Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (11): 1145-1153.doi: 10.17521/cjpe.2016.0052

• Research Articles • Previous Articles     Next Articles

Foliar nitrogen and phosphorus stoichiometry of alien invasive plants and co-occurring natives in Xishuangbanna

Chao-Chen HU1,2, Xue-Yan LIU1,3,*(), Yan-Bao LEI4, Yun-Hong TAN5, Peng ZHANG1, Yu-Ping DONG3, Cong-Qiang LIU1,3   

  1. 1State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    3Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China

    4Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    and
    5Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan 666303, China
  • Received:2016-01-29 Accepted:2016-05-12 Online:2016-11-25 Published:2016-11-10
  • Contact: Xue-Yan LIU E-mail:liuxueyan@tju.edu.cn

Abstract:

Aims How alien invasive plants and co-occurring native plants utilize nutrients is one of major issues in invasion ecology. Foliar nitrogen (N) and phosphorus (P) contents and stoichiometry can elucidate the uptake ability and limitation status of nutrients in plants, which provides basic knowledge for understanding the invading ability and co-occurrence or disappearance of plants.
Methods Based on typical alien invasive plants (Chromolaena odorata, Ageratina adenophora) and native plants in southwestern China, this study focused on strategies of N and P utilization among invasive plants and native plants under different invasion conditions. The species compositions, aboveground biomass, leaf N and P contents and leaf N:P were investigated for plants in plots with no invasion and with different invasion extents (estimated by the plot-based percentage of invaders’ biomass in total community) at Mt. Kongming in Xishuangbanna region, Yunnan Province, China.
Important findings The species number decreased significantly with the invasion extent of both C. odorata and A. adenophora, although the aboveground biomass was greatly enhanced. Leaf N and P contents did not differ between the two studied invaders, but they showed significantly higher N and P levels than both co-occurring and only native species (p < 0.05). Besides, leaf N and P contents of invaders increased with the invasion extent, and leaf N of native plants also showed an increasing trend with the invasion extent. When the influence of invasion was checked for the same species, leaf P contents decreased, whereas leaf N and N:P increased for most native plants under invasion. Based on the absolute foliar N and P contents, N:P values, we inferred that native plants were still limited by N, although N availability might be enhanced by invasion. Both invasive plants had leaf N:P values lower than 10, suggesting a higher P uptake relative to N uptake. All above results highlighted a higher N and P uptake of typical alien invasive plants in southwestern China.

Key words: plant invasion, nitrogen:phosphorus, ecological stoichiometry, Chromolaena odorata, Ageratina adenophora

Table 1

Native plant species across the study plots with no invasion (n = 3), invaded by Chromolaena odorata (n = 6) and Ageratina adenophora (n = 6), respectively, at Mt. Kongming in Xishuangbanna, Yunnan Province, China"


Family
无入侵样方本地植物(出现的样方数)
Species in plots with no invasion (n)
飞机草入侵样方本地
植物(出现的样方数)
Native species in plots
invaded by C. odorata (n)
紫茎泽兰入侵样方本地植物
(出现的样方数)
Native species in plots invaded by
A. adenophora (n)
禾本科 Poaceae







