Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (4): 461-470.doi: 10.17521/cjpe.2016.0231

• Orginal Article • Previous Articles     Next Articles

C, N and P stoichiometry in different organs of Vitex rotundifolia in a Poyang Lake desertification hill

Hong-Yan ZHOU1, Qin WU1, Ming-Yue CHEN1, Wei KUANG1, Ling-Ling CHANG1, Qi-Wu HU1,2,*()   

  1. 1School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
    and
    2Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education (Jiangxi Normal University), Nanchang 330022, China
  • Received:2016-07-05 Accepted:2017-02-14 Online:2017-05-19 Published:2017-04-10
  • Contact: Qi-Wu HU E-mail:huqiwu1979@gmail.com

Abstract:

Aims The objectives were to clarify the responses of C, N and P stoichiometry of Vitex rotundifolia to desertification, and determine the C, N and P stoichiometric relationships among the organs.
Methods In this study, different organs (e.g. flowers, leaves, twigs, creeping stems, fine roots) of V. rotundifolia were sampled along a desertification gradient in a typical Poyang Lak sandy hill. Subsequently, C, N and P contents of various organs were measured.
Important findings The results showed nutrient contents in different organs ranged from 386.28 to 449.47 mg·g-1 for carbon, 11.40 to 25.37 mg·g-1 for nitrogen and 0.89 to 1.54 mg·g-1 for phosphorus, respectively. C, N and P contents differed significantly among the five organs. The maximum N and P content were found in flowers, whereas the minimums were observed in twigs and creping stems. Moreover, desertification intensity only significantly affected C, N and C:P. C:N and N:P ratios maintained relatively stable. Except N:P, the other nutrient elements and associated stoichiometry significantly differed among the organs. Hence, organs, rather than desertification intensity mainly controlled the C, N and P content and their stoichiometry variability. Although there was a positive correlation between mass-based N content (Nmass) and P content (Pmass) across the three desertification zones, the Nmass-Pmass relationship in V. rotundifolia did not shift. Irrespective desertification intensity and organs, N:P stoichiometry of V. rotundifolia was well constrained. In addition, significant correlations of C, N and P contents among organs were mainly found in the above-ground parts, especially between twigs and creeping stems.

Key words: Poyang Lake, desertification hill, plant organ, nutrient, stoichiometry

Table 1

Characteristics of soil and vegetation in different desertification zones (mean ± SD)"

采样区
Sampling site
土壤有机碳
SOC ( mg·g-1 )
土壤全氮
TN ( mg·g-1 )
土壤全磷
TP ( mg·g-1 )
植被类型
Vegetation type
盖度
Coverage
物种组成
Species composition
重度沙化区
HD zone
3.57 ± 1.14a 0.14 ± 0.05a 0.10 ± 0.07a 灌木+草本
Shrub and herb
0.08 ± 0.02a 单叶蔓荆 Vitex rotundifolia
狗牙根 Cynodon dactylon
马唐 Digitaria sanguinalis
中度沙化区
MD zone
5.74 ± 0.86b 0.32 ± 0.06b 0.11 ± 0.01a 灌木+小乔木
Shrub and small trees
0.34 ± 0.11b 单叶蔓荆 Vitex rotundifolia
算盘子 Glochidion puberum
糯米条 Abelia chinensis
湿地松 Pinus elliottii
轻度沙化区
LD zone
8.66 ± 2.23c 0.61 ± 0.26c 0.22 ± 0.04b 灌木+小乔木
Shrub and small trees
0.57 ± 0.13c 单叶蔓荆 Vitex rotundifolia
算盘子 Glochidion puberum
牡荆 Vitex negundo
山矾 Symplocos sumuntia
檵木 Loropetalum chinense
短柄枹 Quercus glandulifera
刺槐 Robinia pseudoacacia
湿地松 Pinus elliottii

Fig. 1

Carbon (C), nitrogen (N) and phosphorus (P) contents and their stoichiometry in various organs of Vitex rotundifolia (mean ± SD). F, flower; L, leaf; T, twig; CS, creeping stem; FR, fine root. Different lowercase letters indicate significant differences between organs at p < 0.05 levels."

