Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (3): 337-348.doi: 10.17521/cjpe.2017.0241

• Research Articles • Previous Articles     Next Articles

Spatial patterns and drivers of root turnover in grassland ecosystems in China

Yuan-Feng SUN1,2,Hong-Wei WAN1,Yu-Jin ZHAO1,Shi-Ping CHEN1,2,Yong-Fei BAI1,2,*()   

  1. 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2018-03-08 Published:2018-03-20
  • Contact: Yong-Fei BAI
  • Supported by:
    Supported by the National Keypoint Research and Invention Program(2017YFA06047020);the Strategic Priority Research Program of the Chinese Academy of Sciences.(XDA05050400)


<i>Aims</i> Root turnover rate is a key indicator of ecosystem functions and services. It is also a core parameter for estimating net primary productivity and carbon sequestration potential. However, few studies have examined the patterns and drivers of root turnover at regional and global scales, especially for the widely distributed grassland ecosystems in China. Our objective is to determine: 1) the spatial patterns of root turnover rate for grassland ecosystems in China; and 2) the mechanisms and relative contributions of abiotic and biotic factors driving the root turnover process.

<i>Methods</i> Root turnover data used in this study were derived from two sources. One was obtained from the sample- to-sample plot survey by Grassland Carbon Sequestration Project. The other was extracted from 43 published literatures on root turnover of grasslands in China from 1983 to 2016. These publications were collected from the ISI Web of Science or Chinese literature database. For studies in which climatic variables were not reported, climate information was extracted from the World Climate Database based on site coordinates. Soil properties were collected from Harmonized World Soil Database Version 1.1 supplied by Food and Agriculture Organization of the United Nations.

<i>Important findings </i> Our results showed that root turnover rate was significantly negatively correlated with latitude in China. The national scale pattern of root turnover was influenced by climatic variables (mean annual temperature and mean annual precipitation) and soil properties (gravel content, bulk density, and pH value). These variables together explained 44% of the variation in root turnover rate, with the relative contribution being 57% for climatic variables and 43% for soil properties. However, the regional scale patterns and drivers of root turnover for grasslands in China were different from those at the global scale.

Key words: root turnover, grassland in China, climatic factors, soil properties, relative contribution, climate change

Fig. 1

Distribution of the study sites."

Fig. 2

Patterns of root turnover rate with increasing latitude."

Fig. 3

Changes in root turnover rate among grassland types in China. The boxes show the 25% and 75% percentiles, and the lines, hollow dots and solid dots represent the mean, median and outlier (95% confidence interval) values, respectively. Alp, alpine meadow; Ave, average value; Des, desert steppe; Mea, meadow steppe; Typ, typical steppe; Wtt, warm-temperate tussock;."

Fig. 4

Root turnover rate for different grassland types (mean + SE). Different lower-case letters indicate significant differences among grassland types (p < 0.05). Alp, alpine meadow; Des, desert steppe; Mea, meadow steppe; Typ, typical steppe; Wtt, warm-temperate tussock."

Table 1

Statistics of root turnover rate in different grassland types"

Grassland type
高寒草甸 Alpine meadow 47 0.428 0.022
荒漠草原 Desert steppe 14 0.360 0.063
草甸草原 Meadow steppe 29 0.387 0.030
典型草原 Typical steppe 57 0.246 0.019
热性草丛 Warm-temperate tussock 7 0.782 0.077

Fig. 5

Relationship between root turnover rate and mean annual temperature (MAT) (A) and mean annual precipitation (MAP) (B)."

Fig. 6

Relationships between root turnover rate and soil gravel content (A), bulk density (B), pH value (C) and cation exchange capacity (CEC) (D)."

Fig. 7

Relationship between root turnover rate and soil texture (mean + SE)."

Fig. 8

Relationship between root turnover rate and soil drainage class (mean + SE)."

