Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (1): 133-142.doi: 10.17521/cjpe.2017.0120

• Research Articles • Previous Articles    

Characteristics of nutrients in two dominant plant species and rhizospheric soils in alpine desert of the Qinghai-Xizang Plateau under contrasting climates

GOU Xiao-Lin1,2,ZHOU Qing-Ping1,2,*(),CHEN You-Jun1,2,WEI Xiao-Xing1,TU Wei-Guo3   

  1. 1 Key Laboratory of Use of Forage Germplasm Resources on Tibetan Plateau of Qinghai Provence, Institute of Grazing & Veterinarian, Qinghai University, Xining 810016, China;

    2 Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China

    3 Sichuan Province Natural Resources Science Academy, Chengdu 610015, China
  • Online:2018-01-18 Published:2018-01-20
  • Contact: Qing-Ping ZHOU
  • Supported by:
    Supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAC05B01);the Special Funds of Sichuan, China(2015SZ0062)


Aims This study was conducted to determine the responses of nutrients in plants and rhizospheric soils to climate in alpine-cold desert on the Qinghai-Xizang Plateau.

Methods Tissue samples for two dominant plant species, Hippophae rhamnoides subsp. sinensis and Artemisia desertorum, and associated rhizospheric soil samples were collected from sites representing semi-arid and sub-humid climates in the alpine-cold desert on the Qinghai-Xizang Plateau. Measurements were made on the contents of carbon, nitrogen and phosphorus in roots and shoots, as well as on organic carbon, total nitrogen, total phosphate, ammonium nitrogen, nitrate nitrogen and available phosphate in rhizospheric soils in the 0-10 cm and 10-20 cm layer. The relationship between nutrients in plant tissues and rhizospheric soils and the influencing factors were analyzed.

Important findings There were significant differences between the semi-arid and the sub-humid sites in tissue nutrients and rhizospheric soil nutrients for the two specie. Specifically, the contents of carbon, nitrogen, phosphorus in plant tissues differed significantly between the semi-arid and the sub-humid sites. Soil organic carbon, total nitrogen, ammonium nitrogen, nitrate nitrogen and available phosphate for the rhizosphere of A. desertorum were significantly higher on site under sub-humid climate than that under semi-arid climate; whereas the trend was reversed for the rhizosphere of H. rhamnoides subsp. sinensis. We found significant relationships between the tissue nutrients and soil nutrients, and significantly different plant nutrient ratios between the two species. There were negative correlations between tissues and rhizosheric soils in N:P ratio for A. desertorum and C:N ratio for H. rhamnoides subsp. sinensis under different climates.

Key words: Qinghai-Xizang Plateau, vegetal nutrients, soil nutrients, Hippophae rhamnoides subsp. sinensis, Artemisia desertorum

Fig. 1

Comparisons of major nutrients in plant tissues between two different climatic conditions (mean ± SD, n = 3). *, ** and ns indicate that the differences between semi-arid and sub-humid conditions are significant at the levels of 0.05 and 0.01, and not significant, respectively. BL, branches and leaves; Root, roots. SA, semi-arid; SH, semi-humid."

Fig. 2

Comparisons of major nutrients and pH value in rhizospheric soils between two different climatic conditions (mean ± SD, n = 3). ** and ns indicate that the differences between semi-arid and sub-humid conditions are significant at the 0.01 level, and not significant, respectively. SA, semi-arid; SH, sub-humid."

Fig. 3

Comparisons of dissolved nutrients in rhizospheric soils between two climatic conditions (mean ± SD, n = 3). ** indicate that the differences between semi-arid and sub-humid conditions are significant at the 0.01 level. SA, semi-arid; SH, sub-humid."

