Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (3): 382-396.doi: 10.17521/cjpe.2017.0050

• Research Articles • Previous Articles     Next Articles

Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin

WANG Xiang1,ZHU Ya-Qiong1,ZHENG Wei1,2,*(),GUAN Zheng-Xuan1,SHENG Jian-Dong1   

  1. 1 College of Pratacultural and Environmental Science, Xinjiang Agricultural University, ürümqi 830052, China;
    2 Xinjiang Key Laboratory of Grassland Resources and Ecology, ürümqi 830052, China;
  • Online:2017-06-16 Published:2018-03-20
  • Contact: Wei ZHENG ORCID:0000-0002-5627-9042 E-mail:zw065@126.com
  • Supported by:
    Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA05050405);the Natural Science Foundation of China(31660692);the Modern Agroindustry Technology Research System.(CARS34)

Abstract:

Aims Our objective was to explore the effects of different land use types on soil respiration rates in the mountain meadows of Tianshan Mountain, Zhaosu Racecourse, Xinjiang, China from 2015 to 2016.

Methods Four impermanent plots with different land use types (legume-grass mixture, LG; reseeding grassland, RG; natural grassland, NG; cropland, CR), which were established in 2013, were selected. The soil respiration rates in the growing seasons of two consecutive years (from April to September in 2015 and 2016) were measured using LI-8100A Soil Respiration System. Soil temperatures at 5 cm depth and soil water content at 0-10 cm depth were measured simultaneously. We also investigated soil biological properties including soil microflora structures, soil microbial biomass carbon, and soil enzyme activity. The hydrothermal and soil biological impacts on soil respiration rates were analyzed using the relationship among soil hydrothermal factors, soil microflora factors, and soil enzyme activities.

Important findings We found that: 1) in 2015, the temporal variation of soil respiration showed double peaks in NG and RC plots, but showed a single peak in RG and LG plots, and it reached the maximum in August in all plots. This temporal pattern was different in 2016. Soil respiration reached the maximum at the end of June in RG and LG, and at the end of July in NG and CR. 2) For the whole study period, the average soil respiration rate was in the order of: NG > RG > CR > LG. 3) Soil respiration rate was positively correlated with soil temperature, and negatively correlated with soil volumetric water content. The temperature sensitivity of soil respiration (Q10) was in the order of: NG > CR > RG > LG. 4) Bacteria were dominant among soil microbes in all type of plots, followed by actinomycetes and fungi were the least abundant. The total soil microbial biomass was in the order of: NG > RG > CR > LG, which was consistent with the average soil respiration rate. The fitting analysis showed that soil respiration was positively correlated with the abundance of actinomycetes in RG (p < 0.05), and was positively correlated with the abundances of bacteria and actinomycetes in LG (p < 0.05). 5) The average microbial biomass carbon was in the order of: CR > NG > LG > RG. Fidelity analysis showed that soil respiration rate was significantly positively correlated with microbial biomass carbon in GR and CR (p < 0.05). 6) Among the examined enzymes, only protease and sucrase had a correlation with soil respiration, with sucrase having a greater effect. Changing the degraded mountain meadow to legume-grass mixture and reseeding grassland could decrease soil respiration rates, potentially benefiting carbon sequestration.

Key words: land use type, mountain meadow, soil respiration rate, soil temperature, soil water content, soil microflora, soil microbial carbon, soil enzyme activity

Fig. 1

Seasonal variation of soil respiration rate (Rs) in plots with different land use types (mean ± SD). CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland."

Fig. 2

Soil temperature and soil water content in plots with different land use types. CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland."

Fig. 3

The relationship between soil respiration rate (Rs) and soil temperature at 5 cm depth in plots with different land use types. CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland."

Fig. 4

The relationship between soil respiration rate (Rs) and soil water content (SWC) at 10 cm depth in plots with different land use types. CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland."

