollow, permanently flooded hollow; P-hummock, permanently flooded hummock; S-hollow, seasonally flooded hollow; S-hummock, seasonally flooded hummock."

Table 2

Correlation between CH4 emission fluxes and soil temperature or water table depth"

样点
Plot
回归方程
Regression equation
变量
Variable
变量范围
Variable range
R2 p n
CH4排放通量平均值 Mean CH4 emission fluxes y = 1.07x + 32.79 WTD -39.7-29.5 cm 0.919 0.006 5
P-hummock y = 5.07x - 10.38 T5 5.6-17.9 ℃ 0.747 0.000 12
y = 4.60x - 5.00 T10 4.0-14.6 ℃ 0.694 0.012 12
y = 4.21x - 2.08 T15 3.2-14.5 ℃ 0.698 0.012 12
y = 4.12x - 1.49 T20 3.0-15.0 ℃ 0.737 0.006 12
y = 3.63x + 5.93 T30 1.7-15.1 ℃ 0.670 0.017 12
S-hummock y = 0.07x - 0.27 T10 4.0-14.6 ℃ 0.407 0.028 10
y = 0.07x - 0.23 T15 3.2-14.5 ℃ 0.448 0.020 10
y = 0.06x - 0.19 T20 3.0-15.0 ℃ 0.429 0.024 10
y = 0.05x - 0.07 T30 1.7-15.1 ℃ 0.346 0.043 10

Table 3

Comparison of CH4 emission fluxes in various plateau peatlands during the growing season"

位点
Location
主要植被
Main vegetation
水位深度
water table
depth (cm)
CH4排放通量平均值
Mean CH4 emission
fluxes (mg·m-2·h-1)
范围
Range
(mg·m-2·h-1)
研究时间
Study period
参考文献
Reference
若尔盖高原若尔盖县
Zoigê County of Zoigê Plateau
23.10 ± 30.28 0.17-144.43 May to Oct. 2014 本研究
This study
P-hollow 小眼子菜和狸藻
Potamogeton pusillus and Utricularia vulgaris
29.5 68.48 5.78-144.43 本研究
This study
P-hummock 木里薹草
Carex muliensis
7.5 40.32 12.93-76.86 本研究
This study
Lawn 西藏嵩草和花葶驴蹄草
Kobresia tibetica and Caltha scaposa
-21.6 3.68 0.23-8.45 本研究
This study
S-hollow 木里薹草
Carex muliensis
-21.1 2.38 0.48-4.91 本研究
This study
S-hummock 西藏嵩草
Kobresia tibetica
-39.7 0.63 0.17-1.48 本研究
This study
若尔盖高原红原县
Hongyuan County of Zoigê Plateau
乌拉草
Carex meyeriana
ND 4.51 0.36-10.04 May to Sept. 2001 Wang et al., 2002
若尔盖高原红原县
Hongyuan County of Zoigê Plateau
木里薹草
Carex muliensis
ND 2.87 0.51-8.21 May to Sept. 2001 Wang et al., 2002
若尔盖高原红原县
Hongyuan County of Zoigê Plateau
乌拉草
Carex meyeriana
ND 3.24 0.86-8.93 May to Oct. 2002 Ding et al., 2004
若尔盖高原红原县
Hongyuan County of Zoigê Plateau
木里薹草
Carex muliensis
ND 1.24 0.16-5.75 May to Oct. 2002 Ding et al., 2004
若尔盖高原红原县
Hongyuan County of Zoigê Plateau
木里薹草和乌拉草
Carex muliensis and Carex meyeriana
ND 2.43 0.02-12.01 May to Oct. 2003 Wang, 2010
若尔盖高原若尔盖县
Zoigê County of Zoigê Plateau
西藏嵩草和木里薹草
Kobresia tibetica and Carex muliensis
-18.36-10.66 14.45 0.17-86.78 June to Sept. 2005 Chen et al., 2008
若尔盖高原若尔盖县
Zoigê County of Zoigê Plateau
木里薹草
Carex muliensis
-53.94- -4.74 9.83 0.06-39.5 June to Sept. 2009 Li et al., 2011
青藏高原
Qinghai-Xizang Plateau
藏北嵩草和签草
Kobresia littledalei and Carex doniana
ND 2.80 ± 0.80 ND July to Aug. 1996 Wei et al., 2015
青藏高原
Qinghai-Xizang Plateau
毛柄水毛茛
Batrachium trichophyllum
ND 0.27 -0.81-2.64 April to Sept. 1997 Jin et al., 1999
青藏高原
Qinghai-Xizang Plateau
杉叶藻
Hippuris vulgaris
10-120 1.46 -0.24-7.85 April to Sept. 1997 Jin et al., 1999
青藏高原
Qinghai-Xizang Plateau
薹草属
Carex allivescers
12 8.19 1.91-10.58 July to Sept. 2002 Hirota et al., 2004
青藏高原
Qinghai-Xizang Plateau
帕米尔薹草
Carex pamirensis
0.2 5 2.88-6.91 May to Sept. 2012 Song et al., 2015
青藏高原
Qinghai-Xizang Plateau
帕米尔薹草
Carex pamirensis
0.6 6.11 4.61-13.25 May to Sept. 2013 Song et al., 2015
美国科罗拉多州弗兰特山脉
Colorado Front Range, USA
薹草
Carex scopulorum
ND 0.35 0.05-1.10 June to Sept. 1992 West et al., 1999
北美洲落基山脉
Rocky Mountains, North America
薹草
Carex aquatilis
ND 11.45 0.04-20.41 May to Oct.1996 Wickland et al., 1999