Table 1

Comparisons of nutrient ratios in tissues and rhizospheric soils between two climatic conditions"

Plant or rhizospheric soil
Tissue or soil layer
碳氮比 C:N (SC:SN) 碳磷比 C:P (SC:SP) 氮磷比 N:P (SN:SP)
Artemisia desertorum

SA 39.493b 0.906 199.046b 5.998 5.039a 0.037
SH 87.596a 1.527 284.528a 10.402 3.247b 0.063
Branches and leaves
SA 28.666b 0.531 166.050b 6.180 5.791a 0.120
SH 66.201a 2.762 289.091a 19.047 4.366b 0.175
Hippophae rhamnoides subsp. sinensis

SA 30.730b 0.514 344.732b 23.832 11.213a 0.634
SH 38.210a 0.489 425.255a 38.610 11.139a 1.155
Branches and leaves
SA 26.596b 0.755 174.307a 6.129 6.561a 0.384
SH 32.697a 0.497 178.604a 7.098 5.461b 0.137
Rhizospheric soil of Artemisia desertorum
0-10 cm SA 7.950a 0.752 11.528b 1.336 1.448b 0.048
SH 8.481a 0.519 15.761a 2.008 1.860a 0.215
10-20 cm SA 9.694a 1.384 16.668b 3.595 1.709b 0.180
SH 9.233a 1.247 32.617a 7.558 3.540a 0.787
Rhizospheric soil of Hippophae rhamnoides subsp. sinensis
0-10 cm SA 16.085a 0.334 25.857a 1.315 1.607a 0.066
SH 8.266b 0.440 9.920b 0.242 1.202b 0.061
10-20 cm SA 10.999a 0.486 24.849a 2.788 2.265a 0.305
SH 9.567b 0.303 16.118b 3.423 1.679a 0.309

Table 2

Pearson’s correlations of nutrients between plant tissues and rhizospheric soils"

Soil layer
沙蒿 Artemisia desertorum 中国沙棘 Hippophae rhamnoides subsp. sinensis
枝叶 Branches and leaves 根 Roots 枝叶 Branches and leaves 根 Roots
0-10 cm SOC 0.96** -0.975** -0.953** 0.827* -0.976** -0.949** 0.983*** 0.992*** 0.802ns -0.972** 0.986*** 0.765ns
STN 0.989*** -0.985*** -0.991*** 0.861* -0.979** -0.986*** 0.979** 0.968** 0.799ns -0.954** 0.994*** 0.707ns
STP 0.42ns -0.348ns -0.427ns 0.596ns -0.333ns -0.308ns -0.415ns -0.654ns -0.425ns 0.65ns -0.481ns -0.293ns
SNN 0.915* -0.942** -0.908* 0.77ns -0.951** -0.926** 0.982*** 0.991*** 0.816* -0.967** 0.985*** 0.768ns
SAN 0.997** -0.996*** -0.990*** 0.906* -0.993*** -0.979** 0.974** 0.996*** 0.779ns -0.98** 0.978** 0.752ns
SAP 0.906* -0.866* -0.899* 0.903* -0.848* -0.833* 0.966** 0.99*** 0.746ns -0.974** 0.968** 0.712ns
10-20 cm SOC 0.945** -0.963** -0.939** 0.761ns -0.96** -0.955** 0.982*** 0.964** 0.781ns -0.954** 0.969** 0.845*
STN 0.995*** -0.996*** -0.997*** 0.867* -0.994*** -0.994*** 0.982*** 0.958** 0.813* -0.931** 0.963** 0.849*
STP 0.239ns -0.193ns -0.192ns 0.615ns -0.185ns -0.112ns 0.576ns 0.703ns 0.376ns -0.77ns 0.664ns 0.253ns
SNN 0.993*** -0.999*** -0.987*** 0.875* -0.997*** -0.987*** 0.991*** 0.983*** 0.798ns -0.97** 0.995*** 0.761ns
SAN 0.994*** -0.996*** -0.986*** 0.9* -0.995*** -0.979** 0.963** 0.99*** 0.732ns -0.98** 0.961** 0.738ns
SAP 0.986*** -0.98** -0.989*** 0.902* -0.977** -0.982** 0.933** 0.994*** 0.75ns -0.993** 0.956** 0.714ns

Table 3

Pearson’s correlations of nutrient ratios between plant tissues and rhizospheric soils under two climatic conditions"