Table 1

Regression equations of soil respiration rate (Rs) with soil temperature (Ts) and soil water content (W10)"

样地
Plot
2015 2016
拟合方程 Fitted equation R2 p 拟合方程 Fitted equation R2 p
RG Rs = 0.63e0.10Ts +$0.47W_{10}^{2}$- 0.11W10 - 1.99 0.81 < 0.001 Rs = e-0.99Ts -$0.60W_{10}^{2}$+ 0.63W10 - 0.73 0.68 < 0.01
LG Rs = 0.92e0.09Ts +$1.22W_{10}^{2}$- 0.02W10 - 12.45 0.67 < 0.01 Rs = e-0.99Ts +$0.45_{10}^{2}$- 0.24W10 - 0.97 0.89 < 0.01
NG Rs = e-0.95Ts -$0.49W_{10}^{2}$+ 0.49W10 + 0.47 0.78 < 0.001 Rs = 0.46e0.14Ts -$0.02W_{10}^{2}$+ 0.64W10 - 1.73 0.88 < 0.01
CR Rs = e-0.99Ts -$0.79W_{10}^{2}$+ 0.85W10 - 0.29 0.68 < 0.01 Rs = e-Ts +$0.86W_{10}^{2}$- 0.86W10 + 0.42 0.64 < 0.01

Table 2

Soil microflora in four plots with different land use types (cfu·g-1 dry soil) (mean ± SD, n = 3)"

时期
Time
样地
Plot
总数量(105·g-1干土)
Total abundance
(105·g-1 dry soil)
细菌 Bacteria 放线菌 Actinomyces 真菌 Fungi
数量(105·g-1干土)
Abundance
(105·g-1 dry soil)
比例
Proportion
(%)
数量(105·g-1干土)
Abundance
(105·g-1 dry soil)
比例
Proportion
(%)
数量(105·g-1干土)
Abundance
(105·g-1 dry soil)
比例
Proportion
(%)
4月
April
RG 12.02 11.81 ± 0.58a 98.22 1.75 ± 1.21b 1.46 0.03 ± 2.91b 0.32
LG 12.15 11.51 ± 1.73a 94.67 1.99 ± 3.53b 1.64 0.44 ± 1.76c 3.69
NG 19.39 19.19 ± 4.26c 98.94 1.55 ± 1.15a 0.80 0.04 ± 1.76b 0.26
CR 14.55 13.69 ± 1.73b 94.24 8.26 ± 5.24c 5.68 0.01 ± 0.33a 0.08
5月
May
RG 16.46 16.08 ± 1.64b 98.03 3.33 ± 1.53a 1.66 0.04 ± 1.26a 0.31
LG 13.36 12.69 ± 2.09a 95.98 4.06 ± 3.98 ab 1.83 0.03 ± 2.02b 2.19
NG 18.04 17.65 ± 4.51b 98.65 3.21 ± 3.69a 0.99 0.06 ± 2.69a 0.36
CR 14.53 13.58 ± 2.94a 94.41 6.59 ± 3.02c 5.19 0.03 ± 1.05b 0.40
6月
June
RG 15.56 15.08 ± 3.07b 96.42 4.79 ± 3.64b 2.63 0.01 ± 1.34a 0.95
LG 13.22 12.47 ± 1.33a 95.21 2.51 ± 4.01a 2.79 0.04 ± 3.17c 2.00
NG 16.98 16.43 ± 2.77b 95.83 5.03 ± 2.79b 2.40 0.02 ± 5.69b 1.77
CR 14.21 13.24 ± 2.50a 93.29 4.91 ± 3.84b 3.42 0.03 ± 3.89c 3.29
7月初
Early of July
RG 16.86 15.59 ± 4.11c 92.50 8.34 ± 1.31b 4.93 0.04 ± 2.08a 2.57
LG 10.44 9.43 ± 2.91a 86.88 5.16 ± 4.53a 7.12 0.05 ± 2.68a 6.00
NG 17.51 16.49 ± 3.19c 93.92 5.99 ± 6.07a 3.57 0.04 ± 4.16a 2.51
CR 13.83 12.91 ± 2.18b 90.44 8.48 ± 2.71b 6.18 0.05 ± 0.88a 3.38
7月末
End of July
RG 12.88 11.84 ± 3.39b 89.46 7.38 ± 3.62b 7.75 0.03 ± 2.44a 2.79
LG 5.18 5.41 ± 6.88a 87.18 3.89 ± 2.56a 6.25 0.04 ± 5,78a 6.57
NG 17.64 16.31 ± 2.87c 92.47 7.22 ± 3.39b 4.11 0.06 ± 0.88b 3.42
CR 12.66 11.49 ± 2.68b 90.56 8.67 ± 1.81c 6.98 0.03 ± 2.37a 2.46
8月
August
RG 12.16 11.46 ± 11.55b 93.87 5.79 ± 5.41b 4.99 0.01 ± 1.73a 1.14
LG 8.79 8.21 ± 8.13a 90.53 4.71 ± 5.17b 7.75 0.01 ± 2.57a 1.72
NG 11.96 11.58 ± 1.58b 96.77 2.67 ± 4.01a 2.27 0.01 ± 1.53a 0.96
CR 10.51 9.60 ± 0.70a 89.78 7.91 ± 3.08c 8.81 0.01 ± 2.35a 1.41
9月
September
RG 15.61 15.14 ± 4.57b 97.16 4.21 ± 2.97b 2.56 0.04 ± 4.82a 0.28
LG 12.92 12.71 ± 3.94b 98.40 1.72 ± 2.54a 1.33 0.04 ± 0.88a 0.27
NG 10.51 9.77 ± 7.97a 86.48 6.98 ± 2.21c 12.59 0.04 ± 1.47a 0.93
CR 7.74 7.15 ± 2.78a 82.93 5.65 ± 1.81d 16.53 0.03 ± 1.22a 0.54