Fig. 2

Soil temperature at 15 cm depth and water table depth from the Zoigê Plateau wetland on five microtopography in 2104. Lawn, transitional zones between permanently flooded and seasonally flooded sites; P-hollow, permanently flooded hollow; P-hummock, permanently flooded hummock; S-hollow, seasonally flooded hollow; S-hummock, seasonally flooded hummock."

1 Casper P, Maberly SC, Hall GH, Finlay BJ (2000). Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere.Biogeochemistry, 49, 1-19.
2 Chen H, Yao SP, Wu N, Wang YF, Luo P, Tian JQ, Gao YH, Sun G (2008). Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoigê Plateau and their implications. Journal of Geophysical Research, 113(D12), doi:10.1029/2006JD008072.
3 Chen YH, Prinn RG (2006). Estimation of atmospheric methane emissions between 1996 and 2001 using a three- dimensional global chemical transport model. Journal of Geophysical Research, 111(D10), doi:10.1029/2005JD- 006058.
4 Clymo RS, Pearce DME, Conrad R (1995). Methane and carbon dioxide production in, transport through, and efflux from a peatland [and discussion].Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 351, 249-259.
5 Deng ZH, Zhang XW, Gao JJ, Gao JQ (2015). Effects of soil moisture and litter on CH4 emission from peat in Zoigê wetlands.Journal of Ecology and Rural Environment, 31, 548-552. (in Chinese with English abstract)[邓昭衡, 张雪雯, 高居娟, 高俊琴 (2015). 水分及凋落物对若尔盖泥炭土CH4排放的影响. 生态与农村环境学报, 31, 548-552.]
6 Ding WX, Cai ZC (2002). Methane emission from mires and its influencing factors.Scientia Geographica Sinica, 22, 619-625. (in Chinese with English abstract)[丁维新, 蔡祖聪 (2002). 沼泽甲烷排放及其主要影响因素. 地理科学, 22, 619-625.]
7 Ding WX, Cai ZC, Tsuruta H, Li XP (2003). Key factors affecting spatial variation of methane emissions from freshwater marshes.Chemosphere, 51, 167-173.
8 Ding WX, Cai ZC, Wang DX (2004). Preliminary budget of methane emissions from natural wetlands in China.Atmospheric Environment, 38, 751-759.
9 Dise NB (1993). Methane emission from Minnesota peatlands: Spatial and seasonal variability.Global Biogeochemical Cycles, 7, 123-142.
10 Glagolev M, Kleptsova I, Filippov I, Maksyutov S, Machida T (2011). Regional methane emission from West Siberia mire landscapes.Environmental Research Letters, 6, doi:10.1088/1748-9326/6/4/045214.
11 Glagolev MV, Shnyrev NA (2008). Methane emission from mires of Tomsk oblast in the summer and fall and the problem of spatial and temporal extrapolation of the obtained data.Moscow University Soil Science Bulletin, 63(2), 67-80.
12 Hirota M, Tang YH, Hu QW, Hirata S, Kato T, Mo WH, Cao GM, Mariko S (2004). Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland.Soil Biology & Biochemistry, 36, 737-748.
13 Huang PY, Yu HX, Chai LH, Chai FY, Zhang WF (2011). Methane emission flux of Zhalong Phragmites australis wetlands in growth season.Chinese Journal of Applied Ecology, 22, 1219-1224. (in Chinese with English abstract)[黄璞祎, 于洪贤, 柴龙会, 柴方营, 张万峰 (2011). 扎龙芦苇湿地生长季的甲烷排放通量. 应用生态学报, 22, 1219-1224.]
14 Huttunen JT, Nykänen H, Turunen J, Martikainen PJ (2003). Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia.Atmospheric Environment, 37, 147-151.
15 Inubushi K, Otake S, Furukawa Y, Shibasaki N, Ali M, Itang AM, Tsuruta H (2005). Factors influencing methane emission from peat soils: Comparison of tropical and temperate wetlands.Nutrient Cycling in Agroecosystems, 71, 93-99.
16 IPCC (Intergovernmental Panel on Climate Change) (2013). Climate change 2013: The physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
