Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (4): 498-507.doi: 10.17521/cjpe.2017.0320

• Research Articles • Previous Articles     Next Articles

Determination of maximum electron transport rate and its impact on allocation of electron flow

Zi-Piao YE1,Shi-Hua DUAN2,Ting AN1,Hua-Jing KANG3,*()   

  1. 1 College of Math and Physics, Jinggangshan University, Ji'an, Jiangxi 343009, China
    2 School of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, China
    3 Wenzhou Academy of Agricultural Sciences, Wenzhou, Zhejiang 325006, China
  • Online:2018-03-21 Published:2018-04-20
  • Contact: Hua-Jing KANG E-mail:kanghuajing@126.com
  • Supported by:
    Supported by the National Natural Science Foundation of China (31560069).

Abstract:

Aims The non-rectangular hyperbolic model (termed as model I) is the main submodel of the FvCB biochemical model, which is used to estimate the maximum electron transport rate (Jmax) of plant leaves. The submodel is widely applied to fit the light-response curves of electron transport rate (J-I curves), and obtain Jmax. However, it has not been strictly verified whether Jmax calculated by model I is consistent with the measured values.

Methods Light-response curves of electron transport rate and of photosynthesis rate of soybean (Glycine max) (under shading and full sunlight) were simultaneously measured by LI-6400-40, then these data were simulated by model I and the mechanistic model of light-response of electron transport rate (termed as model II).

Important findings The results showed that there was the significant differences between Jmax estimated by model I and the observation data irrespective of shading and full sunny leaves of soybean. However, there was no significant difference between Jmax calculated by model II and the measured value. Because Jmax was overestimated by model I, it must lead to overestimate the amount of photosynthetic electron flow to allocate to photorespiration pathway, and magnify the photoprotection of photorespiration on plants. On the contrary, the Jmax and saturation light intensity (PARsat) obtained by the model II were in very close agreement with the observations. It can be concluded that the model II was superior to the model I in estimates of Jmax and PARsat. Therefore, we recommend model II to be used as an operational model for fitting J-I curves and accurately assess the role of photorespiration on plant photo-protection.

Key words: Glycine max, non-rectangular hyperbolic model, mechanistic model, FvCB biochemical model, electron transport rate

Fig. 1

Light response of electron transport rate for leaves of Glycine max under shading (A) and full sunlight (B) environments (mean ± SE, n = 5). Model I, non-rectangular hyperbola model; Model II, mechanistic model of light-response of electron transport rate."

Table 1

Observed data and results fitted by non-rectangular hyperbola model (model I) and the mechanistic model of light-response of electron transport rate (model II) for light-response curves of electron transport rate (J-I curves) of soybean under two light environments (mean ± SE, n = 5)"

参数 Parameter 处理 Treatment
遮阴 Shading 全日照 Full sunlight
模型I
Model I
模型II
Model II
测量值
Observed value
模型I
Model I
模型II
Model II
测量值
Observed value
最大电子传递速率
Maximum electron transport rate (Jmax, mmol·m-2·s-1)
269.13 ± 5.22a 236.68 ± 1.39b ?236.29 354.26 ± 17.73a 307.91 ± 8.95b ?306.43
饱和光强
Saturated light intensity (PARsat, mmol·m-2·s-1)
1 839.98 ± 50.53 ?1 800 1 967.69 ± 110.64 ?2 000
确定系数 Determination coefficient (R2) 0.999 0.999 0.999 0.999

Fig. 2

Light-response curves of photosynthesis for shade (A) and sun (B) leaves of soybean (mean ± SE, n = 5). Model I, non-rectangular hyperbola model; Model II, mechanistic model of light-response of electron transport rate."

Table 2

Observed data and photosynthetic parameters fitted by non-rectangular hyperbola model (model I) and the mechanistic model of light-response of electron transport rate (model II) for light-response curves of photosynthesis (An-I curves) of soybean under two light environments, respectively (mean ± SE, n = 5)."

参数 Parameter 处理 Treatment
遮阴 Shading 全日照 Full sunlight
模型I
Model I
模型II
Model II
测量值
Observed value
模型I
Model I
模型II
Model II
测量值
Observed value
初始斜率 Initial slope of A-I curve, α (mmol·mol-1) 0.061 ± 0.044b 0.081 ± 0.032a - 0.064 ± 0.025a 0.069 ± 0.025a -
最大净光合速率
Maximum net photosynthetic rate, Anmax (mmol·m-2·s-1)
31.28 ± 1.33a 26.92 ± 1.23b ?27.23 45.56 ± 1.41a 35.52 ± 1.26b ?36.17
饱和光强 Saturated irradiance, Isat (mmol ·m-2·s-1) - 1 569.96 ± 24.89 ?1 600 - 1 998.36 ± 36.45 ?1 800
光补偿点 Light compensation point, Ic (mmol·m-2·s-1) 40.65 ± 2.85a 40.83 ± 2.74a ?41.59 51.49 ± 3.52a 51.62 ± 3.45a ?51.96
暗呼吸速率 Dark respiration, Rd (mmol·m-2 ·s-1) 2.42 ± 0.87b 2.99 ± 0.58a ?3.12 3.19 ± 0.56a 3.45 ± 0.42a ?3.51
确定系数 Determination coefficient, R2 0.999 0.999 0.999 0.999 0.999 0.999

Table 3

Photosynthetic electron flows of partitioning C assimilation and photorespiration pathway"

参数 Parameter 处理 Treatment
遮阴 Shading 全日照 Full sunlight
模型I
Model I
模型II
Model II
测量或计算值
Observed value
模型I
Model I
模型II
Model II
测量或计算值
Observed value
最大电子传递速率 Maximum electron transport rate, Jmax (mmol·m-2·s-1) 269.13a 236.68b 236.29b 354.26a 307.91b 306.43b
最大净光合速率 Maximum net photosynthetic rate, Anmax (mmol·m-2·s-1) 31.28a 26.92b 27.23b 45.56a 35.52b 36.17b
碳同化电子流 Electron flow of partitioning C assimilation, JC-max (mmol·m-2·s-1) 166.48a 155.67a 155.54a 219.23a 203.78a 203.26a
光呼吸电子流
Electron flow of partitioning photorespiration assimilation, JO-max (mmol·m-2·s-1)
102.65a 81.01b 80.75b 135.03a 104.13b 103.17b
1 Baker NR ( 2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
doi: 10.1146/annurev.arplant.59.032607.092759 pmid: 18444897
2 Bellucco V, Marras S, Grimmond CSB, J?rvi L, Sirca C, Spano D ( 2017). Modelling the biogenic CO2 exchange in urban and non-urban ecosystems through the assessment of light-response curve parameters. Agricultural and Forest Meteorology, 236, 113-122.
doi: 10.1016/j.agrformet.2016.12.011
3 Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ ( 2011). Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnology and Oceanography, 56, 927-938.
doi: 10.4319/lo.2011.56.3.0927
4 Buckley TN, Diaz-Espejo A ( 2015). Reporting estimates of maximum potential electron transport rate. New Phytologist, 205, 14-17.
doi: 10.1111/nph.13018 pmid: 25196056
5 Calama R, Puértolas J, Madrigal G, Pardos M ( 2013). Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration. Ecological Modelling, 251, 9-21.
doi: 10.1016/j.ecolmodel.2012.11.029
6 Cheng LL, Fuchigami LH, Breen PJ ( 2001). The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves. Journal of Experimental Botany, 52, 1865-1872.
doi: 10.1093/jexbot/52.362.1865
7 Cruz JA, Avenson TJ, Kanazawa A, Takizawa K, Edwards GE, Kramer DM ( 2005). Plasticity in light reactions of photosynthesis for energy production and photoprotection. Journal of Experimental Botany, 56, 395-406.
doi: 10.1093/jxb/eri022 pmid: 15533877
8 dos Santos JUM, de Carvalho GJF, Fearnside PM ( 2013). Measuring the impact of flooding on Amazonian trees: Photosynthetic response models for ten species flooded by hydroelectric dams. Trees, 27, 193-210.
doi: 10.1007/s00468-012-0788-2
9 Dubois JJB, Fiscus EL, Booker FL, Flowers MD, Reid CD ( 2007). Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. New Phytologist, 176, 402-414.
doi: 10.1111/j.1469-8137.2007.02182.x pmid: 17888119
10 Epron D, Godard D, Cornic G, Genty B ( 1995). Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant,Cell & Environment, 18, 43-51.
doi: 10.1111/j.1365-3040.1995.tb00542.x
11 Farquhar GD, Busch FA ( 2017). Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: A model. New Phytologist, 214, 570-584.
doi: 10.1111/nph.14512 pmid: 28318033
12 Farquhar GD, Caemmerers S, Berry JA ( 1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
doi: 10.1007/BF00386231 pmid: 24306196
13 Fila G, Badeck FW, Meyer S, Cerovic Z, Ghashghaie J ( 2006). Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. Journal of Experimental Botany, 57, 2687-2695.
doi: 10.1093/jxb/erl040 pmid: 16837534
14 Gao S, Yan Q, Chen L, Song Y, Li J, Fu C, Dong M ( 2017 a). Effects of ploidy level and haplotype on variation of photosynthetic traits: Novel evidence from two Fragaria species. PLOS ONE, 12, e0179899. DOI: 10.1371/journal.? pone.0179899.
doi: 10.1371/journal.pone.0179899 pmid: 28644876
15 Gao Y, Xia JB, Chen YP, Zhao YY, Kong QX, Lang Y ( 2017b). Effects of extreme soil water stress on photosynthetic efficiency and water consumption characteristics of Tamarix chinensis in China’s Yellow River Delta. Journal of Forestry Research, 28, 491-501.
doi: 10.1007/s11676-016-0339-6
16 Guo W, Zhan SY, Yin H, Li XY, Lü X, Yang L, Wang Y ( 2016). Effect of enhanced UV-B radiation on photosynthetic electron transport and light response characteristics of japonica. Journal of Nanjing Agricultural University, 39, 603-610.
doi: 10.7685/jnau.201508030
[ 郭巍, 战莘晔, 殷红, 李雪莹, 吕晓, 杨璐, 王一 ( 2016). UV-B辐射增强对粳稻光合电子传递与光响应特性的影响. 南京农业大学学报, 39, 603-610.]
doi: 10.7685/jnau.201508030
17 Harley PC, Sharkey TD ( 1991). An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynthesis Research, 27, 169-178.
doi: 10.1007/BF00035838 pmid: 24414689
18 Hu WH, Ye ZP, Yan XH, Yang XS ( 2017). PSII function and intrinsic characteristics of light-harvesting pigment molecules for sun- and shading-leaf in Magnolia grandiflora during overwintering. Bulletin of Botanical Research, 37, 281-287.
[ 胡文海, 叶子飘, 闫小红, 杨旭升 ( 2017). 越冬期广玉兰阳生叶和阴生叶PSII功能及捕光色素分子内禀特性的比较研究. 植物研究, 37, 281-287.]
19 Je?ilová E, No?ková-Hlavá?ková V, Duchoslav M ( 2015). Photosynthetic characteristics of three ploidy levels of Allium oleraceum L. (Amaryllidaceae) differing in ecological amplitude. Plant Species Biology, 30, 212-224.
doi: 10.1111/1442-1984.12053
20 Kang HJ, Li H, Tao YL, Zhang HL, Quan W, Ouyang Z ( 2015). Discussion on simultaneous measurements of leaf gas exchange and chlorophyll fluorescence for estimating photosynthetic electron allocation. Acta Ecologica Sinica, 35, 1217-1224.
doi: 10.5846/stxb201304220774
[ 康华靖, 李红, 陶月良, 张海利, 权伟, 欧阳竹 ( 2015). 气体交换与荧光同步测量估算植物光合电子流的分配. 生态学报, 35, 1217-1224.]
doi: 10.5846/stxb201304220774
21 Kirchhoff H, Haase W, Wegner S, Danielsson R, Ackermann R, Albertsson P ( 2007). Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Biochemistry, 46, 11169-11176.
doi: 10.1021/bi700748y
22 Leng HB, Qin J, Ye K, Feng SC, Gao K ( 2014). Comparison of light response models of photosynthesis in Nelumbo nucifera leaves under different light conditions. Chinese Journal of Applied Ecology, 25, 2855-2860.
[ 冷寒冰, 秦俊, 叶康, 奉树成, 高凯 ( 2014). 不同光照环境下荷花叶片光合光响应模型比较. 应用生态学报, 25, 2855-2860.]
23 Li XN, Brestic M, Tan DX, Zivcak M, Zhu XC, Liu SQ, Song FB, Reiter RJ, Liu FL ( 2018). Melatonin alleviates low PSI-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat. Journal of Pineal Research, 64, DOI: 10.1111/jpi.12453.
doi: 10.1111/jpi.12453 pmid: 29149482
24 Li XN, Hao CL, Zhong JW, Liu FL, Cai J, Wang X, Zhou Q, Dai TB, Cao WX, Jiang D ( 2015). Mechano-stimulated modifications in the chloroplast antioxidant system and proteome changes are associated with cold response in wheat. BMC Plant Biology, 15, 1-13.
doi: 10.1186/s12870-014-0410-4 pmid: 25592487
25 Liang XY, Liu SR ( 2017). A review on the FvCB biochemical model of photosynthesis and the measurement of A-Ci curves. Chinese Journal of Plant Ecology, 41, 693-706.
doi: 10.17521/cjpe.2016.0283
[ 梁星云, 刘世荣 ( 2017). FvCB生物化学光合模型及A-Ci曲线测定. 植物生态学报, 41, 693-706.]
doi: 10.17521/cjpe.2016.0283
26 Long SP, Bernacchi CJ ( 2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54, 2393-2401.
doi: 10.1093/jxb/erg262 pmid: 14512377
27 Mayoral C, Calama R, Sánchez-González M, Pardos M ( 2015). Modelling the influence of light, water and temperature on photosynthesis in young trees of mixed Mediterranean forests. New Forests, 46, 485-506.
doi: 10.1007/s11056-015-9471-y
28 Miao Z, Xu M, Lathrop RG, Wang Y ( 2009). Comparison of the A-Cc curve fitting methods in determining maximum ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration. Plant, Cell & Environment, 32, 109-122.
29 Niyogi KK, Truong TB ( 2013). Evolution of flexible non-?photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Current Opinion in Plant Biology, 16, 307-314.
doi: 10.1016/j.pbi.2013.03.011 pmid: 23583332
30 Park KS, Bekhzod K, Kwon JK, Son JE ( 2016). Development of a coupled photosynthetic model of sweet basil hydroponically grown in plant factories. Horticulture, Environment and Biotechnology, 57, 20-26.
doi: 10.1007/s13580-016-0019-7
31 Quiroz R, Loayza H, Barreda C, Gavilán C, Posadas A, Ramírez DA ( 2017). Linking process-based potato models with light reflectance data: Does model complexity enhance yield prediction accuracy? European Journal of Agronomy, 82, 104-112.
doi: 10.1016/j.eja.2016.10.008
32 Ralph PJ, Gademann R ( 2005). Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Botany, 82, 222-237.
doi: 10.1016/j.aquabot.2005.02.006
33 Ser?dio J, Ezequiel J, Frommlet J, Laviale M, Lavaud J ( 2013). A method for the rapid generation of nonsequential light-response curves of chlorophyll fluorescence. Plant Physiology, 163, 1089-1102.
doi: 10.1104/pp.113.225243 pmid: 24067245
34 Shimada A, Kubo T, Tominaga S, Yamamoto M ( 2017). Effect of temperature on photosynthesis characteristics in the passion fruits ‘Summer Queen’ and ‘Ruby Star’. The Horticulture Journal, 86, 194-199.
doi: 10.2503/hortj.OKD-023
35 Smith E ( 1937). The influence of light and carbon dioxide on photosynthesis. Journal of General Physiology, 20, 807-830.
doi: 10.1085/jgp.20.6.807 pmid: 77
36 Sun J, Sun J, Feng Z ( 2015). Modelling photosynthesis in flag leaves of winter wheat (Triticum aestivum) considering the variation in photosynthesis parameters during developpment. Functional Plant Biology, 42, 1036-1044.
doi: 10.1071/FP15140
37 Takahashi S, Badger M ( 2011). Photoprotection in plants: A new light on photosystem II damage. Trends in Plant Sciences, 16, 53-59.
doi: 10.1016/j.tplants.2010.10.001 pmid: 21050798
38 Tang XL, Cao YH, Gu LH, Zhou BZ ( 2017a). Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model. Acta Ecologica Sinica, 37, 6633-6645.
[ 唐星林, 曹永慧, 顾连宏, 周本智 ( 2017a). 基于FvCB模型的叶片光合生理对环境因子的响应研究进展. 生态学报, 37, 6633-6645.]
39 Tang XL, Zhou BZ, Zhou Y, Ni X, Cao YH, Gu LH ( 2017b). Photo-physiological and photo-biochemical characteristics of several herbaceous and woody species based on FvCB model. Chinese Journal of Applied Ecology, 28, 1482-1488.
[ 唐星林, 周本智, 周燕, 倪霞, 曹永慧, 顾连宏 ( 2017b). 基于FvCB模型的几种草本和木本植物光合生理生化特性. 应用生态学报, 28, 1482-1488.]
40 Thornley JHM ( 1976). Mathematical Models in Plant Physiology. Academic Press, London. 86-110.
41 Valentini R, Epron D, de Angelis P, Matteucci G, Dreyer E ( 1995). In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Tukey oak (Q. cerris L.) leaves: Diurnal cycles under different levels of water supply. Plant, Cell & Environment, 18, 631-640.
doi: 10.1111/j.1365-3040.1995.tb00564.x
42 von Caemmerer S ( 2000). Biochemical Models of Leaf Photosynthesis. Techniques in Plant Sciences No. 2. Collingwood. CSIRO Publishing, Australia, Victoria.
43 von Caemmerer S ( 2013). Steady-state models of photosynthesis. Plant, Cell & Environment, 36, 1617-1630.
doi: 10.1111/pce.12098 pmid: 23496792
44 von Caemmerer S, Farquhar GD ( 1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376-387.
doi: 10.1007/BF00384257
45 Wang HZ, Han L, Xu YL, Niu JL, Yu J ( 2017). Simulated photosynthetic responses of Populus euphratica during drought stress using light-response models. Acta Ecologica Sinica, 37, 2315-2324.
doi: 10.5846/stxb201511242373
[ 王海珍, 韩路, 徐雅丽, 牛建龙, 于军 ( 2017). 干旱胁迫下胡杨光合光响应过程模拟与模型比较. 生态学报, 37, 2315-2324.]
doi: 10.5846/stxb201511242373
46 Wang RR, Xia JB, Yang JH, Zhao YY, Liu JT, Sun JK ( 2013). Comparison of light response models of photosynthesis in leaves of Periploca sepium under drought stress in sand habitat formed from seashells. Chinese Journal of Plant Ecology, 37, 111-121.
doi: 10.3724/SP.J.1258.2013.00012
[ 王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽 ( 2013). 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较. 植物生态学报, 37, 111-121.]
doi: 10.3724/SP.J.1258.2013.00012
47 White AJ, Critchley C ( 1999). Rapid light curves: A new fluorescence method to asses the state of the photosynthetic apparatus. Photosynthesis Research, 59, 63-72.
doi: 10.1023/A:1006188004189
48 Ye ZP ( 2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45, 637-640.
doi: 10.1007/s11099-007-0110-5
49 Ye ZP, Hu WH, Xiao YA, Fan DY, Yi JH, Duan SH, Yan XH, He L, Zhang SS ( 2014). A mechanistic model of light-response of photosynthetic electron flow and its application. Chinese Journal of Plant Ecology, 38, 1241-1249.
doi: 10.3724/SP.J.1258.2014.00119
[ 叶子飘, 胡文海, 肖宜安, 樊大勇, 尹建华, 段世华, 闫小红, 贺俐, 张斯斯 ( 2014). 光合电子流对光响应的机理模型及其应用. 植物生态学报, 38, 1241-1249.]
doi: 10.3724/SP.J.1258.2014.00119
50 Ye ZP, Robakowski P, Suggett JD ( 2013a). A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules. Planta, 237, 837-847.
doi: 10.1007/s00425-012-1790-z pmid: 23138268
51 Ye ZP, Suggett JD, Robakowski P, Kang HJ ( 2013b). A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of PSII in C3 and C4 species. New Phytologist, 152, 1251-1262.
doi: 10.1111/nph.12242 pmid: 23521402
52 Yin XY, Struik PC, Romero P, Harbinson J, Evers JB, van der Putten PEL, Vos J ( 2009). Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: A critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant, Cell & Environment, 32, 448-464.
[1] YE Zi-Piao, DUAN Shi-Hua, AN Ting, KANG Hua-Jing. Construction of CO2-response model of electron transport rate in C4 crop and its application [J]. Chin J Plant Ecol, 2018, 42(10): 1000-1008.
[2] LI Li-Yuan, LI Jun, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru. Simulation on the light-response curves of electron transport rate of Quercus variabilis and Robinia pseudoacacia leaves in the Xiaolangdi area, China [J]. Chin J Plant Ecol, 2018, 42(10): 1009-1021.
[3] Dan WANG, Yun-Zhou QIAO, Bao-Di DONG, Jing GE, Ping-Guo YANG, Meng-Yu LIU. Differential effects of diurnal asymmetric and symmetric warming on yield and water utilization of soybean [J]. Chin J Plan Ecolo, 2016, 40(8): 827-833.
[4] Zi-Piao YE, Wen-Hai HU, Xiao-Hong YAN. Comparison on light-response models of actual photochemical efficiency in photosystem II [J]. Chin J Plan Ecolo, 2016, 40(11): 1208-1217.
[5] YE Zi-Piao, HU Wen-Hai, XIAO Yi-An, FAN Da-Yong, YIN Jian-Hua, DUAN Shi-Hua, YAN Xiao-Hong, HE Li, and ZHANG Si-Si. A mechanistic model of light-response of photosynthetic electron flow and its application [J]. Chin J Plan Ecolo, 2014, 38(11): 1241-1249.
[6] Jizheng He,Jing Li,Yuanming Zheng. Thoughts on the microbial diversity-stability relationship in soil ecosystems [J]. Biodiv Sci, 2013, 21(4): 411-420.
[7] Hui Wang, Zhongjie Gao, Dan Zhang, Hao Cheng, Deyue Yu. Identification of Genes with Soybean Resistance to Common Cutworm by Association Analysis [J]. Chin Bull Bot, 2011, 46(5): 514-524.
[8] ZHANG Xu-Cheng, YU Xian-Feng, GAO Shi-Ming. Effects of nitrogen application rates on photosynthetic energy utilization in wheat leaves under elevated atmospheric CO2 concentration [J]. Chin J Plan Ecolo, 2010, 34(10): 1196-1203.
[9] Yunlai Gao;Bingchen Yao;Chunyan Liu;Wenfu Li;Hongwei Jiang;Candong Li;Wenbo Zhang;Guohua Hu;*;Qingshan Chen*. Genetic Diversity Analysis by Simple Sequence Repeats of Soybean (Glycine max) Varieties from Heilongjiang [J]. Chin Bull Bot, 2009, 44(05): 556-561.
[10] SONG Kai-Shan, ZHANG Bai, WANG Zong-Ming, LIU Dian-Wei, LIU Huan-Jun. SOYBEAN CHLOROPHYLL A CONCENTRATION ESTIMATION MODELS BASED ON WAVELET-TRANSFORMED, IN SITU COLLECTED, CANOPY HYPERSPECTRAL DATA [J]. Chin J Plan Ecolo, 2008, 32(1): 152-160.
[11] Zhou San, Zhou Ming, Zhang Shuo, Liu Zhan-Tao, Zhao Yong-Juan, Yu Tian-Zhen, Yue Wang. ISOFLAVONE ACCUMULATION IN WILD SOYBEAN UNDER SALINE CONDITIONS AND ITS ECOLOGICAL SIGNIFICANCE [J]. Chin J Plan Ecolo, 2007, 31(5): 930-936.
[12] ZU Yuan-Gang, ZHANG Zhong-Hua, WANG Wen-Jie, YANG Feng-Jian, HE Hai-Sheng. DIFFERENT CHARACTERISTICS OF PHOTOSYNTHESIS IN STEMS AND LEAVES OF MIKANIA MICRANTH [J]. Chin J Plan Ecolo, 2006, 30(6): 998-1004.
[13] Zhenguo Liu, Zhenqing Li, Ming Dong. Model analysis of plant community dynamics [J]. Biodiv Sci, 2005, 13(3): 269-277.
[14] QIANG Wei-Ya, CHEN Tuo, TANG Hong-Guan, FENG Hu-Yuan, AN Li-Zhe, WANG Xun-Ling. Effect of Cadmium and Enhanced UV-B Radiation on Soybean Root Excretion [J]. Chin J Plan Ecolo, 2003, 27(3): 293-298.
[15] LI Han-Bing, BAI Ke-Zhi, HU Yu-Xi, KUANG Ting-Yun, LIN Jin-Xing. Stomatal Frequency on some Non-Leaf Organs of Four Crop Species and Their Significance in Photosynthesis(in English) [J]. Chin J Plan Ecolo, 2002, 26(3): 351-354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TIAN Shi-Ping, FAN Qing, XU Yong, WANG Yi. Effects of Trichosporon sp. in Combination with Calcium and Fungicide on Biocontrol of Postharvest Diseases in Apple Fruits[J]. J Integr Plant Biol, 2001, 43(5): 501 -505 .
[2] Keng Yi-Li, Chen Shou-Liang. Material of Chinese Gramineae—Apocopis Nees[J]. J Syst Evol, 1975, 13(1): 56 -63 .
[3] Zhou Jilun. An Approach on the Multifactors of Ecological Systematic Analysis of Vegetation-A Review for the Works of 《Classification of Plant Communities》 by Whittaker R.H.[J]. Chin J Plan Ecolo, 1981, 5(2): 159 .
[4] Wang Zhi-An. A Karyological Study on Three Taxa of Fritillaria[J]. J Syst Evol, 1992, 30(1): 69 -72 .
[5] CHEN Yi-Ling. Six new species of Impatiens L. from China[J]. J Syst Evol, 1999, 37(1): 88 -99 .
[6] Qin Ai, Gang Liang, Huimin Zhang, Diqiu Yu*. Control of sulfate concentration by miR395-targeted APS genes in Arabidopsis thaliana[J]. Plant Diversity, 2016, 38(02): 114 -123 .
[7] ZHANG Mei-De, CHEN Wen-Hong, SHUI Yu-Min. Miscellaneous notes on the tribe Gardenieae (Rubiaceae) from China and Vietnam[J]. J Syst Evol, 2007, 45(1): 90 -93 .
[8] Jie Gao, Peng Zhang, Xing Zhang, Yanhong Liu. Multi-scale analysis on species diversity within a 40-ha old-growth temperate forest[J]. Plant Diversity, 2018, 40(02): 45 -49 .
[9] Zhijun Dong, Hui Huang, Liangmin Huang, Yuanchao Li, Xiubao Li. PCR-RFLP analysis of large subunit rDNA of symbiotic dinoflagellates in scleractinian corals from Luhuitou fringing reef of Sanya, Hainan[J]. Biodiv Sci, 2008, 16(5): 498 -502 .
[10] Tsi Zhan-Huo. Nothodoritis Tsi—A New Genus of Orchidaceae from China[J]. J Syst Evol, 1989, 27(1): 58 -61 .