鼠尾粟 Sporobolus fertilis (3) 鼠尾粟 Sporobolus fertilis (4) 鼠尾粟 Sporobolus fertilis (2)
两耳草 Paspalum conjugatum (3) 两耳草 Paspalum conjugatum (4) 两耳草 Paspalum conjugatum (4)
白茅 Imperata cylindrica (3) 白茅 Imperata cylindrica (4) 白茅 Imperata cylindrica (4)
圆果雀稗 Paspalum orbiculare (3) 圆果雀稗 Paspalum orbiculare (1) 圆果雀稗 Paspalum orbiculare (1)
硬秆子草 Capillipedium assimile (3) 硬秆子草 Capillipedium assimile (2) 硬秆子草 Capillipedium assimile (3)
五节芒 Miscanthus floridulus (3) 五节芒 Miscanthus floridulus (1) 五节芒 Miscanthus floridulus (2)
金丝草 Pogonatherum crinitum (2) 金丝草 Pogonatherum crinitum (1) 拔毒散 Sida szechuensis (1)
狗尾草 Setaria viridis (2) 狗尾草 Setaria viridis (1)
柳叶箬 Isachne globosa (1)
大戟科 Euphorbiaceae 黑面神 Breynia fruticosa (3) 黑面神 Breynia fruticosa (1) 黑面神 Breynia fruticosa (1)
艾橡树 Glochidion oblatum (2) 艾橡树 Glochidion oblatum (1)
叶下珠 Phyllanthus urinaria (1)
豆科 Leguminosae 假地豆 Desmodium heterocarpon (2) 假地豆 Desmodium heterocarpon (3) 假地豆 Desmodium heterocarpon (2)
三点金 Desmodium triflorum (2) 三点金 Desmodium triflorum (1) 假木豆 Dendrolobium triangulare (1)
云南千斤拔 Flemingia wallichii (1) 猪屎豆 Crotalaria pallida (1)
茜草科 Rubiaceae 水锦树 Wendlandia uvariifolia (2) 水锦树 Wendlandia uvariifolia (1) 水锦树 Wendlandia uvariifolia (1)
松叶耳草 Hedyotis pinifolia (3) 松叶耳草 Hedyotis pinifolia (2) 松叶耳草 Hedyotis pinifolia (2)
耳草 Hedyotis auricularia (1)
蔷薇科 Rosaceae 龙芽草 Agrimonia pilosa (3) 龙芽草 Agrimonia pilosa (2) 龙芽草 Agrimonia pilosa (2)
次蕨麻 Potentilla anserina (1)
莎草科 Cyperaceae 香附子 Cyperus rotundus (1) 水蜈蚣 Kyllinga brevifolia (1) 香附子 Cyperus rotundus (1)
十字薹草 Carex cruciata (2) 十字薹草 Carex cruciata (2)
水蜈蚣 Kyllinga brevifolia (1)
锦葵科 Malvaceae 地桃花 Urena lobata (3) 地桃花 Urena lobata (5) 地桃花 Urena lobata (2)
爵床科 Acanthaceae 爵床 Rostellularia procumbens (3) 爵床 Rostellularia procumbens (2) 爵床 Rostellularia procumbens (2)
野牡丹科 Melastomataceae 多花野牡丹 Melastoma affine (3) 多花野牡丹 Melastoma affine (2) 多花野牡丹 Melastoma affine (2)
菊科 Asteraceae 地胆草 Elephantopus scaber (3) 地胆草 Elephantopus scaber (3) 地胆草 Elephantopus scaber (1)
毛茛科 Ranunculaceae 铁扫帚 Clematis hexapetala (2) 铁扫帚 Clematis hexapetala (2)
荨麻科 Urticaceae 糯米团 Memorialis hirta (1)
唇形科 Labiatae 大籽筋骨草 Ajuga macrosperma (1)
椴树科 Tiliaceae 刺蒴麻 Triumfetta rhomboidea (1)
百合科 Liliaceae 野百合 Crotalaria sessiliflora (1)

Fig. 1

Variations of plot-based species number (A), community aboveground biomass and native plants aboveground biomass (B, C) with the biomass percentage of alien invasive plants in total community."

Table 2

Leaf N and P concentration, N:P values (mean ± SD) of native and invasive plants under invasion and no invasion (values of each parameter with different letter a or b differ significantly from each other)"

无入侵样方
No invasion plot
飞机草入侵样方
Chromolaena odorata invasion plot
紫茎泽兰入侵样方
Ageratina adenophora invasion plot
本地植物
Native plant
(n = 52)
飞机草
C. odorata
(n = 6)
本地植物
Native plant
(n = 40)
紫茎泽兰
A. adenophora
(n = 6)
本地植物
Native plant
(n = 36)
氮含量 N concentration (%) 1.1 ± 0.4a 2.4 ± 0.3b 1.2 ± 0.5a 2.3 ± 0.3b 1.2 ± 0.6a
磷含量 P concentration (%) 0.18 ± 0.10a 0.33 ± 0.11b 0.12 ± 0.09a 0.24 ± 0.08b 0.14 ± 0.11a
氮磷比值 N:P value 7.0 ± 3.5a 8.3 ± 2.3a 10.4 ± 4.9a 10.4 ± 2.7a 9.5 ± 4.8a

Fig. 2

Variations of plot-based leaf N (A), P (B), N:P (C) in invasive and native plants with the biomass percentage of invasive plants in total community (mean ± SD)."