17 Jin HJ, Wu J, Cheng GD, Nakano T, Sun GY (1999). Methane emissions from wetlands on the Qinghai-Tibet Plateau.Chinese Science Bulletin, 44, 2282-2286.
18 Kalyuzhnyi IL, Lavrov SA, Reshetnikov AI, Paramonova NN, Privalov VI (2009). Methane emission from the oligotrophic bog massif in the Northwestern Russia.Russian Meteorology and Hydrology, 34, 35-45.
19 Keller M, Stallard RF (1994). Methane emission by bubbling from Gatun Lake, Panama.Journal of Geophysical Research, 99(D4), 8307-8319.
20 Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque JF, Langenfelds RL, Le Quéré C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013). Three decades of global methane sources and sinks.Nature Geoscience, 6, 813-823.
21 Kutzbach L, Wagner D, Pfeiffer EM (2004). Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia.Biogeochemistry, 69, 341-362.
22 Lai DYF (2009). Methane dynamics in northern peatlands: A review.Pedosphere, 19, 409-421.
23 Le Mer J, Roger P (2001). Production, oxidation, emission and consumption of methane by soils: A review.European Journal of Soil Biology, 37, 25-50.
24 Li L, Lei GC, Gao JQ, Lu C, Zhou Y, Jia YF, Yang M, Suolang DEJ (2011). Effect of water table and soil water content on methane emission flux at Carex muliensis marshes in Zoigȇ Plateau.Wetland Science, 9(2), 173-178. (in Chinese with English abstract)[李丽, 雷光春, 高俊琴, 吕偲, 周延, 贾亦飞, 杨萌, 索郎夺尔基 (2011). 地下水位和土壤含水量对若尔盖木里薹草沼泽甲烷排放通量的影响. 湿地科学, 9(2), 173-178.]
25 Mastepanov M, Sigsgaard C, Dlugokencky EJ, Houweling S, Ström L, Tamstorf MP, Christensen TR (2008). Large tundra methane burst during onset of freezing.Nature, 456, 628-630.
26 McEwing KR, Fisher JP, Zona D (2015). Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic.Plant and Soil, 388, 37-52.
27 Mikkelä C, Sundh I, Svensson BH, Nilsson M (1995). Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire.Biogeochemistry, 28, 93-114.
28 Moore TR, Heyes A, Roulet NT (1994). Methane emissions from wetlands, southern Hudson Bay lowland.Journal of Geophysical Research, 99(D1), 1455-1467.
29 Munir TM, Strack M (2014). Methane flux influenced by experimental water table drawdown and soil warming in a dry boreal continental bog.Ecosystems, 17, 1271-1285.
30 Rigby M, Prinn RG, Fraser PJ, Simmonds PG, Langenfelds RL, Huang J, Cunnold DM, Steele LP, Krummel PB, Weiss RF, O’Doherty S, Salameh PK, Wang HJ, Hart CM, Mühle J, Porter LW (2008). Renewed growth of atmospheric methane.Geophysical Research Letters, 35, doi:10. 1029/2008GL036037.
31 Song CC, Zhang LH, Wang YY, Zhao ZC (2006). Annual dynamics of CO2, CH4, N2O emissions from freshwater marshes and affected by nitrogen fertilization.Environmental Science, 7, 2369-2375. (in Chinese with English abstract)[宋长春, 张丽华, 王毅勇, 赵志春 (2006). 淡水沼泽湿地CO2、CH4和N2O排放通量年际变化及其对氮输入的响应. 环境科学, 27, 2369-2375.]
32 Song WM, Wang H, Wang GS, Chen LT, Jin ZN, Zhuang QL, He JS (2015). Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season.Journal of Geophysical Research, 120,1475-1490.
33 Sun XX, Mu CC, Shi LY, Chen W, Liu X, Wu YX, Feng DJ (2009). Methane emission from forested swamps in Xiaoxing’an Mountains, northeastern China.Chinese Journal of Plant Ecology, 33, 535-545. (in Chinese with English abstract)[孙晓新, 牟长城, 石兰英, 程伟, 刘霞, 吴云霞, 冯登军 (2009). 小兴安岭森林沼泽甲烷排放及其影响因子. 植物生态学报, 33, 535-545.]
34 Sun XX, Mu CC, Song CC (2011). Seasonal and spatial variations of methane emissions from montane wetlands in Northeast China.Atmospheric Environment, 45, 1809-1816