Table 3

Soil microflora and microbial biomass carbon in plots with different land use types (mean ± SD, n = 3)"

指标 Index LG RG NG CR
细菌 Bacteria (105·g-1 dry soil) 14.17 ± 3.95bc 10.31 ± 3.91a 15.02 ± 4.93c 11.25 ± 3.90ab
放线菌 Actinomyces (105·g-1 dry soil) 5.34 ± 24.42a 3.55 ± 20.18a 4.91 ± 30.91ab 7.13 ± 19.87b
真菌 Fungi (105·g-1 dry soil) 0.02 ± 16.18a 0.03 ± 18.42b 0.02 ± 23.01b 0.02 ± 19.45b
微生物生物量碳 Microbial biomass carbon (mg·kg-1) 82.15 ± 26.61a 82.12 ± 29.26a 97.41 ± 32.92b 97.72 ± 35.79b

Fig. 5

The relationship between soil respiration rate(Rs) and microflora, microbial biomass carbon in four plots with different land use types (mean ± SD). CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland."

Fig. 6

Soil microbial biomass carbon in four plots with different land use types (mean ± SD). CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland."

Fig. 7

Soil enzyme activities in four plots with different land use types (mean ± SD). CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland."

Table 4

Comparison of soil enzyme activity among four plots with different land use types (mean ± SD, n = 3)"

样地
Plot
过氧化氢酶 Hydrogen peroxidase
(mL of mol·L-1 KMnO4)
脲酶 Urease
(NH4+-N, mg·g-1·24 h-1)
蔗糖酶 Invertase
(C6H12O6, mg·g-1·24 h-1)
蛋白酶 Proteinase
(C2H5NO2, mg·g-1·24 h-1)
RG 0.45 ± 0.11a 0.22 ± 0.06a 1.45 ± 0.14a 7.86 ± 5.53a
LG 0.44 ± 0.14a 0.23 ± 0.04a 1.46 ± 0.13a 8.71 ± 6.43a
NG 0.49 ± 0.22ab 0.25 ± 0.07a 1.46 ± 0.15a 9.04 ± 6.61a
CR 0.64 ± 0.29b 0.25 ± 0.03a 1.47 ± 0.14a 10.17 ± 5.48a

Fig. 8

The relationship between soil respiration rate(Rs) and enzymatic activity in four plots with different land use types. CR, cropland; LG, legume-grass mixture; NG, natural grassland; RG, reseeding grassland."