Soil layer (cm)
Nutrient ratio
枝叶 Branches and leaves 根 Roots
0-10 SC:SN 0.397ns 0.332ns -0.505ns 0.422ns 0.336ns -0.482ns
SC:SP 0.826* 0.758ns -0.901* 0.833* 0.807ns -0.842*
SN:SP 0.864* 0.814* -0.902* 0.86* 0.87* -0.843*
10-20 SC:SN -0.218ns -0.29ns 0.114ns -0.22ns -0.261ns 0.189ns
SC:SP 0.884* 0.869* -0.865* 0.866* 0.89* -0.843*
SN:SP 0.923** 0.937* -0.865* 0.906* 0.94** -0.873*
Hippophae rhamnoides subsp. sinensis
0-10 SC:SN -0.983*** -0.358ns 0.919* -0.983*** -0.85* 0.015ns
SC:SP -0.993*** -0.35ns 0.938** -0.981** -0.815* 0.076ns
SN:SP -0.991*** -0.369ns 0.933** -0.959** -0.738ns 0.183ns
10-20 SC:SN -0.892* -0.152ns 0.895* -0.907* -0.862* -0.118ns
SC:SP -0.8ns -0.359ns 0.709ns -0.843* -0.909* -0.316ns
SN:SP -0.689ns -0.373ns 0.583ns -0.731ns -0.843* -0.374ns
[1] Aronson J, Shmida A ( 1992). Plant species diversity along a Mediterranean-desert gradient and its correlation with interannual rainfall fluctuations. Journal of Arid Environments, 23, 235-235.
[2] Báez S, Collins SL, Pockman WT, Johnson JE, Small EE ( 2013). Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities. Oecologia, 172, 1117-1127.
doi: 10.1007/s00442-012-2552-0 pmid: 23263528
[3] Ding JZ, Chen LY, Ji CJ, Hugelius G, Li YN, Liu L, Qin SQ, Zhang BB, Yang GB, Li F, Fang K, Chen YL, Peng YF, Zhao X, He HL, Smith P, Fang JY, Yang YH ( 2017). Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 10, 420-424.
doi: 10.1038/ngeo2945
[4] Dos Santos CM, Verissimo V, De Lins Wanderley Filho HC, Ferreira VM, Da Silva Cavalcante PG, Rolim EV, Endres L ( 2013). Seasonal variations of photosynthesis, gas exchange, quantum efficiency of photosystem II and biochemical responses ofJatropha curcas L. grown in semi-humid and semi-arid areas subject to water stress. Industrial Crops and Products, 41, 203-213.
[5] Gao L, Zheng M, Fraser M, Huang YS ( 2014). Comparable hydrogen isotopic fractionation of plant leaf wax n-alkanoic acids in arid and humid subtropical ecosystems. Geochemistry, Geophysics, Geosystems, 15, 361-373.
[6] Gou XL, Tu WG, Li L, Luo XM, Xi H, Fan H, Li S ( 2016). Relationships between soil factors and plant species diversities of decertified grassland in the north-west Sichuan Province. Acta Agrestia Sinica, 24, 768-775.
[ 苟小林, 涂卫国, 李玲, 罗雪梅, 席欢, 樊华, 李森 ( 2016). 川西北地区沙化草地特征研究. 草地学报, 24, 768-775.]
[7] Guo ZS, Shao MA ( 2003). Soil water carrying capacity of vegetation and soil desiccation in artificial forestry and grassland in semi-arid regions of the Loess Plateau. Acta Ecologica Sinica, 23, 1640-1647.
doi: 10.3321/j.issn:1000-0933.2003.08.023
[ 郭忠升, 邵明安 ( 2003). 半干旱区人工林草地土壤旱化与土壤水分植被承载力. 生态学报, 23, 1640-1647.]
doi: 10.3321/j.issn:1000-0933.2003.08.023
[8] He YX, Wu N, Zhu QA, Chen H, Zhu D, Peng CH, Yang G, Gao YH, Zhao C ( 2014). The 5000-year climate change of northeastern Qinghai-Tibetan Plateau and historical ecology of Zoige wetlands. Acta Ecologica Sinica, 34, 1615-1625.
[ 何奕忻, 吴宁, 朱求安, 陈槐, 朱单, 彭长辉, 杨刚, 高永恒, 赵川 ( 2014). 青藏高原东北部5000年来气候变化与若尔盖湿地历史生态学研究进展. 生态学报, 34, 1615-1625.]
[9] Hu K, Li B, Chen D, Zhang Y, Edis R ( 2008). Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China. Agricultural Water Management, 95, 1180-1188.
doi: 10.1016/j.agwat.2008.05.001