Table 2

Correlation coefficients of the root turnover rate with climatic factors and soil properties"

气候因子 Climatic factor 土壤理化性质 Soil properties
MAP 0.50***
Gravel 0.09 0.46***
BD 0.01 -0.13 -0.16
pH 0.04 -0.12 -0.31*** -0.17*
CEC 0.14 0.35*** 0.11 -0.76*** 0.11
RTR 0.45*** 0.46*** 0.39*** -0.33*** -0.18* 0.30***

Fig. 9

The relative contributions of climatic variables and soil properties to root turnover rate. BD, bulk density (; MAT, mean annual temperature (℃); MAP, mean annual precipitation (mm); Gravel, gravel content (% vol.); pH, pH value."

[1] Aber JD, Melillo JM, Nadelhoffer KJ, McClaugherty CA, Pastor J ( 1985). Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: A comparison of two methods. Oecologia, 66, 317-321.
doi: 10.1007/BF00378292 pmid: 28310856
[2] Allard V, Newton PCD, Lieffering M, Soussana JF, Carran RA, Matthew C ( 2005). Increased quantity and quality of coarse soil organic matter fraction at elevated CO2 in a grazed grassland are a consequence of enhanced root growth rate and turnover. Plant and Soil, 276, 49-60.
doi: 10.1007/s11104-005-5675-9
[3] Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH ( 2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling. Global Change Biology, 16, 1306-1316.
doi: 10.1111/gcb.2010.16.issue-4
[4] Bai WM, Wang ZW, Chen QS, Zhang WH, Li LH ( 2008). Spatial and temporal effects of nitrogen addition on root life span of Leymus chinensis in a typical steppe of Inner Mongolia. Functional Ecology, 22, 583-591.
[5] Bai YF, Han XG, Wu JG, Chen ZZ, Li LH ( 2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
doi: 10.1038/nature02850 pmid: 202020202020202020202020
[6] Burton AJ, Pregitzer KS, Hendrick RL ( 2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389-399.
doi: 10.1007/s004420000455
[7] Chai X, Liang CZ, Liang MW, Han WH, Li ZY, Miao BL, Wang W, Wang LX ( 2014). Seasonal dynamics of belowground biomass and productivity and potential of carbon sequestration in meadow steppe and typical steppe, in Inner Mongolia, China. Acta Ecologica Sinica, 34, 5530-5540.
doi: 10.5846/stxb201301190118
柴曦, 梁存柱, 梁茂伟, 韩伟华, 李智勇, 苗百岭, 王炜, 王立新 ( 2014). 内蒙古草甸草原与典型草原地下生物量与生产力季节动态及其碳库潜力. 生态学报, 34, 5530-5540.
doi: 10.5846/stxb201301190118
[8] Chen D, Lan Z, Bai X, Grace JB, Bai Y, van der Heijden M ( 2013). Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe. Journal of Ecology, 101, 1322-1334.
doi: 10.1111/1365-2745.12119
[9] Chen SH, Xie ZK, Wang YJ, Wei XH ( 2005). Moisture storage effect of gravel mulch with different grain size on watermelon field. Journal of Desert Research, 25, 433-436.
doi: 10.3321/j.issn:1000-694X.2005.03.023
陈士辉, 谢忠奎, 王亚军, 魏兴琥 ( 2005). 砂田西瓜不同粒径砂砾石覆盖的水分效应研究. 中国沙漠, 25, 433-436.
doi: 10.3321/j.issn:1000-694X.2005.03.023
[10] Chen ZZ, Huang DH ( 1988). A measurement to underground productivity and turnover value of Aneurolepidium chinense and Stipa grandis grassland at Xilin River Valley, Inner Mongolia. In: Inner Mongolia Grassland Ecosystem Research Station, Chinese Academy of Science eds. Research on Grassland Ecosystem, No. 2. Science Press, Beijing. 132-138.
陈佐忠, 黄德华 ( 1988). 内蒙古锡林河流域羊草草原与大针茅草原地下部分生产力和周转值的研究. 见: 中国科学院内蒙草原生态系统研究站主编. 草原生态系统研究(II). 科学出版社, 北京. 132-138.