[1] Anderson DW, Coleman DC ( 1985). The dynamics of organic matter in grassland soils. Journal of Soil & Water Conservation, 40, 211-216.
doi: 10.2307/3899755
[2] Chen J, Cao JJ, Wei YL, Liu JH, Ma FL, Chen DC, Feng JY, Xia Y, Ceng Y ( 2014). Effect of grazing exclusion on soil respiration during the dormant season in alpine meadow grassland ecosystems on the northern shore of Qinghai Lake, China. Acta Prataculturae Sinica, 23(6), 78-86.
doi: 10.11686/cyxb20140610
陈骥, 曹军骥, 魏永林, 刘吉宏, 马扶林, 陈迪超, 冯嘉裕, 夏瑶, 岑燕 ( 2014). 青海湖北岸高寒草甸草原非生长季土壤呼吸对温度和湿度的响应. 草业学报, 23(6), 78-86.
doi: 10.11686/cyxb20140610
[3] Chen ST, Sang L, Zhang X, Hu ZH ( 2016). Effects of warming and straw application on soil respiration and enzyme activity in a winter wheat cropland. Environmental Science, 37, 703-709.
doi: 10.13227/j.hjkx.2016.02.040
陈书涛, 桑琳, 张旭, 胡正华 ( 2016). 增温及秸秆施用对冬小麦田土壤呼吸和酶活性的影响. 环境科学, 37, 703-709.
doi: 10.13227/j.hjkx.2016.02.040
[4] Flechard CR, Ambus P, Skiba U, Rees RM, Hensen A, van Amstel A, Raschi A ( 2007). Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agriculture, Ecosystems & Environment, 121, 135-152.
doi: 10.1016/j.agee.2006.12.024
[5] Guan SY ( 1998). The Desert Grassland and Water Salt Plant System and Optimized Ecological Model in Xinjiang. Science Press, Beijing. 320-344.
关松荫 ( 1986). 土壤酶及其研究法. 农业出版社, 北京. 320-344.
[6] Guo HM, Zhang YY, Liu QF, Jiang JS, Li JC, Wang R, Li NN, Li RJ, Guo SL, Li CY ( 2014). Responses of soil respiration to land use changes in a semiarid region of Loess Plateau. Journal of Natural Resources, 29, 1686-1695.
郭慧敏, 张彦军, 刘庆芳, 姜继韶, 李俊超, 王蕊, 李娜娜, 李如剑, 郭胜利, 李春越 ( 2014). 黄土高原半干旱区土壤呼吸对土地利用变化的响应. 自然资源学报, 29, 1686-1695.
[7] Guo MY, Zhao KT, You JC, Xu LJ, Wang LJ, Ja SJ ( 2012). Soil microbial characteristic and soil respiration in grassland under different use patterns. Acta Agrestia Sinica, 20(1), 42-48.
doi: 10.11733/j.issn.1007-0435.2012.01.007
郭明英, 朝克图, 尤金成, 徐丽君, 王丽娟, 贾淑杰 ( 2012). 不同利用方式下草地土壤微生物及土壤呼吸特性. 草地学报 , 20(1), 42-48.
doi: 10.11733/j.issn.1007-0435.2012.01.007
[8] Hanson PJ, Edwards NT, Garten CT, Andrews JA ( 2000). Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 48, 115-146.
[9] Jiang DM, He SF, Cao CY, Toshio O, Li XH ( 2006). Effect of plowing and reseeding on soil physicochemical properties and biological activities of alkalized grassland in Horqin area. Chinese Journal of Grassland, 28(4), 18-23.
doi: 10.3321/j.issn:1673-5021.2006.04.004
蒋德明, 贺山峰, 曹成有, 押田敏雄, 李雪华 ( 2006). 翻耙补播对科尔沁碱化草地土壤理化性质和生物活性的影响. 中国草地学报, 28(4), 18-23.
doi: 10.3321/j.issn:1673-5021.2006.04.004
[10] Kirschbaum MUF ( 2006). The temperature dependence of organic- matter decomposition-still a topic of debate. S oil Biology & Biochemistry, 38, 2510-2518.
doi: 10.1016/j.soilbio.2006.01.030
[11] Lal R ( 2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623.
doi: 10.1126/science.1097396 pmid: 15192216
[12] Lal R, Kimble J, Follett R ( 1998). Land use and soil C pool in terrestrial ecosystems. In: Lal R, Kimbkle J, Follett R, Stewarteds BA eds. Management of Carbon Sequestration in Soil. CRC Press, Boca Raton. 1-10.
