Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (4): 508-516.doi: 10.17521/cjpe.2017.0311

• Research Articles • Previous Articles    

Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China

Yong BAO,Ying GAO,Xiao-Min ZENG,Ping YUAN,You-Tao SI*(),Yue-Min CHEN,Ying-Yi CHEN   

  1. School of Geography Sciences, Fujian Normal University, Fuzhou 350007, China; and State Key Laboratory of Sub-tropical Mountain Ecology (Founded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China
  • Online:2018-06-01 Published:2018-04-20

Abstract:

Aims Forest conversion is an important factor affecting the ecosystem organic matter cycle, and has an impact on the productivity of forest ecosystems, carbon sequestration and nutrient conservation. This study aims to provide more scientific evidence for better understanding the mechanism of different forest types regulating forest soil carbon and nitrogen cycling in the context of forest conversion.

Methods The study site is located in Sanming City, Fujian Province, in subtropical China. Soil samples in the A horizon from an artificial-assisted natural regeneration forest of Castanopsis carlesii (AR), a natural secondary forest of C. carlesii (SF) and a plantation of Pinus massoniana (PM) sites were collected in November, 2016. We investigated the contents of soil organic carbon, soil organic nitrogen, soil dissolved organic matter (DOM), NH4 +-N and NO3 --N. The spectroscopic characteristics of soil DOM were also measured by means of ultraviolet absorbance and fluorescence emission spectroscopic techniques. The activity of five kinds of enzymes related to carbon and nitrogen cycle were determined to decipher their relationships with soil properties.

Important findings The results showed that, due to different tree species and man-made disturbance, the contents of dissolved organic carbon (DOC), DON, humification index of fluorescence emission spectrum were all in the order SF > AR > PM, whereas the aromatization index was in the order PM > AR > SF. NH4 +-N were significantly richer for SF and AR than for PM, while NO3 --N content was low and similar across the three stands. The β-glucosidase activity of PM was significantly lower than that of SF and AR. The activities of cellulolytic enzyme were in sequence of AR > SF > PM. The activities of polyphenol oxidase enzyme in PM was significantly higher than in SF and AR. There was no significant difference in the type of forest peroxidase. The activity of β-N-acetylglucosaminidase of AR was significantly higher than those of the other two kinds of stands. The redundancy analysis indicates that total nitrogen (TN) and DON are the major environmental factors driving soil enzyme activity. Soil total nitrogen content and NAG activity were positively correlated, and DON may be an important component of the N cycle. Soil microorganisms prefer to use readily decomposable carbon; and there is a certain coupling relationship between carbon and nitrogen cycles. Higher soil N contents would increase the C-related hydrolytic enzyme activity, thereby promoting carbon turnover.

Key words: forest type, dissolved organic matter, carbon and nitrogen nutrients, enzyme activity, soil carbon and nitrogen cycle

Table 1

The abbreviations, function and substrates of soil enzyme"


Enzyme
缩写
Abbreviation
功能
Function
底物
Substrate
β-葡萄糖苷酶
β-glucosidase
βG 分解易降解碳 Decomposition of labile carbon 4-甲基伞形酮-β-D-葡萄糖苷
4-methylumbelliferyl-β-D-glucoside
纤维素水解酶
Cellulose hydrolysis
CBH 分解易降解碳 Decomposition of labile carbon 4-甲基伞形酮-β-D-纤维素二糖苷
4-methylumbelliferyl-β-D-cellobioside
β-N-乙酰氨基葡萄糖苷酶
β-N-acetylglucosaminidase
NAG 分解氮 Hydrolyze nitrogen 4-甲基伞形酮-2-乙酰氨基-2-脱氧-β-D-吡喃葡萄糖苷 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide
多酚氧化酶 Phenol oxidase PHO 分解难降解碳 Decomposition of recalcitrant carbon 二羟基苯 L-dihydroxyphenylalanine
过氧化物酶 Peroxidase PEO 分解难降解碳 Decomposition of recalcitrant carbon 二羟基苯 L-dihydroxyphenylalanine

Table 2

Main soil physical and chemical properties and soil available nutrients in different forest types (mean ± SD, n = 3)"