Fig. 3

Differences of leaf N and P concentration, N:P values in the same native plants between non-invasion and invasion plots, respectively (Error bars represent SD). The gray and black columns denote increases and decreases in N, P contents or N:P in co-occuring plants, respectively, n denotes species number with increases or decreases in N, P, N:P, respectively."

[1] Christian JM, Wilson SD (1999). Long-term ecosystem impacts of an introduced grass in the northern Great Plains.Ecology, 80, 2397-2407.
[2] Ding JQ (2002). The mechanism of biological invasion and its effect on ecosystem safety.Review of China Agricultural Science and Technology, 4, 16-20. (in Chinese with English abstract)[丁建清 (2002). 外来生物的入侵机制及其对生态安全的影响. 中国农业科技导报, 4, 16-20.]
[3] Elser JJ, Bracken MES, Cleand EE, Gruner DS, Harpole SW, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.Ecology Letters, 10, 1135-1142.
[4] Feng YL (2008). Photosynthesis, nitrogen allocation and specific leaf area in invasive Eupatorium adenophorum and native Eupatorium japonicum grown at different irradiances. Physiologia Plantarum, 133, 318-326.
[5] Feng YL, Lei YB, Wang RF, Callaway RM, Alfonso VB, Inderjit, Li YP, Zheng YL (2009). Evolutionary tradeoffs for nitrogen allocation to photosynthesis cell walls in an invasion plant.Proceedings of the National Academy of Science of the United States of America, 106, 1853-1856.
[6] Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266.
[7] Güsewell S, Koerselman W (2002). Variation in nitrogen and phosphorus concentrations of wetland plants.Perspectives in Plant Ecology Evolution and Systematics, 5, 37-61.
[8] Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168, 377-385.
[9] Hooper DU, Vitousek PM (1997). The effects of plant composition and diversity on ecosystem processes.Science, 277, 1302-1305.
[10] Jiang ZL, Liu WX, Wan FH, Li ZY (2008). Comparative studies on seasonal dynamics of soil enzymatic activities and soil nutrient availability in mono- and mixed-culture plant communities of Ageratina adenophora and Seiaria sphaclata. Journal of Plant Ecology (Chinese Version), 32, 900-907. (in Chinese with English abstract)[蒋智林, 刘万学, 万方浩, 李正跃 (2008). 紫茎泽兰与非洲狗尾草单、混种群落土壤酶活性和土壤养分的比较. 植物生态学报, 32, 900-907.]
[11] Ju RT, Li H, Shi ZR, Li B (2012). Progress of biological invasions research in China over the last decade.Biodiversity Science, 20, 581-611. (in Chinese with English abstract)[鞠瑞亭, 李慧, 石正人, 李博 (2012). 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.]
[12] Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450.
[13] Lebauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.Ecology, 89, 371-379.
[14] Lei YB, Feng YL, Zheng YL, Wang RF, Gong HD, Zhang YP (2011). Innate and evolutionarily increased advantages of invasive Eupatorium adenophorum over native E. japonicum under ambient and doubled atmospheric CO2 concentrations. Biological Invasions, 13, 2703-2714.
[15] Li B, Xu BS, Chen JK (2001). Perspectives on general trends of plant invasions with special reference to alien weed flora of Shanghai.Biodiversity Science, 9, 446-457. (in Chinese with English abstract)[李博, 徐炳声, 陈家宽 (2001). 从上海外来杂草区系剖析植物入侵的一般特征. 生物多样性, 9, 446-457.]
[16] Li WH, Zhang CB, Jiang HB, Xin GR, Yang ZY (2006). Changes in soil microbial community associated with invasion of the exotic weed,Mikania micrantha H.B.K. Plant and Soil, 281, 309-324.