Table 2

Correlations of nutrient elements and their stoichiometry among various organs of Vitex rotundifolia"

花 Flower 叶 Leaf 枝条 Twig 匍匐茎 Creeping stem
C 叶 Leaf 0.480**
枝条 Twig -0.475** -0.652**
匍匐茎 Creeping stem 0.115 0.177 -0.391*
N 枝条 Twig 0.672** 0.058
匍匐茎 Creeping stem -0.543** 0.022 -0.681**
P 匍匐茎 Creeping stem -0.049 0.174 0.518**
细根 Fine root -0.001 -0.074 -0.438* -0.214
C:N 枝条 Twig 0.472** 0.131
匍匐茎 Creeping stem -0.437* -0.221 -0.411*
C:P 匍匐茎 Creeping stem -0.051 0.373* 0.369*
细根 Fine root -0.035 -0.203 -0.400* -0.248

Fig. 2

Changes of carbon(C), nitrogen(N) and phosphorus(P) contents in various organs of Vitex rotundifolia along desertification gradient (mean ± SD). HD, MD and LD see Table 1."

Fig. 3

Relationship between mass-based nitrogen content (Nmass) and mass-based phosphorus content (Pmass) of Vitex rotundifolia at different desertification zones. HD, MD and LD see Table 1."

Table 3

A test of differences in slopes and intercepts of linear regressions of mass-based nitrogen content (Nmass) against mass-based phosphorus content (Pmass) of Vitex rotundifolia among different desertification zones using analysis of covariance"

Nmass-Pmass
(n = 160)
重度沙化区
HD zone
中度沙化区
MD zone
轻度沙化区
LD zone
F p
斜率 Slope 5.2 8.3 10.1 1.13 0.33
截距
Intercept
9.3 7.5 5.8 2.66 0.073

Table 4

General linear model (GLM) analysis of effects of desertification intensity and organs on C, N and P contents of Vitex rotundifolia and their stoichiometry"

自变量 Variable 因变量 Dependent variable 平方和 Sum of squares 自由度 d.f. 均方 Mean square 统计量 f 显著性 p
沙化程度
Desertification
intensity
C 113.260 2 56.630 4.998 0.008*
N 3 454.735 2 1 727.368 3.717 0.027*
P 0.563 2 0.281 2.941 0.056
C:N 100.579 2 50.289 0.326 0.723
C:P 187 733.990 2 93 866.995 4.373 0.014*
N:P 240.789 2 120.394 2.773 0.066
器官
Organs
C 3 792.949 4 948.237 83.690 0.000**
N 78 810.635 4 19 702.659 42.392 0.000**
P 7.656 4 1.914 20.009 0.000**
C:N 15 152.136 4 3 788.034 24.534 0.000**
C:P 1 036 736.242 4 259 184.060 12.076 0.000**
N:P 333.015 4 83.254 1.918 0.111
沙化程度×器官
Desertification intensity × Organs
C 699.213 8 87.402 7.714 0.000**
N 9 851.142 8 1 231.393 2.649 0.010*
P 2.181 8 0.273 2.850 0.006*
C:N 5 414.247 8 676.781 4.393 0.000**
C:P 653 464.339 8 81 683.042 3.806 0.000**
N:P 1 302.409 8 162.801 3.750 0.001*

Table 5

The correlations of N, P contents between soil and various organs of Vitex rotundifolia"