林分类型
Forest type
pH 含水率
Moisture
(%)
土壤总有机碳
Total soil
organic carbon (g·kg-1)
全氮
Total
nitrogen (g·kg-1)
C:N NH4+-N
(mg·kg-1)
NO3--N
(mg·kg-1)
可溶性有机碳
Dissolved
organic carbon
(mg·kg-1)
可溶性有机氮
Dissolved
organic nitrogen
(mg·kg-1)
SF 4.72 ± 0.18a 27.24 ± 1.42b 41.69 ± 1.46a 2.43 ± 0.11b 17.20 ± 0.50a 80.17 ± 5.10a 7.67 ± 1.93a 87.47 ± 29.59a 8.80 ± 2.28a
AR 4.79 ± 0.10a 35.02 ± 0.56a 45.82 ± 5.64a 2.89 ± 0.16a 15.80 ± 1.03a 92.40 ± 3.76a 4.83 ± 2.80a 76.98 ± 12.55a 6.68 ± 2.28a
PM 4.63 ± 0.06a 28.79 ± 2.49b 25.16 ± 0.52b 1.83 ± 0.04c 13.73 ± 0.59b 54.47 ± 11.28b 6.50 ± 0.24a 26.55 ± 6.44b 5.84 ± 1.46a

Fig. 1

Aromatic index (AI) and humification index emission mode (HIXem) in different forests (mean ± SD, n = 3). SF, natural secondary forest of Castanopsis carlesii; AR, artificial-assisted natural regeneration forest of Castanopsis carlesii; PM, plantation of Pinus massoniana. Different lowercase letters indicate significant difference among different stands (p < 0.05)."

Table 3

Soil enzyme activities in different forest types (mean ± SD, n = 3)"

林分类型 Forest type βG (nmol·g-1·h-1) CBH (nmol·g-1·h-1) NAG (nmol·g-1·h-1) PHO (μmol·g-1·h-1) PEO (μmol·g-1·h-1)
SF 38.93 ± 7.44a 1.41 ± 0.29b 36.42 ± 7.68b 0.53 ± 0.37b 14.61 ± 3.86a
AR 36.93 ± 6.72a 3.49 ± 0.59a 76.98 ± 20.43a 0.25 ± 0.11b 13.48 ± 3.74a
PM 23.86 ± 5.12b 0.48 ± 0.16c 38.94 ± 8.09b 3.92 ± 0.52a 20.70 ± 3.83a

Fig. 2

Redundancy analysis (RDA) of the effect of soil environmental factors on soil enzyme activity in different forest types. SF1, SF2, SF3 represent three parallel replicates of the secondary broadleaved forests of Castanopsis carlesii plot; AR1, AR2, AR3 represent three parallel replicates of the Human-assisted naturally regenerated forests of Castanopsis carlesii plot; PM1, PM2, PM3 represent three parallel replicates representing the Human-assisted naturally regenerated forests of Pinus massoniana plots of Pinus massoniana plantation. DON, dissolved organic nitrogen; DOC, dissolved organic carbon; SOC, soil organic carbon; TN, total nitrogen. The notes of variables in lower right corner of the plot represents the corresponding proportion of environmental factors that have a significant effect on soil enzyme changes."