[10] Huang ZB, Wu XP, Fang F, Yu MY, Xu BC, Deng XP, Shan L ( 2002). Effect of soil dry-wet changes and aquasorb treatment on plant growth and water use efficiency. Chinese Journal of Applied and Environmental Biology, 8, 600-604.
[ 黄占斌, 吴雪萍, 方峰, 俞满源, 徐炳成, 邓西平, 山仑 ( 2002). 干湿变化和保水剂对植物生长和水分利用效率的影响. 应用与环境生物学报, 8, 600-604.]
[11] Jackson RB, Caldwell MM ( 1989). The timing and degree of root proliferation in fertile-soil microsites for three cold-desert perennials. Oecologia, 81, 149-153.
doi: 10.1007/BF00379798 pmid: 28312530
[12] Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS ( 2015). The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6, 8159. DOI: 10.1038/ncomms9159.
doi: 10.1038/ncomms9159 pmid: 26328906
[13] Kemp PR, Reynolds JF, Virginia RA, Whitford WG ( 2003). Decomposition of leaf and root litter of Chihuahuan desert shrubs: Effects of three years of summer drought. Journal of Arid Environments, 53, 21-39.
doi: 10.1006/jare.2002.1025
[14] Lehnert LW, Wesche K, Trachte K, Reudenbach C, Bendix J ( 2016). Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Scientific Reports, 6, 24367. DOI: 10.1038/srep24367.
doi: 10.1038/srep24367 pmid: 4829870
[15] Li GY, Li XY, Zhao GQ, Zhang ZH, Li YT ( 2014). Characteristics of spatial and temporal phenology under the dynamic variation of grassland in the Qinghai Lake watershed. Acta Ecologica Sinica, 34, 3038-3047.
doi: 10.5846/stxb201211251668
[ 李广泳, 李小雁, 赵国琴, 张志华, 李岳坦 ( 2014). 青海湖流域草地植被动态变化趋势下的物候时空特征. 生态学报, 34, 3038-3047.]
doi: 10.5846/stxb201211251668
[16] Lin ZY, Wu XD ( 1981). Climatic regionalization of the Qinghai-Xizang Plateau. Acta Geographic Sinica, 36, 22-32.
[ 林振耀, 吴祥定 ( 1981). 青藏高原气候区划. 地理学报, 36, 22-32.]
[17] Lu RK ( 2000). Analysis Methods of Soil Agro-Chemistry. China Agriculture Technology Press, Beijing. [鲁如坤( 2000). 土壤农化分析方法. 中国农业科技出版社, 北京.]
[18] Luo CF, Xu CJ, You HY, Jin SH ( 2013). Analysis on grassland degradation in Qinghai Lake Basin during 2000-2010. Acta Ecologica Sinica, 33, 4450-4459.
doi: 10.5846/stxb201204090494
[ 骆成凤, 许长军, 游浩妍, 靳生洪 ( 2013). 2000-2010年青海湖流域草地退化状况时空分析. 生态学报, 33, 4450-4459.]
doi: 10.5846/stxb201204090494
[19] Ma QL, Lu Q, Zhang DK, Liu HJ, Jin HJ ( 2012). Wind prevention and sand resistance effects of Artemisia sphaerocephala and A. ordosica. Chinese Journal of Ecology, 31, 1639-1645.
[ 马全林, 卢琦, 张德魁, 刘虎俊, 靳虎甲 ( 2012). 沙蒿与油蒿灌丛的防风阻沙作用. 生态学杂志, 31, 1639-1645.]
[20] Polade SD, Pierce DW, Cayan DR, Gershunov A, Dettinger MD ( 2014). The key role of dry days in changing regional climate and precipitation regimes. Scientific Reports, 4, 4364. DOI: 10.1038/srep04364.
doi: 10.1038/srep04364 pmid: 24621567
[21] Riah N, Béna G, Djekoun A, Heulin K, de Lajudie P, Laguerre G ( 2014). Genotypic and symbiotic diversity of Rhizobium populations associated with cultivated lentil and pea in sub-humid and semi-arid regions of Eastern Algeria. Systematic and Applied Microbiology, 37, 368-375.
doi: 10.1016/j.syapm.2013.12.008 pmid: 24582507
[22] Schwinning S, Starr BI, Ehleringer JR ( 2003). Dominant cold desert plants do not partition warm season precipitation by event size. Oecologia, 136, 252-260.
doi: 10.1007/s00442-003-1255-y pmid: 12695904
[23] Tomlinson KW, Poorter L, Sterck FJ, Borghetti F, Ward D, Bie S, Langevelde F ( 2013). Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. Journal of Ecology, 101, 430-440.