土层 Soil layer 养分元素 Nutrient element 花 Flower 叶 Leaf 枝条 Twig 匍匐茎 Creeping stem 细根 Fine root
0-10 cm N 0.336 0.405 0.211 -0.628* 0.303
P -0.337 0.370 0.184 0.091 0.493
10-30 cm N 0.212 0.390 0.180 -0.587 0.253
P -0.297 0.351 0.102 0.123 -0.409
[1] Ågren GI (2004). The C:N:P stoichiometry of autotrophs-theory and observations.Ecology Letters, 7, 185-191.
[2] Chapin FS, Bloom AJ, Field CB, Waring RH (1987). Plant responses to multiple environmental factors.BioScience, 37, 49-57.
[3] Craine JM, Lee WG (2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand.Oecologia, 134, 471-478.
[4] Cui GY, Cao Y, Chen YM (2015). Characteristics of nitrogen and phosphorus stoichiometry across components of forest ecosystem in Shaanxi Province.Chinese Journal of Plant Ecology, 39, 1146-1155. (in Chinese with English abstract)[崔高阳, 曹扬, 陈云明 (2015). 陕西省森林各生态系统组分氮磷化学计量特征. 植物生态学报, 39, 1146-1155.]
[5] Dong GR, Wu B, Ci LJ, Zhou HS, Lu Q, Luo B (1999). Present situation, causes and control way of desertification in China.Journal of Desert Research, 19(4), 22-36. (in Chinese with English abstract)[董光荣, 吴波, 慈龙骏, 周欢水, 卢琦, 罗斌 (1999). 我国荒漠化现状、成因与防治对策. 中国沙漠, 19(4), 22-36.]
[6] Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Ayoola F, Andrea H, Sebastian I, Kilham SS, Edward M, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs.Nature, 408, 578-580.
[7] Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquis BJ (2010). Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change.New Phytologist, 186, 593-608.
[8] Eviner VT, Chapin FS III (2003). Functional matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes.Ecology, Evolution and Systematics, 34, 455-485.
[9] Geng Y, Wang L, Jin DM, Liu HY, He JS (2014). Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits.Oecologia, 175, 445-455.
[10] Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL (2008). Heterogeneity by root branch order: Exploring the discrepancy in root longevity and turnover estimates between minirhizotron and C isotope methods.New Phytologist, 177, 443-456.
[11] Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266.
[12] He JS, Han XG (2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems.Chinese Journal of Plant Ecology, 34, 2-6. (in Chinese with English abstract)[贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
[13] Hu MY, Zhang L, Luo TX, Shen W (2012). Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Chinese Journal of Plant Ecology, 36, 136-143. (in Chinese with English abstract)[胡梦瑶, 张林, 罗天祥, 沈维 (2012). 西藏紫花针茅叶功能性状沿降水梯度的变化. 植物生态学报, 36, 136-143.]
[14] Huang JY, Yu HL (2016). Responses of growth of four desert species to different N addition levels.Chinese Journal of Plant Ecology, 40, 165-176. (in Chinese with English abstract)[黄菊莹, 余海龙 (2016). 四种荒漠草原植物的生长对不同氮添加水平的响应. 植物生态学报, 40, 165-176.]
[15] Kattge J, Diaz S, Lavorel S, Prentice LC, Leadley P, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, Bodegom PMV, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender BJ, Chambers JQ, Chapin FS, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fidelis GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson GJ, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Louault F, Ma S, Mahecha MD, Manning P, Massad P, Massad T, Medlyn BE, Messier J, Moles AT, Nadrowski K, Naeem S, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Overbeck G, Ozinga WA, Paula S, Pausas JG, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado NB, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011). TRY—A global database of plant traits.Global Change Biology, 17, 2905-2935.
[16] Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants.The American Naturalist, 168, 103-122.