[17] Li Y, Niu SL, Yu GR (2015). Aggravated phosphorus limitation on biomass production under increasing N addition: A meta-analysis.Global Change Biology, doi: 10.1111/gcb.13125.
[18] Liao CZ, Peng RH, Luo YQ, Wu XW, Fang CM, Chen JK, Li B (2008). Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis.New Phytologist, 177, 706-714.
[19] Liu CE, Yang YX, Yang Y (2008). Gray correlation analysis on nutrient elements between Scirppus mariqueter plant and soil in the upper shoal of Jiuduansha. Research of Environmental Sciences, 21, 145-150. (in Chinese with English abstract)[刘长娥, 杨永兴, 杨杨 (2008). 九段沙上沙海棱蔗草湿地植物与土壤间营养元素含量的灰色关联分析. 环境科学研究, 21, 145-150.]
[20] Lu JZ, Qiu W, Chen JK, Li B (2005). Impact of invasive species on soil properties: Canadian goldenrod (Solidago canadensis) as a case study. Biodiversity Science, 13, 347-356. (in Chinese with English abstract)[陆建忠, 裘伟, 陈家宽, 李博 (2005). 入侵种加拿大一枝黄花对土壤特性的影响. 生物多样性, 13, 347-356.]
[21] Lü XT, Gregoire TF, Elena K, Wang ZW, Zhou LS, Han XG (2014). Contrasting responses in leaf nutrient-use strategies of two dominant grass species along a 30-yr temperate steppe grazing exclusion chronosequence.Plant and Soil, 387, 69-79.
[22] Ma KP, Qian YQ (1998). Biodiversity conservation and its research progress.Chinese Journal of Applied and Environmental Biology, 4, 95-99. (in Chinese with English abstract)[马克平, 钱迎倩 (1998). 生物多样性保护及其研究进展. 应用与环境生物学报, 4, 95-99.]
[23] Niu HB, Liu WX, Liu B (2007). An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant and Soil, 294, 73-85.
[24] Niu HB, Liu WX, Wan FH (2007). Invasive effects of Ageratina adenophora Sprengel (Asteraceae) on soil microbial community and physical and chemical properties. Acta Ecologica Sinica, 27, 3051-3060. (in Chinese with English abstract)[牛红榜, 刘万学, 万方浩 (2007). 紫茎泽兰(Ageratina adenophpra)入侵对土壤微生物群落和理化性质的影响. 生态学报, 27, 3051-3060.]
[25] Reich PB, Oleksyn J (2004). From the cover: Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United State of America, 30, 11001-11006.
[26] Ren SJ, Yu GR, Tao B, Wang SQ (2007). Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC.Chinese Journal of Environmental Science, 28, 2665-2673. (in Chinese with English abstract)[任书杰, 于贵瑞, 陶波, 王绍强 (2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28, 2665-2673.]
[27] Tu CY, Huangfu CH, Jiang N, Wang NN, Chen DQ, Yang DL, Gao SB (2013). Carbon, nitrogen and phosphorus stoichiometric characteristics of Flaveria bidentis in different habitats. Chinese Agricultural Science Bulletin, 29, 171-176. (in Chinese with English abstract)[屠臣阳, 皇甫超河, 姜娜, 王楠楠, 陈冬青, 杨殿林, 高尚宾 (2013). 不同生境黄顶菊碳氮磷化学计量特征. 中国农学通报, 29, 171-176.]
[28] Venterink HO (2011). Does phosphorus limitation promote species-rich plant communities?Plant and Soil, 345, 1-9.
[29] Vitousek PM, Howarth RW (1991). Nitrogen limitation on land in the sea—How can it occur?Biogeochemistry, 13, 87-115.
[30] Vitousek PM, Stephen P, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions.Ecological Applications, 20, 5-15.
[31] Wan FH, Guo JY, Wang DH (2002). Alien invasive species in China: Their damages and management strategies.Biodiversity Science, 10, 119-125. (in Chinese with English abstract)[万方浩, 郭建英, 王德辉 (2002). 中国外来入侵生物的危害与管理对策. 生物多样性, 10, 119-125.]