35 Tokida T, Miyazaki T, Mizoguchi M, Nagata O, Takakai F, Kagemoto A, Hatano R (2007). Falling atmospheric pressure as a trigger for methane ebullition from peatland.Global Biogeochemical Cycles, 21, doi:10.1029/2006- GB002790.
36 van Huissteden J, Maximov TC, Dolman AJ (2005). High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia).Journal of Geophysical Research, 110, G02002, doi:10.1029/2005JG000010.
37 Waddington JM, Roulet NT (1996). Atmosphere-wetland carbon exchanges: Scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Global Biogeochemical Cycles, 10, 233-245.
38 Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS (2006). Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming.Nature, 443, 71-75.
39 Wang CK, Lu XG, Zhou HR, Cai ZC, Luo Y (2004). Studies on methane oxidation by bog soils in Zoigê Plateau.China Environmental Science, 24, 646-649. (in Chinese with English abstract)[王长科, 吕宪国, 周华荣, 蔡祖聪, 罗勇 (2004). 若尔盖高原沼泽土壤氧化甲烷的研究. 中国环境科学, 24, 646-649.]
40 Wang DX (2010). Emission fluxes of carbon dioxide, methane and nitrous oxide from peat marsh in Zoigê Plateau.Wetland Science, 8(3), 220-224. (in Chinese with English abstract)[王德宣 (2010). 若尔盖高原泥炭沼泽二氧化碳、甲烷和氧化亚氮排放通量研究. 湿地科学, 8(3), 220-224.]
41 Wang DX, Lu XG, Ding WX, Cai ZC, Gao JF, Yang FM (2002). Methane emission from marshes in Zoigê Plateau.Advance in Earth Sciences, 17, 877-880. (in Chinese with English abstract)[王德宣, 吕宪国, 丁维新, 蔡祖聪, 高景福, 杨福明 (2002). 若尔盖高原沼泽湿地CH4排放研究. 地球科学进展, 17, 877-880.]
42 Wang ZP, Duan Y, Yang JR, Chen QS, Han XG (2003). Spatial distribution of potential CH4 oxidation and production in Zoigê marsh of Qinghai-Tibet Plateau.Acta Phytoecologica Sinica, 27, 786-791. (in Chinese with English abstract)[王智平, 段毅, 杨居荣, 陈全胜, 韩兴国 (2003). 青藏高原若尔盖沼泽潜在CH4氧化与生成的分布特征. 植物生态学报, 27, 786-791.]
43 Wei D, Xu R, Tarchen T, Dai DX, Wang YS, Wang YH (2015). Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: Evidence from two in situ measurements at 4758 and 4320 m above sea level.Journal of Geophysical Research, 120, 1741-1750.
44 West AE, Brooks PD, Fisk MC, Smith LK, Holland EA, Jaeger CH, Babcock S, Lai RS, Schmidt SK (1999). Landscape patterns of CH4 fluxes in an alpine tundra ecosystem.Biogeochemistry, 45, 243-264.
45 Whalen SC, Reeburgh WS (1992). Interannual variations in tundra methane emission: A 4-year time series at fixed sites.Global Biogeochemical Cycles, 6, 139-159.
46 Wickland KP, Striegl RG, Schmidt SK, Mast MA (1999). Methane flux in subalpine wetland and unsaturated soils in the southern Rocky Mountains.Global Biogeochemical Cycles, 13, 101-113.
[1] Wei Mo,Zhiliang Wang,You Li,Jianjun Guo,Runzhi Zhang. Faunal communities of deep soil layers in suburban Beijing [J]. Biodiv Sci, 2018, 26(3): 248-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chin Bull Bot, 2004, 21(03): 360 -366 .
[5] . [J]. Chin Bull Bot, 1994, 11(专辑): 76 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[7] . [J]. Chin Bull Bot, 1994, 11(专辑): 8 -9 .
[8] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chin Bull Bot, 2009, 44(03): 371 -378 .
[9] Zili Wu, Mengyao Yu, Lu Chen, Jing Wei, Xiaoqin Wang, Yong Hu, Yan Yan, Ping Wan. Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network[J]. Chin Bull Bot, 2015, 50(2): 171 -179 .
[10] XU Zhen-Zhu, ZHOU Guang-Sheng, XIAO Chun-Wang, WANG Yu-Hui. INTERACIVE EFFECTS OF DOUBLED ATMOSPHERIC CO2 CONCENTRATIONS AND SOIL DROUGHT ON WHOLE PLANT CARBON ALLOCATION IN TWO DOMINANT DESERT SHRUBS[J]. Chin J Plan Ecolo, 2005, 29(2): 281 -288 .