[13] Li W, Cao WX, Liu HD, Li XL, Xu CL, Shi SL, Feng J, Zhou CM ( 2015). Analysis of soil respiration under different grazing management patterns in the alpine meadow-steppe of the Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 24(10), 22-32.
doi: 10.11686/cyxb2015152
李文, 曹文侠, 刘皓栋, 李小龙, 徐长林, 师尚礼, 冯今, 周传猛 ( 2015). 不同放牧管理模式对高寒草甸草原土壤呼吸特征的影响. 草业学报, 24(10), 22-32.
doi: 10.11686/cyxb2015152
[14] Li ZG, Hou FJ ( 2010). Analysis of soil respiration diurnal dynamics and factors influencing it in enclosed natural grasslands under different topographies in the Loess Plateau. Acta Prataculturae Sinica, 19(1), 42-49.
doi: 10.11686/cyxb20100107
李志刚, 侯扶江 ( 2010). 黄土高原不同地形封育草地的土壤呼吸日动态与影响因子分析. 草业学报, 19(1), 42-49.
doi: 10.11686/cyxb20100107
[15] Liu HF, Wu X, Li Y, Li ZS, Liu GH ( 2014). Effects of land use change on greenhouse gas fluxes from soils: A review. Chinese Journal of Ecology, 33, 1960-1968.
刘慧峰, 伍星, 李雅, 李宗善, 刘国华 ( 2014). 土地利用变化对土壤温室气体排放通量影响研究进展. 生态学杂志, 33, 1960-1968.
[16] Liu JC, Li ZG, Li X ( 2014). Research of variations of soil respiration rate among different land use types in the Agro-pastoral Ecotone of North China. Journal of Inner Mongolia University for Nationalities, 29, 306-309.
doi: 10.3969/j.issn.1671-0815.2014.03.018
刘季骢, 李志刚, 李兴 ( 2014). 北方农牧交错带不同土地利用方式下土壤呼吸速率探究. 内蒙古民族大学学报(自然科学版), 29, 306-309.
doi: 10.3969/j.issn.1671-0815.2014.03.018
[17] Liu W, Wang JM, Wang ZP ( 2011). Plant functional type effects on methane uptake by soils in typical grasslands of Inner Mongolia. Chinese Journal of Plant Ecology, 35, 275-283.
doi: 10.3724/SP.J.1258.2011.00275
刘伟, 王继明, 王智平 ( 2011). 内蒙古典型草原植物功能型对土壤甲烷吸收的影响. 植物生态学报, 35, 275-283.
doi: 10.3724/SP.J.1258.2011.00275
[18] Ning F, Xu Z, Shan GL ( 2008). Effects of disturbance ways on soil physical and chemical properties. Chinese Journal of Grassland, 30(4), 46-50.
宁发, 徐柱, 单贵莲 ( 2008). 干扰方式对典型草原土壤理化性质的影响. 中国草地学报, 30(4), 46-50.
[19] Qi WW, Niu HS, Wang SP, Liu YJ, Zhang LR ( 2012). Simulation of effects of warming on carbon budget in alpine meadow ecosystem on the Tibetan Plateau. Acta Ecologica Sinica, 32, 1713-1722.
doi: 10.5846/stxb201102250215
亓伟伟, 牛海山, 汪诗平, 刘艳杰, 张立荣 ( 2012). 增温对青藏高原高寒草甸生态系统固碳通量影响的模拟研究. 生态学报, 32, 1713-1722.
doi: 10.5846/stxb201102250215
[20] Raiesi F, Beheshti A ( 2014). Soil C turnover, microbial biomass and respiration, and enzymatic activities following range and conversion to wheat-alfalfa cropping in a semi-arid climate. Environmental Earth Sciienes, 72, 5073-5088.
doi: 10.1007/s12665-014-3376-5
[21] Rinnan R, Stark S, Tolvanen A ( 2009). Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. Journal of Ecology, 97, 788-800.
doi: 10.1111/j.1365-2745.2009.01506.x
[22] Sampson RN, Apps M, Brown S, Cole CV, Smith TM, Downing J, Ojima DS, Solomon AM, Heath LS, Wisniewski J ( 1993). Terrestrial biosphere carbon fluxes quantification of sinks and sources of CO2. Water, Air, and Soil Pollution, 70, 3-15.
doi: 10.1007/BF01104985