[11] Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA ( 2001). Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications, 11, 371-384.
doi: 10.1890/1051-0761(2001)011[0371:NPPITF]2.0.CO;2
[12] Curtin D, Beare MH, Hernandez-Ramirez G ( 2012). Temperature and moisture effects on microbial biomass and soil organic matter mineralization. Soil Science Society of America Journal, 76, 2055-2067.
doi: 10.2136/sssaj2012.0011
[13] Dahlman RC, Kucera CL ( 1965). Root productivity and turnover in native prairie. Ecology, 46, 84-89.
doi: 10.2307/1935260
[14] de Bello F, Dolezal J, Ricotta C, Klimesova J ( 2011). Plant clonal traits, coexistence and turnover in East Ladakh, Trans-Himalaya. Preslia, 83, 315-327.
doi: 10.1105/tpc.111.087312
[15] Department of Animal Husbandry and Veterinary, General Station of Animal Husbandry and Veterinary of Ministry of Agriculture of China ( 1996). Rangeland Resources of China. China Science and Technology Press, Beijing.
中华人民共和国农业部畜牧兽医司, 全国畜牧兽医总站 ( 1996). 中国草地资源. 中国科学技术出版社, 北京.
[16] Edwards EJ, David GB, Louise AM, Alastair HF ( 2004). Root production is determined by radiation flux in a temperate grassland community. Global Change Biology, 10, 209-227.
doi: 10.1111/j.1365-2486.2004.00729.x
[17] Eissenstat DM, Wells CE, Yanai RD ( 2000). Building roots in a changing environment: Implications for root longevity. New Phytologist, 147, 33-42.
doi: 10.1046/j.1469-8137.2000.00686.x
[18] Eissenstat DM, Yanai RD ( 1997). The ecology of root lifespan. Advances in Ecological Research, 27, 1-60.
doi: 10.1016/S0065-2504(08)60005-7
[19] Feng YF ( 1990). Estimates of belowground biomass and turnover of Stipa klemenzii shrub desert steppe in Inner Mongolia. In: Inner Mongolia Grassland Ecosystem Research Station, Chinese Academy of Science ed. Research on Grassland Ecosystem, No. 2. Science Press, Beijing. 27-31.
冯雨峰 ( 1990). 内蒙古灌丛化石生针茅荒漠草原地下生物量与周转值的测定. 见: 中国科学院内蒙草原生态系统研究站主编. 草原生态系统研究(II). 科学出版社, 北京. 27-31.
[20] Fitter AH, Graves JD, Wolfenden J, Self GK, Brown TK, Bogie D, Mansfield T ( 1997). Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations. New Phytologist, 137, 247-255.
doi: 10.1046/j.1469-8137.1997.00804.x
[21] Gao YZ, Jing X, Wang XY ( 2017). Impact of grazing and clipping on grassland belowground net primary productivity and root turnover. Journal of Southwest University for Nationalities (Natural Science Edition), 43(2), 111-117.
doi: 10.11920/xnmdzk.2017.02.001
高英志, 景馨, 王新宇 ( 2017). 放牧和刈割对草原地下净生产力和根系周转的影响. 西南民族大学学报(自然科学版), 43(2), 111-117.
doi: 10.11920/xnmdzk.2017.02.001
[22] Gill RA, Jackson RB ( 2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31.
doi: 10.1046/j.1469-8137.2000.00681.x
[23] Gupta SR, Singh JS ( 1982). Influence of floristic composition on the net primary production and dry matter turnover in a tropical grassland. Australian Journal of Ecology, 7, 363-374.
doi: 10.1111/j.1442-9993.1982.tb01311.x
[24] Hayes DC, Seastedt TR ( 1987). Root dynamics of tallgrass prairie in wet and dry years. Canadian Journal of Botany, 65, 787-791.
doi: 10.1139/b87-105
[25] He JS, Wang ZQ, Fang JY ( 2004). Issues and prospects of belowground ecology with special reference to global climate change. Chinese Science Bulletin, 49, 1226-1233.