doi: 10.1111/1365-2745.12056
[24] Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J ( 2014). Global warming and changes in drought . Nature Climate Change, 4, 17-22.
doi: 10.1038/nclimate2067
[25] Wang B, Bao Q, Hoskins B, Wu GX, Liu YM ( 2008). Tibetan Plateau warming and precipitation changes in East Asia. Geophysical Research Letters, 35, L14702. DOI: 10.1029/2008GL034330.
doi: 10.1029/2008GL034330
[26] Wang Y, Li YH, Sun XY ( 2015). Impact of climate change on the eco-environment in the Yellow River Source. Pratacultural Science, 32, 539-551.
doi: 10.11829\j.issn.1001-0629.2014-0190
[ 王莺, 李耀辉, 孙旭映 ( 2015). 气候变化对黄河源区生态环境的影响. 草业科学, 32, 539-551.]
doi: 10.11829\j.issn.1001-0629.2014-0190
[27] Wilcox CS, Ferguson JW, Fernandez GC, Nowak RS ( 2004). Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite. Journal of Arid Environments, 56, 129-148.
doi: 10.1016/S0140-1963(02)00324-5
[28] Wu YB, Che RX, Ma S, Deng YC, Zhu MJ, Cui XY ( 2014). Estimation of root production and turnover in an alpine meadow: Comparison of three measurement methods. Acta Ecologica Sinica, 34, 3529-3537.
doi: 10.5846/stxb201307031831
[ 吴伊波, 车荣晓, 马双, 邓永翠, 朱敏健, 崔骁勇 ( 2014). 高寒草甸植被细根生产和周转的比较研究. 生态学报, 34, 3529-3537.]
doi: 10.5846/stxb201307031831
[29] Yahdjian L, Sala OE ( 2010). Size of precipitation pulses controls nitrogen transformation and losses in an arid Patagonian ecosystem. Ecosystems, 13, 575-585.
doi: 10.1007/s10021-010-9341-6
[30] Yang K, Huang JH, Dong D, Ma WH, He JS ( 2010). Canopy leaf N and P stoichiometry in grassland communities of Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 34, 17-22.
doi: 10.3773/j.issn.1005-264x.2010.01.004
[ 杨阔, 黄建辉, 董丹, 马文红, 贺金生 ( 2010). 青藏高原草地植物群落冠层叶片氮磷化学计量学分析. 植物生态学报, 34, 17-22.]
doi: 10.3773/j.issn.1005-264x.2010.01.004
[31] Yang YH, Piao SL ( 2006). Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau. Journal of Plant Ecology (Chinese Version), 30, 1-8.
doi: 10.17521/cjpe.2006.0001
[ 杨元合, 朴世龙 ( 2006). 青藏高原草地植被覆盖变化及其与气候因子的关系. 植物生态学报, 30, 1-8.]
doi: 10.17521/cjpe.2006.0001
[32] Ye X, Zhou HK, Liu GH, Yao BQ, Zhao XQ ( 2014). Responses of phenological characteristics of major plants to nutrient and water additions in Kobresia humilis alpine meadow. Chinese Journal of Plant Ecology, 38, 147-158.
[ 叶鑫, 周华坤, 刘国华, 姚步青, 赵新全 ( 2014). 高寒矮生嵩草草甸主要植物物候特征对养分和水分添加的响应. 植物生态学报, 38, 147-158.]
[33] You QL, Min JZ, Zhang W, Pepin N, Kang SC ( 2015). Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Climate Dynamics, 45, 791-806.
doi: 10.1007/s00382-014-2310-6
[34] Zhang XZ, Yang YP, Piao SL, Bao WK, Wang SP, Wang GX, Sun H, Luo TX, Zhang YJ, Shi PL, Liang EY, Shen MG, Wang JS, Gao QZ, Zhang YL, Ouyang H ( 2015). Ecological change on the Qinghai-Xizang Plateau. Chinese Science Bulletin, 60, 3048-3056.
[ 张宪洲, 杨永平, 朴世龙, 包维楷, 汪诗平, 王根绪, 孙航, 罗天翔, 张扬建, 石培礼, 梁尔源, 沈妙根, 王景升, 高清竹, 张镱锂, 欧阳华 ( 2015). 青藏高原生态变化. 科学通报, 60, 3048-3056.]
[35] Zhao GD, Liu SR, Ma QL ( 2003). Ecophysiological responses of two xerophytes Atraphaxis frutescens and Elaeagnus angustifolia to the change of groundwater depth in arid area. I. Changes in leaf nutrient, chlorophyll, soluble sugar and starch contents. Acta Phytoecologica Sinica, 27, 228-234.
doi: 10.17521/cjpe.2003.0035