[23] Sparling GP, Shepherd TG, Kettles HA ( 1992). Changes in soil organic C, microbial C and aggregate stability under continuous maize and cereal cropping, and after restoration to pasture in soils from the Manawatu Region, New Zealand. Soil & Tillage Research, 24, 225-241.
doi: 10.1016/0167-1987(92)90089-T
[24] Su YZ, Li YL, Cui J Y, Zhao WZ ( 2005). Influences of continuous grazing and livestock exclusion on soil properties in a degraded early grassland, Inner Mongolia, northern China. Catena, 59, 267-278.
doi: 10.1016/j.catena.2004.09.001
[25] Sun J, Liu M, Li LJ, Liu JH, Zhang XJ ( 2009). Influence of non-tillage and stubble on soil microbial biomass C/N and enzyme activities in rain-fed field of Inner Mongolia. Acta Ecologica Sinica, 29, 5508-5515.
doi: 10.3321/j.issn:1000-0933.2009.10.040
孙建, 刘苗, 李立军, 刘景辉, 张星杰 ( 2009). 免耕与留茬对土壤微生物生物量C、N及酶活性的影响. 生态学报, 29, 5508-5515.
doi: 10.3321/j.issn:1000-0933.2009.10.040
[26] Wang M, Liu YS, Li XJ, Zhang JT, Wang GD, Lu XR, Li XY ( 2014). Soil respiration dynamics and its controlling factors of typical vegetation communities on meadow steppes in the western Songnen Plain. Chinese Journal of Applied Ecology, 25, 45-52.
王铭, 刘兴士, 李秀军, 张继涛, 王国栋, 鲁新蕊, 李晓宇 ( 2014). 松嫩平原西部草甸草原典型植物群落土壤呼吸动态及影响因素. 应用生态学报, 25, 45-52.
[27] Wang XG, Zhu B, Wang YQ, Zheng XH ( 2007). Soil respiration and its sensitivity to temperature under different land use conditions. Acta Ecologica Sinica, 27, 1960-1968.
doi: 10.3321/j.issn:1000-0933.2007.05.036
王小国, 朱波, 王艳强, 郑循华 ( 2007). 不同土地利用方式下土壤呼吸及其温度敏感性. 生态学报, 27, 1960-1968.
doi: 10.3321/j.issn:1000-0933.2007.05.036
[28] Wang XJ ( 2013). Study on Reconstruction and Utilization of Grassland for Grazing. Master degree dissertation, Xinjiang Agricultural University, ürümqi.
王雪娇 ( 2013). 放牧型草地重建与利用研究. 硕士学位论文, 新疆农业大学, 乌鲁木齐.
[29] Wang XJ, Zhou YM, Wang XX, Jiang XJ, Han SJ ( 2014). Responses of soil enzymes in activity and soil microbes in biomass to warming in tundra ecosystem on Changbai Mountains. Acta Pedologica Sinica, 51, 166-175.
王学娟, 周玉梅, 王秀秀, 江肖洁, 韩士杰 ( 2014). 长白山苔原生态系统土壤酶活性及微生物生物量对增温的响应. 土壤学报, 51, 166-175.
[30] Wang XY ( 2010). Cultivation and reseeding effects on soil organic matter in the mixed prairie. Soil Science Society of America Journal, 74, 1348-1355.
doi: 10.2136/sssaj2009.0366
[31] Wang YH, Gong JR, Liu M, Huang YM, Yan X, Zhang ZY, Xu S, Luo QP ( 2015). Effects of grassland-use on soil respiration and litter decomposition. Chinese Journal of Plant Ecology, 39, 239-248.
王忆慧, 龚吉蕊, 刘敏, 黄永梅, 晏欣, 张梓瑜, 徐沙, 罗亲普 ( 2015). 草地利用方式对土壤呼吸和凋落物分解的影响. 植物生态学报, 39, 239-248.
[32] Willcock S, Phillips OL, Platts PJ, Swetnam RD, Balmford A, Burgess ND, Fanning E ( 2016). Land cover change and carbon emissions over 100 years in an African biodiversity hotspot. Global Change Biology, 22, 2787-2800.
doi: 10.1111/gcb.13218 pmid: 26748590
[33] Wu J, Chen ST Hu ZH, Zhang X ( 2015). Soil microbial respiration under different soil temperature conditions and its relationship to soil dissolved organic carbon and invertase. Environmental Science, 36, 1497-1506.