doi: 10.1360/csb2004-49-13-1226
贺金生, 王政权, 方精云 ( 2004). 全球变化下的地下生态学: 问题与展望. 科学通报, 49, 1226-1233.
doi: 10.1360/csb2004-49-13-1226
[26] Jackson RB, Mooney HA, Schulze ED ( 1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
doi: 10.1073/pnas.94.14.7362
[27] Jiang L, Geng ZC, Li SS, She D, He XS, Zhang Q, Liang C, Liu XD, Jing WM, Wang SL ( 2012). Soil cation exchange capacity and exchangeable base cation content in the profiles of four typical soils in the Xishui Forest Zone of the Qilian Mountains. Acta Ecologica Sinica, 32, 3368-3377.
doi: 10.5846/stxb201104280563
姜林, 耿增超, 李珊珊, 佘雕, 何绪生, 张强, 梁策, 刘贤德, 敬文茂, 王顺利 ( 2012). 祁连山西水林区土壤阳离子交换量及盐基离子的剖面分布. 生态学报, 32, 3368-3377.
doi: 10.5846/stxb201104280563
[28] Jiang S, Qi QH, Kong DZ ( 1985). The primary research about biomass of the Aneurolepidium chinense and Stipa grandis grassland community. In: Inner Mongolia Grassland Ecosystem Research Station, Chinese Academy of Science ed. Research on Grassland Ecosystem, No. 1. Science Press, Beijing. 12-22.
姜恕, 戚秋慧, 孔德珍 ( 1985). 羊草草原群落和大叶针茅草原群落生物量的初步比较研究. 见: 中国科学院内蒙草原生态系统研究站主编. 草原生态系统研究(I). 科学出版社, 北京. 12-22.
[29] Kosmas CS, Danalatos NG ( 1993). The impacts of parent material and landscape poison on drought and biomass production of wheat under semiarid conditions. Soil Technology, 6, 337-349.
doi: 10.1016/0933-3630(93)90024-9
[30] Larreguy C, Carrera AL, Bertiller MB ( 2012). Production and turnover rates of shallow fine roots in rangelands of the Patagonian Monte, Argentina. Ecological Research, 27, 61-68.
doi: 10.1007/s11284-011-0869-5
[31] Leifeld J, Bassin S, Conen F, Hajdas I, Egli M, Fuhrer J ( 2013). Control of soil pH on turnover of belowground organic matter in subalpine grassland. Biogeochemistry, 112, 59-69.
doi: 10.1007/s10533-011-9689-5
[32] Leifeld J, Meyer S, Budge K, Sebastia MT, Zimmermann M, Fuhrer J ( 2015). Turnover of grassland roots in mountain ecosystems revealed by their radiocarbon signature: Role of temperature and management. PLOS ONE, 10, e0119184. DOI: 10.1371/journal.pone.0119184.
doi: 10.1371/journal.pone.0119184 pmid: 25734640
[33] Li YN ( 1998). Relationship between underground biomass and meteorological conditions and turnover value of alpine meadow plants. Chinese Journal of Agrometeorology, 19(1), 36-38.
李英年 ( 1998). 高寒草甸植物地下生物量与气象条件的关系及周转值分析. 中国农业气象, 19(1), 36-38.
[34] Li Z, Wu PT, Feng H, Zhao XN, Huang J, Zhuang WH ( 2010). Simulated experiment on effects of soil bulk density on soil water holding capacity. Acta Pedologica Sinica, 47, 611-620.
doi: 10.11766/trxb200811190404
李卓, 吴普特, 冯浩, 赵西宁, 黄俊, 庄文化 ( 2010). 容重对土壤水分蓄持能力影响模拟试验研究. 土壤学报, 47, 611-620.
doi: 10.11766/trxb200811190404
[35] Lü DQ, Shao MA, Pan Y ( 2009). Dependent relationship between bulk density changes and soil water characteristics. Journal of Soil and Water Conservation, 23, 209-212.
吕殿青, 邵明安, 潘云 ( 2009). 容重变化与土壤水分特征的依赖关系研究. 水土保持学报, 23, 209-212.
[36] Lü GA, Chen ML, Wang CC ( 2000). Study on the soil water characteristics of the lithosol in the Danjiangkou Reservoir basin. Journal of Huazhong Agricultural University, 19, 342-345.
doi: 10.3321/j.issn:1000-2421.2000.04.010
吕国安, 陈明亮, 王春潮 ( 2000). 丹江口库区石渣土土壤水分特性研究. 华中农业大学学报, 19, 342-345.