[32] Wang ML, Feng YL (2005). Effects of soil nitrogen levels on morphology, biomass allocation and photosynthesis in Ageratina adenophora and Chromoleana odorata. Acta Phytoecologica Sinica, 29, 697-705. (in Chinese with English abstract)[王满莲, 冯玉龙 (2005). 紫茎泽兰和飞机草的形态、生物量分配和光合特性对单营养的相应. 植物生态学报, 29, 697-705.]
[33] Wang Q, Wang CH, Zhao B, Ma ZJ, Luo YQ, Chen JK, Li B (2006). Effects of growing conditions on the growth of and interactions between salt marsh plants: Implications for invasibility of habitats.Biological Invasions, 8, 1547-1560.
[34] Wang WQ, Sardans J, Wang C, Zeng CS, Tong C, Asensio D, Penuelas J (2015). Ecological stoichiometry of C, N, and P of invasive Phragmites australis and native Cyperus malaccensis species in the Minjiang River tidal estuarine wetlands of China. Plant Ecology, 216, 809-822.
[35] Wassen MJ, Venterink HGMO, de Swart EOAM (1995). Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems.Journal of Vegetation Science, 6, 5-16.
[36] Yan Q, He WS, Lu JJ (2006). Temporal and spatial changes of plant biomass and its N content during vegetation succession at Chongming Dongtan wetland.Chinese Journal of Ecology, 25, 1019-1023. (in Chinese with English abstract)[闫芊, 何文珊, 陆健健 (2006). 崇明东滩湿地植被演替过程中生物量与氮含量的时空变化. 生态学杂志, 25, 1019-1023.]
[37] Yu XJ, Yu D, Lu ZJ, Ma KP (2005). A new mechanism of invader success: Exotic plant inhibits natural vegetation restoration by changing soil microbe community.Chinese Science Bulletin, 50, 896-903. (in Chinese with English abstract)[于兴军, 于丹, 卢志军, 马克平 (2005). 一个可能的植物入侵机制: 入侵种通过改变入侵地土壤微生物群落影响本地种的生长. 科学通报, 50, 896-903.]
[38] Zhang C, Tian HQ, Liu JY, Wang SQ, Liu ML, Pan SF, Shi XZ (2005). Pools and distributions of soil phosphorus in China.Global Biogeochemical Cycle, 19, 347-354.
[39] Zhang LX, Bai YF, Han XG (2003). Application of N:P stoichiometry to ecology studies.Acta Botanica Sinica, 45, 1009-1018.
[40] Zhao YJ, Qing H, Zhao CJ, Zhou CF, Zhang WG, Xiao Y, An SQ (2010). Phenotypic plasticity ofSpartina alterniflora and Phragmites australis in response to nitrogen addition and intraspecific competition. Hydrobiologia, 637, 143-155.
[41] Zheng YL, Feng YL, Zhang LK, Callaway RM, Alfonso VB, Luo DQ, Liao ZY, Lei YB, Barclay GF, Carlos SP (2014). Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader.New Phytologist, 205, 1350-1359.
[42] Zuo P, Liu CA, Zhao SH, Wang CH, Liang YB (2009). Distribution of Spartina plantations along the China’s coast. Acta Oceanologica Sinica, 31, 101-111. (in Chinese with English abstract)[左平, 刘长安, 赵书河, 王春红, 梁玉波 (2009). 米草属植物在中国海岸带的分布现状. 海洋学报, 31, 101-111.]
[1] Shitong Wang Yaozhan Xu Teng Yang Xinzeng Wei Mingxi Jiang. Impacts of microhabitats on leaf functional traits characteristics of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 0-0.
[2] JIA Bing-Rui. Litter decomposition and its underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(8): 648-657.
[3] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436.
[4] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364.
[5] TANG Dan-Dan, WU Yi, LIU Wen-Yao, HU Tao, HUANG Jun-Biao, ZHANG Ting-Ting. Ecological stoichiometry of two common hemiparasite plants and their relationship with host trees in Ailao Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2019, 43(3): 245-257.
[6] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43(3): 258-272.