[ 赵广东, 刘世荣, 马全林 ( 2003). 沙木蓼和沙枣对地下水位变化的生理生态响应I. 叶片养分, 叶绿素, 可溶性糖和淀粉的变化. 植物生态学报, 27, 228-234.]
doi: 10.17521/cjpe.2003.0035
[36] Zhou XR, Yue LJ, Wang SM ( 2014). Effect of the N-P-Na recipe on growth of Zypoghyllum xanthoxylum under different osmotic stress. Pratacultural Science, 31, 1087-1096.
doi: 10.11829\j.issn.1001-0629.2013-0342
[ 周向睿, 岳利军, 王锁民 ( 2014). 渗透胁迫下氮磷钠配方对多浆旱生植物霸王生长的影响. 草业科学, 31, 1087-1096.]
doi: 10.11829\j.issn.1001-0629.2013-0342
[1] MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(1): 77-84.
[2] ZHANG Yun, YIN Ding-Cai, TIAN Kun, ZHANG Wei-Guo, HE Rong-Hua, HE Wen-Qing, SUN Jiang-Mei, LIU Zhen-Ya. Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China [J]. Chin J Plan Ecolo, 2018, 42(6): 629-639.
[3] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[4] GENG Xiao-Dong, Xu Ri, LIU Yong-Wen. Responses of ecosystem carbon exchange to multi-level water addition in an alpine meadow in Namtso of Qinghai-Xizang Plateau, China [J]. Chin J Plan Ecolo, 2018, 42(3): 397-405.
[5] SHI Guo-Xi, WANG Wen-Ying, JIANG Sheng-Jing, CHENG Gang, YAO Bu-Qing, FENG Hu-Yuan, ZHOU Hua-Kun. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity [J]. Chin J Plan Ecolo, 2018, 42(1): 126-132.
[6] CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19.
[7] WANG Jun, WANG Guan-Qin, LI Fei, PENG Yun-Feng, YANG Gui-Biao, YU Jian-Chun, ZHOU Guo-Ying, YANG Yuan-He. Effects of short-term experimental warming on soil microbes in a typical alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 116-125.
[8] Rui-Yu ZHAO, Zheng-Cai LI, Bin WANG, Xiao-Gai GE, Yun-Xi DAI, Zhi-Xia ZHAO, Yu-Jie ZHANG. Duration of mulching caused variable pools of labile organic carbon in a Phyllostachys edulis plantation [J]. Chin J Plan Ecolo, 2017, 41(4): 418-429.
[9] Yang WANG, Lin-Lin MIAO, Dan YU, Chun-Hua LIU, Zhong WANG. Effects of environmental factors on gross caloric values of three life-forms aquatic plants on the Qinghai-Xizang Plateau, China [J]. Chin J Plan Ecolo, 2017, 41(2): 209-218.
[10] He-Liang HE, Xiao-Cheng YANG, Dan-Dan LI, Chun-Ying YIN, Yun-Xiang LI, Guo-Ying ZHOU, Lin ZHANG, Qing LIU. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2017, 41(1): 126-135.
[11] Jian WANG, Gen-Xu WANG, Chang-Ting WANG, Fei RAN, Rui-Ying CHANG. Carbon storage and potentials of the broad-leaved forest in alpine region of the Qinghai- Xizang Plateau, China [J]. Chin J Plan Ecolo, 2016, 40(4): 374-384.
[12] Bei-Bei ZHANG, Fang LIU, Jin-Zhi DING, Kai FANG, Gui-Biao YANG, Li LIU, Yong-Liang CHEN, Fei LI, Yuan-He YANG. Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores [J]. Chin J Plan Ecolo, 2016, 40(2): 93-101.
[13] Jun-Tao ZHU. Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow [J]. Chin J Plan Ecolo, 2016, 40(10): 1028-1036.
[14] XU Ming-Shan,ZHAO Yan-Tao,YANG Xiao-Dong,SHI Qing-Ru,ZHOU Liu-Li,ZHANG Qing-Qing,Ali ARSHAD,YAN En-Rong. Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province [J]. Chin J Plan Ecolo, 2016, 40(1): 48-59.
[15] QIU Quan, PAN Xin, LI Ji-Yue, WANG Jun-Hui, MA Jian-Wei, and DU Kun. Morphological traits and physiological characteristics in drought tolerance in 20 shrub species on the Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2014, 38(6): 562-575.
Full text