1 A’Bear AD , Jones TH , Kandeler E ( 2014). Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biology and Biochemistry, 70, 151- 158.
doi: 10.1016/j.soilbio.2013.12.017
2 Akagi J , ádám Z , Bastida F ( 2007). Quantity and spectroscopic properties of soil dissolved organic matter (DOM) as a function of soil sample treatments: Air-drying and pre-incubation. Chemosphere, 69, 1040- 1046.
doi: 10.1016/j.chemosphere.2007.04.036 pmid: 17544477
3 Allison SD , Vitousek PM ( 2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 37, 937- 944.
doi: 10.1016/j.soilbio.2004.09.014
4 Allison VJ , Condron LM , Peltzer DA ( 2007). Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology and Biochemistry, 39, 1770- 1781.
doi: 10.1016/j.soilbio.2007.02.006
5 Bending GD , Turner MK , Jones JE ( 2002). Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology and Biochemistry, 34, 1073- 1082.
doi: 10.1016/S0038-0717(02)00040-8
6 Bu XL , Wang LM , Ma WB ( 2010). Spectroscopic characterization of hot-water extractable organic matter from soils under four different vegetation types along an elevation gradient in the Wuyi Mountains. Geoderma, 159, 139- 146.
doi: 10.1016/j.geoderma.2010.07.005
7 Burns RG ( 1982). Enzyme activity in soil-location and a possible role in microbial ecology. Soil Biology and Biochemistry, 14, 423- 427.
doi: 10.1016/0038-0717(82)90099-2
8 Burns RG , Deforest JL , Marxsen J ( 2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216- 234.
doi: 10.1016/j.soilbio.2012.11.009
9 Camino-Serrano M , Gielen B , Luyssaert S ( 2014). Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type. Global Biogeochemical Cycles, 28, 497- 509.
doi: 10.1002/2013GB004726
10 Condron LM , Tiessen H , Turner BL ( 2005). Interactions of organic phosphorus in terrestrial ecosystems. Uspekhi Mat Nauk, 38, 205- 206.
doi: 10.1079/9780851998220.0295
11 Currie WS , Aber JD , Mcdowell WH , Boone RD , Magill AH ( 1996). Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry, 35, 471- 505.
doi: 10.1007/BF02183037
12 Debosz K , Rasmussen PH , Pedersen AR ( 1999). Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: Effects of organic matter input. Applied Soil Ecology, 13, 209- 218.
doi: 10.1016/S0929-1393(99)00049-9
13 Frankenberger WT , Dick WA ( 1983). Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, 47, 945- 951.
doi: 10.2136/sssaj1983.03615995004700050021x
14 Ge XG , Xiao WF , Zeng LX ( 2012). Relationships between soil nutrient contents and soil enzyme activities in Pinus massoniana stands with different ages in Three Gorges Reservoir Area. Chinese Journal of Applied Ecology, 23, 445- 451.
[ 葛晓改, 肖文发, 曾立雄 ( 2012). 三峡库区不同林龄马尾松土壤养分与酶活性的关系. 应用生态学报, 23, 445- 451.]
15 Hogberg M , Hogberg P , Myrold D ( 2007). Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia, 150, 590- 601.
16 Houghton RA ( 2007). Balancing the global carbon budget. Annual Review of Earth & Planetary Sciences, 35, 313- 347.
17 Jian S , Li J , Chen J ( 2016). Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biology and Biochemistry, 101, 32- 43.
doi: 10.1016/j.soilbio.2016.07.003
18 Jobbágy EG , Jackson RB ( 2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423- 436.
doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