doi: 10.3321/j.issn:1000-2421.2000.04.010
[37] Ma T, Dong YS, Qi YC, Xu FL, Peng Q, Jin Z ( 2009). Effects of grazing on soil respiration in typical Leymus chinensis steppe in Inner Mongolia. Geographical Research, 28, 1040-1046.
doi: 10.11821/yj2009040018
马涛, 董云社, 齐玉春, 徐福利, 彭琴, 金钊 ( 2009). 放牧对内蒙古羊草群落土壤呼吸的影响. 地理研究, 28, 1040-1046.
doi: 10.11821/yj2009040018
[38] Milchunas DG ( 2009). Estimating root production: Comparison of 11 methods in shortgrass steppe and review of biases . Ecosystems, 12, 1381-1402.
doi: 10.1007/s10021-009-9295-8
[39] Milchunas DG, Lauenroth WK, Singh JS, Cole CV, Hunt HW ( 1985). Root turnover and production by 14C dilution: Implications of carbon partitioning in plants . Plant and Soil, 88, 353-365.
doi: 10.1007/BF02197492
[40] Ni J ( 2004). Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecology, 174, 217-234.
doi: 10.1023/B:VEGE.0000049097.85960.10
[41] Odum EP ( 1960). Organic production and turnover in old field succession. Ecology, 41, 34-49.
doi: 10.2307/1931937
[42] Pan YJ, Lü SH, Gao YH, Li ZG ( 2015). Simulation of influence of gravel on soil thermal and hydraulic properties on Qinghai-Xizang Plateau. Plateau Meteorology, 34, 1224-1236.
潘永洁, 吕世华, 高艳红, 李照国 ( 2015). 砾石对青藏高原土壤水热特性影响的数值模拟. 高原气象, 34, 1224-1236.
[43] Peng YF, Guo DL, Yang YH ( 2017). Global patterns of root dynamics under nitrogen enrichment. Global Ecology and Biogeography, 26, 102-114.
doi: 10.1111/geb.12508
[44] Penning de Vries FWT ( 1975). The cost of maintenance process in plant cells. Annual of Botany, 39, 77-92.
doi: 10.1093/oxfordjournals.aob.a084919
[45] Ryan MG ( 1991). Effects of climate change on plant respiration. Ecological Applications, 1, 157-167.
doi: 10.2307/1941808 pmid: 27755662
[46] Schippers P, Olff H ( 2000). Biomass partitioning, architecture and turnover of six herbaceous species from habitats with different nutrient supply. Plant Ecology, 149, 219-231.
doi: 10.1023/A:1026531420580
[47] Shaver GR, Billings WD ( 1975). Root production and root turnover in a wet tundra ecosystem, Barrow, Alaska. Ecology, 56, 401-409.
doi: 10.2307/1934970
[48] Shi ZJ, Wang YH, Yu PT, Xu LH, Xiong W, Guo H ( 2008). Effect of rock fragments on the percolation and evaporation of forest soil in the Liupan Mountains, China. Acta Ecologic Sinica, 28, 6090-6098.
doi: 10.3321/j.issn:1000-0933.2008.12.037
时忠杰, 王彦辉, 于澎涛, 徐丽宏, 熊伟, 郭浩 ( 2008). 六盘山森林土壤中的砾石对渗透性和蒸发的影响. 生态学报, 28, 6090-6098.
doi: 10.3321/j.issn:1000-0933.2008.12.037
[49] Tom MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM ( 1997). Mineral control of soil organic carbon storage and turnover. Nature, 389, 170-173.
doi: 10.1038/38260
[50] Trumbore SE, Gaudinski JB ( 2003). The secret lives of roots. Science, 302, 1344-1345.
doi: 10.1126/science.1091841
[51] Vogt KA, Crier CC, Vogt DJ ( 1986). Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research, 15, 303-377.
doi: 10.1016/S0065-2504(08)60122-1
[52] Volder A, Gifford RM, Evans JR ( 2007). Effects of elevated atmospheric CO2, cutting frequency, and differential day/night atmospheric warming on root growth and turnover of Phalaris swards. Global Change Biology, 13, 1040-1052.
doi: 10.1111/j.1365-2486.2007.01321.x