doi: 10.13227/j.hjkx.2015.04.050
吴静, 陈书涛, 胡正华, 张旭 ( 2015). 不同温度下的土壤微生物呼吸及其与水溶性有机碳和转化酶的关系. 环境科学, 36, 1497-1506.
doi: 10.13227/j.hjkx.2015.04.050
[34] Xu GH ( 1986). Soil Microbiological Analysis Method Manual. Agricultural Publishing House, Beijing.
许光辉 ( 1986). 土壤微生物分析方法手册. 农业出版社, 北京.
[35] Yang Y, Han GD, Li YH, Chen ZF, Wang CJ ( 2012). Response of soil respiration to grazing intensity, water contents, and temperature of soil in different grasslands of Inner Mongolia. Acta Prataculturae Sinica, 21(6), 8-14.
杨阳, 韩国栋, 李元恒, 陈志芳, 王成杰 ( 2012). 内蒙古不同草原类型土壤呼吸对放牧强度及水热因子的响应. 草业学报, 21(6), 8-14.
[36] Zhang CX, Nan ZB ( 2010). Research progress on effect of grazing on soil microbes of grassland. Pratacultural Science, 27(1), 65-70.
张成霞, 南志标 ( 2010). 放牧对草地土壤微生物影响的研究述评. 草业科学, 27(1), 65-70.
[37] Zhang PL, Li XG, Li YK, Ying P ( 2007). Effects of vegetation restoration on soil organic carbon and total nitrogen contents in the alpine agro-pastoral ecotone. Journal of Gansu Agricultural University, 42(2), 98-102.
doi: 10.3969/j.issn.1003-4315.2007.02.022
张平良, 李小刚, 李银科, 尹萍 ( 2007). 高寒农牧交错带植被恢复对土壤有机碳、全氮含量的影响. 甘肃农大学报, 42(2), 98-102.
doi: 10.3969/j.issn.1003-4315.2007.02.022
[38] Zhang WT, Lai HX, Wang YP, Zhang H, Yang T, Lü JL ( 2008). Microbial populations in different vegetations in sloping field on the Loess Plateau. Acta Ecologica Sinica, 28, 4228-4234.
张文婷, 来航线, 王延平, 张海, 杨婷, 吕家珑 ( 2008). 黄土高原不同植被坡地土壤微生物区系特征. 生态学报, 28, 4228-4234.
[39] Zhang YJ, Guo SL, Liu QF, Jiang JS, Wang R, Li NN ( 2015). Responses of soil respiration to land use conversions in degraded ecosystem of the semi-arid Loess Plateau. Ecological Engineering, 74, 196-205.
doi: 10.1016/j.ecoleng.2014.10.003
[40] Zhang YJ, Yang GW, Liu N, Chang SJ, Wang XY ( 2013). Review of grassland management practices for carbon sequestration. Acta Prataculturae Sinica, 22, 290-299.
张英俊, 杨高文, 刘楠, 常书娟, 王晓亚 ( 2013). 草原碳汇管理对策. 草业学报, 22, 290-299.
[41] Zheng W, Jianaerguli, Tang GR, Zhu JZ ( 2015). Determination and community stability in different legume-grass mixes. Acta Prataculturae Sinica, 24(3), 155-167.
doi: 10.11686/cyxb20150316
郑伟, 加娜尔古丽, 唐高溶, 朱进忠 ( 2015). 不同混播方式下豆禾混播草地群落稳定性的测度与比较. 草业学报, 24(3), 155-167.
doi: 10.11686/cyxb20150316
[1] LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164.
[2] CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19.
[3] Zhi-Cheng ZHU, Yin HUANG, Feng-Wei XU, Wen XING, Shu-Xia ZHENG, Yong-Fei BAI. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland [J]. Chin J Plan Ecolo, 2017, 41(9): 938-952.
[4] Yu-Peng LU, Ji-Yuan XU, Xiao-Xi ZHANG, Bo-Ya WANG, Bo XIE, Zeng-Wen LIU. Effects of leachate from understory medicinal plants on litter decomposition and soil enzyme activities of Betula albo-sinensis and Eucommia ulmoides [J]. Chin J Plan Ecolo, 2017, 41(6): 639-649.
[5] Xiao-Gai GE, Ben-Zhi ZHOU, Wen-Fa XIAO, Xiao-Ming WANG, Yong-Hui CAO, Ming YE. Effects of biochar addition on dynamics of soil respiration and temperature sensitivity in a Phyllostachys edulis forest [J]. Chin J Plan Ecolo, 2017, 41(11): 1177-1189.