19 Kalbitz K , Geyer W , Geyer S ( 1999). Spectroscopic properties of dissolved humic substances—A reflection of land use history in a fen area. Biogeochemistry, 47, 219- 238.
doi: 10.1007/BF00994924
20 Kang GL , Yang YS , Si YT ( 2014a). Soluble and spectral characteristics of DOM in leaching solution from leaves and litter-fall of Pinus massoniana and Dicranopteris dichotoma. Journal of Tropical and Subtropical Botany, 22, 357- 366.
doi: 10.3969/j.issn.1005-3395.2014.04.006
[ 康根丽, 杨玉盛, 司友涛 ( 2014a). 马尾松与芒萁鲜叶及凋落物水溶性有机物的溶解特征和光谱学特征. 热带亚热带植物学报, 22, 357- 366.]
doi: 10.3969/j.issn.1005-3395.2014.04.006
21 Kang GL , Yang YS , Si YT ( 2014b). Quantities and spectral characteristics of DOM released from leaf and litterfall in Castanopsis carlesii forest and Cunninghamia lanceolata plantation. Acta Ecologica Sinica, 34, 1946- 1955.
[ 康根丽, 杨玉盛, 司友涛 ( 2014b). 米槠人促更新林与杉木人工林叶片及凋落物溶解性有机物的数量和光谱学特征. 生态学报, 34, 1946- 1955.]
22 Keeney DR ( 1980). Prediction of soil nitrogen availability in forest ecosystems: A literature review. Forest Science, 26, 159- 171.
doi: 10.1016/0378-1127(80)90011-0
23 Knicker H , Lüdemann HD , Haider K ( 1981). Incorporation studies of NH4 + during incubation of organic residues by l5N-CPMAS-NMR-spectroscopy. European Journal of Soil Science, 48, 431- 441.
doi: 10.1111/j.1365-2389.1997.tb00209.x
24 Kuzyakov Y , Xu X ( 2013). Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytologist, 198, 656- 669.
doi: 10.1111/nph.12235 pmid: 23521345
25 Liu JB , Chen GS , Guo JF , Yang ZJ , Li YQ , Lin CF , Yang YS ( 2017). Advances in research on the responses of forest soil enzymes to environmental change. Acta Ecologica Sinica, 37, 110- 117.
doi: 10.5846/stxb201608011581
[ 刘捷豹, 陈光水, 郭剑芬, 杨智杰, 李一清, 林成芳, 杨玉盛 ( 2017). 森林土壤酶对环境变化的响应研究进展. 生态学报, 37, 110- 117.]
doi: 10.5846/stxb201608011581
26 Lu X , Gilliam FS , Yu G , Li L ( 2013). Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems. Biogeosciences Discussions, 10, 3931- 3941.
doi: 10.5194/bgd-10-1451-2013
27 Liu Z , Yang YS , Zhu JM , Si YT , Xie JS , Yang ZJ ( 2014). Comparative study on quantities and spectroscopic characteristics of soil dissolved organic matter between two economic forests in subtropical China. Journal of Soil & Water Conservation, 28( 5), 170- 175.
[ 刘翥, 杨玉盛, 朱锦懋, 司友涛, 谢锦升, 杨智杰 ( 2014). 中亚热带2种经济林土壤可溶性有机质数量与光谱学特征比较. 水土保持学报, 28( 5), 170- 175.]
28 Meng Y , Xue JY , Sha LQ , Tang JW ( 2001). Variations of soil NH4 +-N, NO3 --N and N mineralization under different forests in Xishuangbanna, Southwest China. Acta Phytoecologica Sinica, 25, 99- 104.
doi: 10.1007/s11769-001-0027-z
[ 孟盈, 薛敬意, 沙丽清, 唐建维 ( 2001). 西双版纳不同热带森林下土壤铵态氮和硝态氮动态研究. 植物生态学报, 25, 99- 104.]
doi: 10.1007/s11769-001-0027-z
29 Mo JM , Xue JH , Fang YT ( 2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Ecologica Sinica, 24, 1413- 1420.
[ 莫江明, 薛璟花, 方运霆 ( 2004). 鼎湖山主要森林植物凋落物分解及其对N沉降的响应. 生态学报, 24, 1413- 1420.]
30 Parfitt RL , Ross DJ , Coomes DA ( 2005). N and P in New Zealand soil chronosequences and relationships with foliar N and P. Biogeochemistry, 75, 305- 328.
doi: 10.1007/s10533-004-7790-8
31 Saadi I , Borisover M , Armon R , Laor Y ( 2006). Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements. Chemosphere, 63, 530- 539.
doi: 10.1016/j.chemosphere.2005.07.075 pmid: 16219335
32 Saiya-Cork KR , Sinsabaugh RL , Zak DR ( 2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 34, 1309- 1315.
doi: 10.1016/S0038-0717(02)00074-3
33 Sardans J , Pe?uelas J ( 2005). Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biology and Biochemistry, 37, 455- 461.
doi: 10.1016/j.soilbio.2004.08.004
34 Sedjo RA ( 1992). Temperate forest ecosystems in the global carbon cycle. AMBIO, 21( 4), 274- 277.
doi: 10.1016/0926-3373(92)80038-2
35 Sinsabaugh RL ( 2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry, 42, 391- 404.
doi: 10.1016/j.soilbio.2009.10.014
36 Su T , Si MR , Wang CH ( 2005). Effects of pretreatment, shaking and conserving method and extracting solution on results for soil mineral nitrogen. Journal of Agro-Environment Science, 24, 1238- 1242.
doi: 10.3321/j.issn:1672-2043.2005.06.040
[ 苏涛, 司美茹, 王朝辉 ( 2005). 土壤矿质氮分析方法的影响因素研究. 农业环境科学学报, 24, 1238- 1242.]
doi: 10.3321/j.issn:1672-2043.2005.06.040
37 Taylor JP , Wilson B , Mills MS ( 2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology and Biochemistry, 34, 387- 401.
doi: 10.1016/S0038-0717(01)00199-7
38 Waldrop MP , Firestone MK ( 2004). Microbial community utilization of recalcitrant and simple carbon compounds: Impact of oak-woodland plant communities. Oecologia, 138, 275- 284.
doi: 10.1007/s00442-003-1419-9 pmid: 14614618
39 Wan JJ , Guo JF , Ji SR ( 2016). Effects of dissolved organic matter input on soil CO2 emission and microbial community composition in a subtropical forest. Scientia Silvae Sinicae, 52( 2), 106- 113.
doi: 10.11707/j.1001-7488.20160213
[ 万菁娟, 郭剑芬, 纪淑蓉 ( 2016). 可溶性有机物输入对亚热带森林土壤CO2排放及微生物群落的影响. 林业科学, 52( 2), 106- 113.]
doi: 10.11707/j.1001-7488.20160213
40 Wan XH , Huang ZQ , He ZM ( 2014). Effects of tree species transfer on soil dissolved organic matter pools in a reforested Chinese fir (Cunninghamia lanceolata) woodland. Chinese Journal of Applied Ecology, 25, 12- 18.
[ 万晓华, 黄志群, 何宗明 ( 2014). 杉木采伐迹地造林树种转变对土壤可溶性有机质的影响. 应用生态学报, 25, 12- 18.]
41 Wang CY , Zhou JB , Xia ZM ( 2011). Effects of mixed plant residues from the loess plateau on microbial biomass carbon and nitrogen in soil. Acta Ecologica Sinica, 31, 2139- 2147.
[ 王春阳, 周建斌, 夏志敏 ( 2011). 黄土高原区不同植物凋落物搭配对土壤微生物量碳、氮的影响. 生态学报, 31, 2139- 2147.]
42 Wu BB , Guo JF , Wu JJ ( 2014). Effects of logging residues on surface soil biochemical properties and enzymatic activity. Acta Ecologica Sinica, 34, 1645- 1653.
[ 吴波波, 郭剑芬, 吴君君 ( 2014). 采伐剩余物对林地表层土壤生化特性和酶活性的影响. 生态学报, 34, 1645- 1653.]
43 Wu JS , Jiang PK , Chang SX ( 2010). Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China. Canadian Journal of Soil Science, 90, 27- 36.
doi: 10.4141/CJSS09030
44 Xu C , Lin CF , Liu XF , Xiong DC , Lin WS , Chen SD , Xie JS , Yang YS ( 2017). Effects of forest conversion on concentrations and fluxes of dissolved organic carbon in runoff. Acta Ecologica Sinica, 37, 84- 92.
doi: 10.5846/stxb201607291557
[ 胥超, 林成芳, 刘小飞, 熊德成, 林伟盛, 陈仕东, 谢锦升, 杨玉盛 ( 2017). 森林类型更替对地表径流可溶性有机碳输出浓度和通量的影响. 生态学报, 37, 84- 92.]
doi: 10.5846/stxb201607291557
45 Yang WQ , Wang KY ( 2004). Advances in forest soil enzymology. Scientia Silvae Sinicae, 40( 2), 152- 159.
doi: 10.11707/j.1001-7488.20040227
[ 杨万勤, 王开运 ( 2004). 森林土壤酶的研究进展. 林业科学, 40( 2), 152- 159.]
doi: 10.11707/j.1001-7488.20040227
46 Zhang WP , Si XL , Wang WY , Gao TP , Xu DH ( 2016). Effects of short-term nitrogen and silicon addition on above-?ground biomass and biodiversity of alpine meadow of the Qinghai-Tibetan Plateau, China. Pratacultural Science, 33, 38- 45.
doi: 10.11829\j.issn.1001-0629.2015-0142
[ 张文鹏, 司晓林, 王文银, 高天鹏, 徐当会 ( 2016). 氮硅添加对高寒草甸生物量和多样性的影响——以青藏高原为例. 草业科学, 33, 38- 45.]
doi: 10.11829\j.issn.1001-0629.2015-0142
47 Zhao HK , Ma Z , Zhang CH , Lei ZL , Yao BQ , Zhou HK ( 2016). The reproductive allocation of Avena sativa under different planting densities and nitrogen addition treatments. Pratacultural Science, 33, 249- 258.
doi: 10.11829/j.issn.1001-0629.2015-0361
[ 赵宏魁, 马真, 张春辉, 雷占兰, 姚步青, 周华坤 ( 2016). 种植密度和施氮水平对燕麦生物量分配的影响. 草业科学, 33, 249- 258.]
doi: 10.11829/j.issn.1001-0629.2015-0361
48 Zhao JS , Zhang XD , Yuan X ( 2003). Characteristics and environmental significance of soil dissolved organic matter. Chinese Journal of Applied Ecology, 14, 126- 130.
pmid: 12722455
49 Zsolnay A , Baigar E , Jimenez M ( 1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38, 45- 50.
doi: 10.1016/S0045-6535(98)00166-0 pmid: 10903090
[1] WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plan Ecolo, 2018, 42(3): 382-396.
[2] Hao ZHANG, Mao-Kui Lyu, Jin-Sheng XIE. Effect of Dicranopteris dichotoma on spectroscopic characteristic of dissolved organic matter in red soil erosion area [J]. Chin J Plan Ecolo, 2017, 41(8): 862-871.
[3] Yu-Peng LU, Ji-Yuan XU, Xiao-Xi ZHANG, Bo-Ya WANG, Bo XIE, Zeng-Wen LIU. Effects of leachate from understory medicinal plants on litter decomposition and soil enzyme activities of Betula albo-sinensis and Eucommia ulmoides [J]. Chin J Plan Ecolo, 2017, 41(6): 639-649.
[4] Hu DU, Fu-Ping ZENG, Tong-Qing SONG, Yuan-Guang WEN, Chun-Gan LI, Wan-Xia PENG, Hao ZHANG, Zhao-Xia ZENG. Spatial pattern of soil organic carbon of the main forest soils and its influencing factors in Guangxi, China [J]. Chin J Plan Ecolo, 2016, 40(4): 282-291.
[5] Qiu-Fang ZHANG, Chun-Ping LÜ, Zhao-Xian BEI, Jin-Sheng XIE, Mao-Kui LÜ, Wei-Sheng LIN, Yue-Min CHEN, Yu-Sheng YANG. Effects of simulated warming outdoor on lipid peroxidation and protective enzyme activities in the subtropical species Cunninghamia lanceolata [J]. Chin J Plan Ecolo, 2016, 40(12): 1230-1237.
[6] WAN Jing-Juan,GUO Jian-Fen,JI Shu-Rong,REN Wei-Ling,SI You-Tao,YANG Yu-Sheng. Effects of different sources of dissolved organic matter on soil CO2 emission in subtropical forests [J]. Chin J Plan Ecolo, 2015, 39(7): 674-681.
[7] LI Su,LIU Wen-Yao,SHI Xian-Meng,LIU Shuai,HU Tao,HUANG Jun-Biao,CHEN Xi,SONG Liang,WU Chuan-Sheng. Responses of the distribution of four epiphytic cyanolichens to habitat changes in subtropical forests [J]. Chin J Plan Ecolo, 2015, 39(3): 217-228.
[8] ZHANG Jia-Lei,GUO Feng,MENG Jing-Jing,YU Xiao-Xia,YANG Sha,ZHANG Si-Bin,GENG Yun,LI Xin-Guo,WAN Shu-Bo. Effects of calcium fertilizer on yield, quality and related enzyme activities of peanut in acidic soil [J]. Chin J Plan Ecolo, 2015, 39(11): 1101-1109.
[9] WANG Xie, XIANG Cheng-Hua, LI Xian-Wei, and WEN Dong-Ju. Short-term effects of a winter wildfire on diversity and intensity of soil microbial function in the subalpine grassland of western Sichuan, China [J]. Chin J Plan Ecolo, 2014, 38(5): 468-476.
[10] CHEN Ya-Mei, HE Run-Lian, DENG Chang-Chun, LIU Yang, YANG Wan-Qin, and ZHANG Jian. Litter cellulolytic enzyme activities in alpine timberline ecotone of western Sichuan [J]. Chin J Plan Ecolo, 2014, 38(4): 334-342.
[11] Dongmei Geng, Lishan Shan, Yi Li, Жигунов Анатолий Васильевич. Effect of Soil Water Stress on Chlorophyll Fluorescence and Antioxidant Enzyme Activity in Reaumuria soongorica Seedlings [J]. Chin Bull Bot, 2014, 49(3): 282-291.
[12] Xiaowan Yang, Guoqi Zheng, Juan Yang, Xing Xu, Di Lu, Le Yang. Changes in Endogenous Hormone Contents and Cell Wall Component, Degrading Enzyme Activity and Their Relation in Lycium barbarum [J]. Chin Bull Bot, 2014, 49(1): 30-40.
[13] WU Jun-Jun, YANG Zhi-Jie, LIU Xiao-Fei, XIONG De-Cheng, LIN Wei-Sheng, CHEN Chao-Qi, and WANG Xiao-Hong. Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations [J]. Chin J Plan Ecolo, 2014, 38(1): 45-53.
[14] Qun Dai,Shuzhen Yan,Huiqin Yao,Shuanglin Chen. Myxomycete diversity in hilly forests of East China [J]. Biodiv Sci, 2013, 21(4): 507-513.
[15] Di Li, Zhenxin Tang, Haijing Liu, Qingyin Zeng, Hailing Yang. Molecular Characterization of Two Phi Glutathione S-transferases from Populus tomentosa [J]. Chin Bull Bot, 2012, 47(3): 248-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Pan-Pan Wu, Hong-Wei Zuo, Genlou Sun, De-Xiang Wu, Bjorn Salomon, Qun-Wen Hu, Zhao-Rong Dong. Comparison of gene flow among species that occur within the same geographic locations versus gene flow among populations within species reveals introgression among several Elymus species[J]. J Syst Evol, 2016, 54(2): 152 -161 .
[2] WEI Xiao-Hua, DAI Li-Min. REVIEW OF ECOLOGICAL RESEARCH ON IN-STREAM WOOD[J]. Chin J Plan Ecolo, 2006, 30(6): 1018 -1029 .
[3] LI Heng. DELINEATION AND FEATURE OF DULONGJIANG REGION FLORA[J]. Plant Diversity, 1994, 16(S6): 1 -3 .
[4] GE Shun-Feng, XU Hai-Gang, JI Meng-Meng, and JIANG Yuan-Mao. Effects of soil C:N on growth and distribution of nitrogen and carbon of Malus hupehensis seedlings[J]. Chin J Plan Ecolo, 2013, 37(10): 942 -949 .
[5] Ke Xia, Roy Turkington, Hong-yu Tan, Lei Fan. Factors limiting the recruitment of Quercus schottkyana, a dominant evergreen oak in SW China[J]. Plant Diversity, 2018, 40(06): 277 -283 .
[6] Lin Peng, Lin Guanghui. Studies on the Mangrove Ecosystem of the Jiulong Jiang River Estuary in China. IV. The Accumulation and Biological Cycle of Nitrogen and Phosphorus Elements in the Kandelia candi Community[J]. Chin J Plan Ecolo, 1985, 9(1): 21 -31 .
[7] ZHANG Chang-Qin, HUANG Cheng-Ling, HUANG Jia-Yong, WANG Ling-Jun, ZHANG Jing-Li, SUN Wei-Bang, MA Yong-Peng. Investigation of Germplasm Resources of the Genus Rhododendron in Baili Nature Reserve in Guizhou[J]. Plant Diversity, 2015, 37(03): 357 -364 .
[8] Fangliang He, Da-Yong Zhang, Kui Lin. Coexistence of nearly neutral species[J]. J Plant Ecol, 2012, 5(1): 72 -81 .
[9] HUANG Jian-Hui, LI Hai-Tao, HAN Xing-Guo, CHEN Ling-Zhi. Nutrient Characteristics of Stemflow and Throughfall in two Coniferous Forest Ecosystems[J]. Chin J Plan Ecolo, 2000, 24(2): 248 -251 .
[10] Keping Ma. DNA barcode: from species to biome[J]. Biodiv Sci, 2015, 23(3): 279 -280 .