[1] Khaled Chatti, Olfa Saddoud, Amel Salhi-Hannachi, Messaoud Mars, Mohamed Marrakchi and Mokhtar Trifi. Analysis of Genetic Diversity and Relationships in a Tunisian Fig (Ficus carica) Germplasm Collection by Random Amplified Microsatellite Polymorphisms[J]. J Integr Plant Biol, 2007, 49(3): .
[2] Dhia Bouktila, Maha Mezghani, Mohamed Marrakchi and Hanem Makni. Characterization of Wheat Random Amplified Polymorphic DNA Markers Associated with the H11 Hessian Fly Resistance Gene[J]. J Integr Plant Biol, 2006, 48(8): .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[4] Ren-Jun Wang, Hui Xiao, Pei-Yu Zhang, Liang Qu, Heng-Jiang Cai and Xue-Xi Tang. Comparative Studies on the Allelopathic Effects of Ulva pertusa Kjellml, Corallina pilulifera Postl et Ruprl, and Sargassum thunbergii Mertl O. Kuntze on Skeletonema costatum (Grev.) Cleve[J]. J Integr Plant Biol, 2006, 48(12): .
[5] QIU Jun, GU Jia-Cun, JIANG Hong-Ying, WANG Zheng-Quan. Factors influencing fine root longevity of plantation-grown Pinus sylvestris var. mongolica[J]. Chin J Plan Ecolo, 2010, 34(9): 1066 -1074 .
[6] Fan Zi-Teng Wu Yu-Ling Wang Xin-Ju Li Tai-Qiang Jiang-Yun GAO. Effects of symbiotic fungi on seed germination of interspecific hybrid progenies in Orchidaceae[J]. , , (): 0 .
[7] LIN Fang, XU Zhi-Hong and XUE Hong-Wei. Phospholipases in Signalling Transduction of Higher Plants[J]. J Integr Plant Biol, 2001, 43(10): 991 -1002 .
[8] Guangbin Yu, Xiaodong Yang. Characteristics of litter and soil arthropod communities at different suc-cessional stages of tropical forests[J]. Biodiv Sci, 2007, 15(2): 188 -198 .
[9] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[10] Jie Liu, Mengjie Li, Qi Zhang, Xin Wei and Xuehui Huang. Exploring the molecular basis of heterosis for plant breeding[J]. J Integr Plant Biol, 0, (): 0 .