[7] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[8] Bang-Liang DENG, Qian LIU, Xi-Shuai LIU, Li-Ya ZHENG, Liang-Bo JIANG, Xiao-Min GUO, Yuan-Qiu LIU, Ling ZHANG. Effects of enhanced UV-B radiation and nitrogen deposition on the growth of invasive plant Triadica sebifera [J]. Chin J Plan Ecolo, 2017, 41(4): 471-479.
[9] Ju-Ying HUANG, Hai-Long YU, Li-Li WANG, Kai-Bo MA, Yang-Mei KANG, Ya-Xian DU. Effects of different nitrogen:phosphorus levels on the growth and ecological stoichiometry of Glycyrrhiza uralensis [J]. Chin J Plan Ecolo, 2017, 41(3): 325-336.
[10] Xue-Mei WANG, Bang-Guo YAN, Guang ZHAO, Liang-Tao SHI, Gang-Cai LIU, Hai-Dong FANG. Effects of microorganism on carbon, nitrogen and phosphorus of Dodonaea viscosa and the soils from different elevations in Yuanmou, Yunnan, China [J]. Chin J Plan Ecolo, 2017, 41(3): 311-324.
[11] Zhi-Ying NING, Yu-Lin LI, Hong-Ling YANG, Dian-Chao SUN, Jing-Dong BI. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land [J]. Chin J Plan Ecolo, 2017, 41(10): 1069-1080.
[12] He-Liang HE, Xiao-Cheng YANG, Dan-Dan LI, Chun-Ying YIN, Yun-Xiang LI, Guo-Ying ZHOU, Lin ZHANG, Qing LIU. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2017, 41(1): 126-135.
[13] Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Yang WANG, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China [J]. Chin J Plan Ecolo, 2017, 41(1): 31-42.
[14] Man-Yi DU, Shao-Hui FAN, Guang-Lu LIU, Huan-Ying FENG, Bao-Hua GUO, Xiao-Lu TANG. Stoichiometric characteristics of carbon, nitrogen and phosphorus in Phyllostachys edulis forests of China [J]. Chin J Plan Ecolo, 2016, 40(8): 760-774.
[15] Zheng-Hu ZHOU, Chuan-Kuan WANG. Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry [J]. Chin J Plan Ecolo, 2016, 40(6): 620-630.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Cui Gao;Yuxia Chen;Ying Bao;Min Feng;Anming Lu. Studies on Sexual Organs and Embryological Development Morphology of Speirantha gardenii (Convallariaceae)[J]. Chin Bull Bot, 2010, 45(06): 705 -712 .
[2] Jiang Gao-ming. The Impact of Globae Increasing of CO2 on Plants[J]. Chin Bull Bot, 1995, 12(04): 1 -7 .
[3] Zhang Jun Han Bi-wen. Advance in the Study of Histochemical Localization for[J]. Chin Bull Bot, 1995, 12(专辑3): 131 -142 .
[4] Tang Yan-cheng. A Short Guide to the International Code of Botanical Nomenclature V.[J]. Chin Bull Bot, 1984, 2(04): 51 -57 .
[5] Xu Ji. The Protective Protein of Nitrogenase Against Oxygen Damage-Fe-S Protein[J]. Chin Bull Bot, 1986, 4(12): 1 -4 .
[6] . [J]. Chin Bull Bot, 2001, 18(05): 633 .
[7] Huang Zhao-xiang;Zheng Zhen-gui and Zhu Du. Ecological Effect of Taxodium ascendens-Oryza sativa Ecosystem(I) The Growing Characteristic of Taxodium Ascendens in the Ecosystem[J]. Chin Bull Bot, 1996, 13(02): 48 -51 .
[8] GU Rui-Sheng;LIU Qun-Lu;CHEN Xue-Mei and JIANG Xiang-Ning. Comparison and Optimization of the Methods on Protein Extraction and SDS-PAGE in Woody Plants[J]. Chin Bull Bot, 1999, 16(02): 171 -177 .
[9] Jiang Gao-ming. LI-6400 Portable Photosynthesis System: Principle, Function, Basic Operation and Main Problems and Solutions During Measurement[J]. Chin Bull Bot, 1996, 13(增刊): 72 -76 .
[10] Li Ling;Luo Yun-xiu;He Jian-hui and Pan Rui-chi. Promoting the Formation of Adventitious Roots in Cutting of Some Woody Plants by GL Reagent[J]. Chin Bull Bot, 1996, 13(增刊): 63 -65 .