[17] Killingbeck KT, Whitford WG (1996). High foliar nitrogen in desert shrubs: An important ecosystem trait or defective desert doctrine.Ecology, 77, 1728-1737.
[18] Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450.
[19] Li YH, Luo TX, Lu Q, Tian XY, Wu B, Yang HH (2005). Comparisons of leaf traits among 17 major plant species in Shazhuyu Sand Control Experimental Station of Qinghai Province.Acta Ecology Sinica, 25, 994-999. (in Chinese with English abstract)[李永华, 罗天祥, 卢琦, 田晓娅, 吴波, 杨恒华 (2005). 青海省沙珠玉治沙站17种主要植物叶性因子的比较. 生态学报, 25, 994-999.]
[20] Li YL, Mao W, Zhao XY, Zhang TH (2010). Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China.Environment Science, 31, 1716-1725. (in Chinese with English abstract)[李玉霖, 毛伟, 赵学勇, 张铜会 (2010). 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究. 环境科学, 31, 1716-1725.]
[21] Liu WD, Su JR, Li SF, Zhang ZJ, Li ZG (2010). Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province.Acta Ecologica Sinica, 30, 6581-6590. (in Chinese with English abstract)[刘万德, 苏建荣, 李帅锋, 张志钧, 李忠文 (2010). 云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征. 生态学报, 30, 6581-6590.]
[22] Luo MW, Mao L, Li QQ, Zhao X, Xiao Y, Jia TT, Guo ZG (2015). C, N, and P stoichiometry of plant and soil in the restorable plant communities distributed on the land used for Qinghai-Tibet Highway Construction in the Qinghai-Tibetan Plateau, China.Acta Ecologica Sinica, 35, 7832-7841. (in Chinese with English abstract)[雒明伟, 毛亮, 李倩倩, 赵旭, 肖玉, 贾婷婷, 郭正刚 (2015). 青藏高原筑路取土迹地恢复植物群落与土壤的碳氮磷化学计量特征. 生态学报, 35, 7832-7841.]
[23] Ma YZ, Zhong QL, Jin BJ, Lu HD, Guo BQ, Zheng Y, Li M, Cheng DL (2015). Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China.Chinese Journal of Plant Ecology, 39, 159-166. (in Chinese with English abstract)[马玉珠, 钟全林, 靳冰洁, 卢宏典, 郭炳桥, 郑媛, 李曼, 程栋梁 (2015). 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子. 植物生态学报, 39, 159-166.]
[24] Marschner H (1995). Mineral Nutrition of Higher Plants. Academic Press, London.
[25] Nie LQ, Wu Q, Yao B, Fu S, Hu QW (2016). Leaf litter and soil carbon, nitrogen, and phosphorus stoichiometry of dominant plant species in the Poyang Lake wetland.Acta Eclogica Sinica, 36, 1898-1906. (in Chinese with English abstract)[聂兰琴, 吴琴, 尧波, 付姗, 胡启武 (2016). 鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征. 生态学报, 36, 1898-1906.]
[26] Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen phosphorus leaf stoichiometry and the scaling of plant growth.Ecology Letters, 8, 636-642.
[27] Pregitzer KS, Deforest JL, Burton AJ, Allen ME, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
[28] Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto.Journal of Ecology, 102, 275-301.
[29] Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, USA.
[30] Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species.New Phytologist, 167, 493-508.
[31] Wang WQ, Wang C, Sardans J, Zeng CS, Tong C, Penuelas J (2015). Plant invasive success associated with higher N-use efficiency and stoichiometric shifts in the soil-plant system in the Minjiang River tidal estuarine wetlands of China.Wetlands Ecology and Management, 23, 865-880.
[32] Wang ZQ, Guo DL (2008). Root ecology. Journal of Plant Ecology (Chinese Version), 32, 1213-1216. (in Chinese)[王政权, 郭大立 (2008). 根系生态学. 植物生态学报, 32, 1213-1216.]
[33] Wei H, Wu B, Yang W, Luo T (2011). Low rainfall-induced shift in leaf trait relationship within species along a semi-arid sandy land transect in northern China.Plant Biology, 13, 85-92.
[34] Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high -and low-rainfall and high -and low-nutrient habitats.Functional Ecology, 15, 423-434.