[6] Qiang ZHANG, Jia-Xiang LI, Zong-Qiang XIE. Effects of nitrogen addition on soil respiration of Rhododendron simsii shrubland in the subtropical mountainous areas of China [J]. Chin J Plan Ecolo, 2017, 41(1): 95-104.
[7] XU Ming-Shan,HUANG Hai-Xia,SHI Qing-Ru,YANG Xiao-Dong,ZHOU Liu-Li,ZHAO Yan-Tao,ZHANG Qing-Qing,YAN En-Rong. Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province [J]. Chin J Plan Ecolo, 2015, 39(9): 857-866.
[8] YAO Hui,HU Xue-Yang,ZHU Jiang-Ling,ZHU Jian-Xiao,JI Cheng-Jun,FANG Jing-Yun. Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing [J]. Chin J Plan Ecolo, 2015, 39(9): 849-856.
[9] WANG Ming, LIU Xing-Tu, ZHANG Ji-Tao, LI Xiu-Jun, WANG Guo-Dong, LU Xin-Rui, and LI Xiao-Yu. Spatio-temporal variations of soil respiration in five typical plant communities in the meadow steppe of the western Songnen Plain, China [J]. Chin J Plan Ecolo, 2014, 38(4): 396-404.
[10] LI Yue, LIU Ying-Hui, SHEN Wei-Jun, XU Xia, TIAN Yu-Qiang. Responses of soil heterotrophic respiration to changes in soil temperature and moisture in a Stipa krylovii grassland in Nei Mongol [J]. Chin J Plan Ecolo, 2014, 38(3): 238-248.
[11] WU Jun-Jun, YANG Zhi-Jie, LIU Xiao-Fei, XIONG De-Cheng, LIN Wei-Sheng, CHEN Chao-Qi, and WANG Xiao-Hong. Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations [J]. Chin J Plan Ecolo, 2014, 38(1): 45-53.
[12] XU Li, YU Shu-Xia, HE Nian-Peng, WEN Xue-Fa, SHI Pei-Li, ZHANG Yang-Jian, DAI Jing-Zhong, WANG Ruo-Meng. Soil C mineralization and temperature sensitivity in alpine grasslands of the Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2013, 37(11): 988-997.
[13] YANG Xiu-Yun, HAN You-Zhi, and WU Xiao-Gang. Response of fine root biomass to changes in spatial heterogeneity of soil moisture and nitrogen in Larix principis-rupprechtii forest [J]. Chin J Plan Ecolo, 2012, 36(9): 965-972.
[14] LI Ming, ZHU Li-Chuan, ZHANG Quan-Fa, and CHENG Xiao-Li. Impacts of different land use types on soil nitrogen mineralization in Danjiangkou Reservoir Area, China [J]. Chin J Plan Ecolo, 2012, 36(6): 530-538.
[15] YUAN Guo-Fu, ZHANG Pei, XUE Sha-Sha, and ZHUANG Wei. Change characteristics in soil water content in root zone and evidence of root hydraulic lift in Tamarix ramosissima thickets on sand dunes [J]. Chin J Plan Ecolo, 2012, 36(10): 1033-1042.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chin Bull Bot, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[4] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[5] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[6] . [J]. Chin Bull Bot, 1996, 13(专辑): 13 -16 .
[7] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[8] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .
[9] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages[J]. Chin Bull Bot, 2014, 49(1): 78 -86 .
[10] QIU Dong-Liang, LIU Xing-Hui, GUO Su-Zhi. Effects of Simulated Acid Rain Stress on Gas Exchange and Chlorophyll a Fluorescence Parameters in Leaves of Longan[J]. Chin J Plan Ecolo, 2002, 26(4): 441 -446 .