[53] Wang CH, Xing XR, Han XG ( 2004). The effects of temperature and moisture on the soil net nitrogen mineralization in an Aneulolepidium chinensis grassland, Inner Mongolia, China. Acta Ecologica Sinica, 11, 2472-2476.
doi: 10.3321/j.issn:1000-0933.2004.11.018
王常慧, 邢雪荣, 韩兴国 ( 2004). 温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响. 生态学报, 11, 2472-2476.
doi: 10.3321/j.issn:1000-0933.2004.11.018
[54] Wang CT, Wang QJ, Long RJ, Jing ZC, Shi HL ( 2004). Changes in plant species diversity and productivity along an elevation gradient in an alpine meadow. Acta Phytoecologica Sinica, 28, 240-245.
doi: 10.1300/J079v30n03_01
王长庭, 王启基, 龙瑞军, 景增春, 史惠兰 ( 2004). 高寒草甸群落植物多样性和初级生产力沿海拔梯度变化的研究. 植物生态学报, 28, 240-245.
doi: 10.1300/J079v30n03_01
[55] Wang CT, Wang QJ, Shen ZX, Jing ZC, Wang WY ( 2003). Response of biodiversity and productivity to simulated rainfall on an alpine Kobresia humilis meadow. Acta Botanica Boreali-Occidentalia Sinica, 10, 1713-1718.
王长庭, 王启基, 沈振西, 景增春, 王文颖 ( 2003). 高寒矮嵩草草甸群落植物多样性和初级生产力对模拟降水的响应. 西北植物学报, 10, 1713-1718.
[56] Wang H, Wang QJ, Shao MA ( 2007). Effect of soil bulk density on soil nutrient in runoff from loess slope. Journal of soil and Water Conservation, 21(3), 10-13.
doi: 10.3321/j.issn:1009-2242.2007.03.003
王辉, 王全九, 邵明安 ( 2007). 表层土壤容重对黄土坡面养分随径流迁移的影响. 水土保持学报, 21(3), 10-13.
doi: 10.3321/j.issn:1009-2242.2007.03.003
[57] Wang W, Peng SS, Fang JY ( 2008). Biomass distribution of natural grasslands and its response to climate change in North China. Arid Zone Research, 25, 90-97.
王娓, 彭书时, 方精云 ( 2008). 中国北方天然草地的生物量分配及其对气候的响应. 干旱区研究, 25, 90-97.
[58] Wilcox B P, Wood MK ( 1988). Factors influencing inter rill erosion from semiarid slopes in New Mexico. Journal of Range Management, 42, 66-70.
[59] Wu JH, Zhang TG, Zhao W, Li JK, Yang L ( 2013). Influence of soil bulk density on soil water infiltration characteristics under different soil organic matter contents. Journal of Soil and Water Conservation, 27(3), 63-67.
吴军虎, 张铁钢, 赵伟, 李家科, 杨亮 ( 2013). 容重对不同有机质含量土壤水分入渗特性的影响. 水土保持学报, 27(3), 63-67.
[60] Wu YB, Che RX, Ma S, Deng YC, Zhu MJ, Cui XY ( 2014). Estimation of root production and turnover in an alpine meadow: Comparison of three measurement methods. Acta Ecologica Sinica, 34, 3529-3537.
doi: 10.5846/stxb201307031831
吴伊波, 车荣晓, 马双, 邓永翠, 朱敏健, 崔骁勇 ( 2014). 高寒草甸植被细根生产和周转的比较研究. 生态学报, 34, 3529-3537.
doi: 10.5846/stxb201307031831
[61] Yu WT, Yu YQ ( 2001). Reviewed of plant underground biomass. Chinese Journal of Applied Ecology, 12, 927-932.
宇万太, 于永强 ( 2001). 植物地下生物量研究进展. 应用生态学报, 12, 927-932.
[62] Zhou WC, Suolang DEJ, Cui LJ, Wang YF, Li W ( 2016). Effects of drainage on soil organic carbon stock in the Zoige peatlands eastern Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 36, 2123-2132.
周文昌, 索郎夺尔基, 崔丽娟, 王义飞, 李伟 ( 2016). 排水对若尔盖高原泥炭地土壤有机碳储量的影响. 生态学报, 36, 2123-2132.
[63] Zhu TC ( 1993). Grasslands of China. In: Coupland RT ed . Ecosystems of the World: Eastern Hemisphere and Résumé, No. 8B. Elsevier, Amsterdam. 61-82.
[1] HUANG Mei, WANG Na, WANG Zhao-Sheng, GONG He. Modeling phosphorus effects on the carbon cycle in terrestrial ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 471-479.
[2] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[3] JIAO Liang, WANG Ling-Ling, LI Li, CHEN Xiao-Xia, YAN Xiang-Xiang. Divergent responses of radial growth of Larix sibirica to climate change in Altay Mountains of Xinjiang, China [J]. Chin J Plant Ecol, 2019, 43(4): 320-330.
[4] LIU Xiao-Tong, YUAN Quan, NI Jian. Research advances in modelling plant species distribution in China [J]. Chin J Plant Ecol, 2019, 43(4): 273-283.
[5] ZHANG Fu-Guang, ZENG Biao, YANG Tai-Bao. Spatiotemporal distribution changes in alpine desert belt in Qilian Mountains under climate changes in past 30 years [J]. Chin J Plant Ecol, 2019, 43(4): 305-319.
[6] Xuerui Dong, Hong Zhang, Minggang Zhang. Explaining the diversity and endemic patterns based on phylogenetic approach for woody plants of the Loess Plateau [J]. Biodiv Sci, 2019, 27(12): 1269-1278.
[7] Gao Kexiao, Li Feifei, Liu Xiaoyan, Xiong Yunqi, Li Junsheng, Zhao Caiyun. Elevational patterns of invasive nonnative and native herbaceous species in Jiuwan Mountain National Nature Reserve of Guangxi [J]. Biodiv Sci, 2019, 27(10): 1047-1055.
[8] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[9] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[10] Xiuwei Liu, Douglas Chesters, Chunsheng Wu, Qingsong Zhou, Chaodong Zhu. A horizon scan of the impacts of environmental change on wild bees in China [J]. Biodiv Sci, 2018, 26(7): 760-765.
[11] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[12] WU Qi-Qian, WANG Chuan-Kuan. Dynamics in foliar litter decomposition for Pinus koraiensis and Quercus mongolica in a snow-depth manipulation experiment [J]. Chin J Plan Ecolo, 2018, 42(2): 153-163.
[13] Xiaoyu Wu,Shikui Dong,Shiliang Liu,Quanru Liu,Yuhui Han,Xiaolei Zhang,Xukun Su,Haidi Zhao,Jing Feng. Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model [J]. Biodiv Sci, 2018, 26(2): 138-148.
[14] Huijie Qiao,Xiaoyi Wang,Wei Wang,Zhenhua Luo,Ke Tang,Yan Huang,Shengnan Yang,Weiwei Cao,Xinquan Zhao,Jianping Jiang,Junhua Hu. From nature reserve to national park system pilot: Changes of environmental coverage in the Three-River-Source National Park and implications for amphibian and reptile conservation [J]. Biodiv Sci, 2018, 26(2): 202-209.
[15] ZHU Hong, ZHU Shu-Xia, LI Yong-Fu, YI Xian-Gui, DUAN Yi-Fan, WANG Xian-Rong. Leaf phenotypic variation in natural populations of Cerasus dielsiana [J]. Chin J Plant Ecol, 2018, 42(12): 1168-1178.
Full text



[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] TIAN Bao-Lin WANG Shi-Jun LI Cheng-Sen CHEN Gui-Ren. An Approach on the Origin Center, Evolution Center and the Mechanics of Evolution and Extinction of the Late Palaeozoic Cathaysian Flora[J]. Chin Bull Bot, 2000, 17(专辑): 21 -33 .
[6] ZHANG Yan FANG Li LI Tian-Fei YAO Zhao-BingJIANG Jin-Hui. Effect of Calcium on the Heat Tolerance and Active Oxygen Metabolism of Tobacco Leaves[J]. Chin Bull Bot, 2002, 19(06): 721 -726 .
[7] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[8] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[9] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .
[10] ZHANG Da-Yong, JIANG Xin-Hua. An Ecological Perspective on Crop Prduction[J]. Chin J Plan Ecolo, 2000, 24(3): 383 -384 .