[35] Xu B, Cheng YX, Gan HJ, Zhou WJ, He JS (2010). Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China.Chinese Journal of Plant Ecology, 34, 29-38. (in Chinese with English abstract)[徐冰, 程雨曦, 甘慧洁, 周文嘉, 贺金生 (2010). 内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联. 植物生态学报, 34, 29-38.]
[36] Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability.Ecology Letters, 13, 1390-1399.
[37] Yuan ZY, Chen HYH, Reich PB (2011). Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus.Nature Communications, 2, 1-6.
[38] Zhu ZD, Cui SH (1996). The problem of land desertification in South China.Journal of Desert Research, 16, 331-337. (in Chinese with English abstract)[朱震达, 崔书红. 中国南方的土地荒漠化问题 (1996). 中国沙漠, 16, 331-337.]
[39] Zuo CQ (1986). Analysis for the causes, utilization and governance in sand hill, Poyang Lake.Soil and Water Conservation, (4), 2-5. (in Chinese)[左长青 (1986). 鄱阳湖沙山成因及治理利用浅析. 中国水土保持, (4), 2-5.]
[1] Yibo Tan, Wenhui Shen, Zi Fu, Wei Zheng, Zhiyang Ou, Zhangqiang Tan, Yuhua Peng, Shilong Pang, Qinfei He, Xiaorong Huang, Feng He. Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests [J]. Biodiv Sci, 2019, 27(9): 970-983.
[2] CHEN Chan,ZHANG Shi-Ji,LI Lei-Da,LIU Zhao-Dan,CHEN Jin-Lei,GU Xiang,WANG Liu-Fang,FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671.
[3] JIA Bing-Rui. Litter decomposition and its underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(8): 648-657.
[4] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436.
[5] LÜ Zhong-Cheng, KANG Wen-Xing, HUANG Zhi-Hong, ZHAO Zhong-Hui, DENG Xiang-Wen. Reuse of retranslocated nutrients in tissues of Chinese fir in plantations of different ages [J]. Chin J Plant Ecol, 2019, 43(5): 458-470.
[6] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364.
[7] FENG Chan-Ying, ZHENG Cheng-Yang, TIAN Di. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(3): 185-196.
[8] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43(3): 258-272.
[9] TANG Dan-Dan, WU Yi, LIU Wen-Yao, HU Tao, HUANG Jun-Biao, ZHANG Ting-Ting. Ecological stoichiometry of two common hemiparasite plants and their relationship with host trees in Ailao Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2019, 43(3): 245-257.
[10] ZOU Xian-Hua, HU Ya-Nan, WEI Dan, CHEN Si-Tong, WU Peng-Fei, MA Xiang-Qing. Correlation between endogenous hormone and the adaptability of Chinese fir with high phosphorus-use efficiency to low phosphorus stress [J]. Chin J Plant Ecol, 2019, 43(2): 139-151.
[11] MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(1): 77-84.
[12] TIAN Da-Shuan. Effects of the supply levels and ratios of nitrogen and phosphorus on seed traits of Chenopodium glaucum [J]. Chin J Plan Ecolo, 2018, 42(9): 963-970.
[13] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[14] MO Xue-Li, DAI Xiao-Qin, WANG Hui-Min, FU Xiao-Li, KOU Liang. Rhizosphere effects of overstory tree and understory shrub species in central subtropical plantations—A case study at Qianyanzhou, Taihe, Jiangxi, China [J]. Chin J Plan Ecolo, 2018, 42(7): 723-733.
[15] GUO Rui, ZHOU Ji, LIU Qi, GU Feng-Xue. Characterization of nutrient elements at different leaf positions in Phragmites australis in Songnen degraded grassland [J]. Chin J Plan Ecolo, 2018, 42(7): 734-740.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] Yang Hong-yuan. Basic Principle and Method of Fluorescence Microscopy[J]. Chin Bull Bot, 1984, 2(06): 45 -48 .
[5] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[6] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[7] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[8] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[10] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .