Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (7): 734-740.doi: 10.17521/cjpe.2018.0061

• Research Articles • Previous Articles     Next Articles

Characterization of nutrient elements at different leaf positions in Phragmites australis in Songnen degraded grassland

GUO Rui1,2,*(), ZHOU Ji3, LIU Qi1,2, GU Feng-Xue1,2   

  1. 1 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing 100081, China
    3 Land Consolidation and Rehabilitation Centre, the Ministry of Land and Resources, Beijing 100034, China
  • Online:2018-06-01 Published:2018-07-20
  • Contact: Rui GUO E-mail:guorui01@caas.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(31570328)

Abstract:

Aims This study was performed to compare the growth and characteristics of nutrient elements at different leaf positions of reed (Phragmites australis) under salinity stress. The adaptive mechanisms by which reeds at a Songnen grassland tolerate salinity stress were determined.

Methods Samples were collected from normal grassland, moderate degraded grassland and severe degraded grassland, respectively. Plant height, shoot dry mass, and nutrient elements at different leaf positions of reeds were measured.

Important findings The Na+ content, total salt content and pH value of soil are important factors that determine soil salinity in the Songnen grassland. The degree of soil salinity was aggravated stepwise from the single dominant reed communities to the reed coexisted with Suaeda salsa communities. Height and shoot dry mass decreased with increased salinity. The profiles of 10 key nutrient elements were measured, namely, K, Na, Ca, Mg, Fe, Cu, Zn, Mn, P, and B. Results from the principal component analysis indicated that all samples were distributed within the 95% confidence interval. The results showed that K and P contents decreased with lowered leaf positions; while Na, Ca, and Mg showed the opposite distribution trends. Fe and Cu contents were less in young leaves than in the other leaves, Mn accumulated in the old leaves. However, a large amount of Zn accumulated in the young leaves. No obvious change in B was observed. Thus, salinity stress produced a small effect on the distribution of nutrients in young leaves, but strongly affected the older leaves. Under salinity stress, old leaves accumulated more Na+ to protect the young leaves from ion harm. High accumulation of Ca, Mg, Fe, and Cu in mature and old leaves was more beneficial to maintain and protect the function of photosynthesis. The increased K and P contents in the young leaves could provide the necessary nutrition and improve the salinity resistance of reed. This process contributes to the physiological response strategy of reed under salinity stress.

Key words: Songnen grassland, Phragmites australis, nutrient elements, leaves positions, degraded grassland

Table 1

Soil salinity characteristics in the different degrees of degraded Songnen grasslands (mean ± SE, n = 5)"

土壤盐碱特征
和养分
Soil salinity characteristics and nutrient contents
不同退化程度松嫩草地
The different degrees of retrogressive grassland
正常草地
Normal
grassland
中度退化草地
Moderate degraded grassland
重度退化草地
Severe degraded grassland
K+ (μmol·g-1) 0.41 ± 0.06c 1.87 ± 0.19b 2.73 ± 0.24a
Na+ (μmol·g-1) 6.58 ± 0.55c 25.22 ± 1.98b 42.64 ± 6.87a
Ca2+ (μmol·g-1) 1.41 ± 0.10a 1.01 ± 0.09b 0.78 ± 0.02b
Mg2+ (μmol·g-1) 0.42 ± 0.03c 1.23 ± 0.46b 5.91 ± 0.68a
CO32- (μmol·g-1) 2.77 ± 0.40c 10.02 ± 1.55b 18.35 ± 2.76a
HCO3- (μmol·g-1) 9.34 ± 0.76b 21.11 ± 1.98a 23.24 ± 3.65a
Cl- (μmol·g-1) 1.66 ± 0.23c 5.87 ± 0.55b 16.06 ± 4.01a
SO42- (μmol·g-1) 0.53 ± 0.01c 2.21 ± 0.54b 4.36 ± 0.47a
TSC (μmol·g-1) 23.12 ± 1.88c 68.54 ± 7.02b 114.07 ± 16.32a
pH值 pH value 8.72 ± 0.37c 9.55 ± 0.83b 10.18 ± 0.72a
EC (μs·cm-1) 128.97 ± 3.44c 450.54 ± 11.34b 698.86 ± 22.70a

Fig. 1

Changes of plant height and shoot dry mass of Phragmites communis in different degrees of degraded grasslands (mean ± SE, n = 5). Different lowercase letters indicate significant differences among the different degrees of degraded grasslands (p < 0.05). NG , normal grassland; MDG , moderate degraded grassland; SDG , severe degraded grassland."

Fig. 2

Principal component analysis (PCA) score plots showing the nutrition elements trajectory of young leaves, mature leaves and old leaves in different habitats. A, Normal grassland. B, Moderate degraded grassland. C, Severe degraded grassland."

Table 2

The contents of nutrient elements in different leaf positions of Phragmites communis in the different degrees of degraded Songnen grasslands (μmol·g-1) (mean ± SE, n = 5)"

营养
元素
Nutrients
elements
不同退化程度松嫩草地不同叶位叶片 The different degrees of degraded grassland/The different leaf positions
正常草地 Normal grassland 中等退化草地 Moderate degraded grassland 严重退化草地 Severe degraded grassland
幼叶
Young leaf
功能叶
Mature leaf
老叶
Old leaf
幼叶
Young leaf
功能叶
Mature leaf
老叶
Old leaf
幼叶
Young leaf
功能叶
Mature leaf
老叶
Old leaf
钾 K 430.54 ± 21.69a 301.50 ± 14.26b 275.26 ± 31.68b 371.38 ± 11.57a 261.71 ± 8.10b 262.77 ± 39.81b 349.01 ± 28.25a 241.43 ± 33.59b 220.04 ± 20.44b
钠 Na 15.39 ± 2.70c 31.93 ± 2.49b 103.10 ± 19.37a 16.12 ± 2.39b 41.75 ± 4.84ab 73.02 ± 6.32a 44.73 ± 3.32c 119.39 ± 21.31b 163.18 ± 28.34a
钙 Ca 27.65 ± 1.37c 64.29 ± 2.14b 171.74 ± 1.70a 32.89 ± 5.46c 61.53 ± 7.40b 104.40 ± 9.08a 24.71 ± 2.73c 57.94 ± 6.15b 103.66 ± 10.49a
镁 Mg 26.61 ± 2.71c 36.84 ± 4.30b 77.04 ± 10.79a 27.31 ± 4.10c 42.64 ± 3.70b 63.63 ± 6.28a 24.20 ± 2.34c 37.55 ± 2.86b 59.32 ± 9.35a
铁 Fe 2.16 ± 0.20b 2.64 ± 0.33a 3.21 ± 0.26a 2.63 ± 0.21b 3.41 ± 0.28a 3.43 ± 0.32a 1.70 ± 0.20c 2.77 ± 0.24b 4.33 ± 0.60a
铜 Cu 1.41 ± 0.30b 2.28 ± 0.29a 1.88 ± 0.26a 2.31 ± 0.12b 3.50 ± 0.56a 3.61 ± 0.86a 1.64 ± 0.37b 2.04 ± 0.42b 2.94 ± 0.38a
锌 Zn 0.54 ± 0.03a 0.37 ± 0.08b 0.26 ± 0.05b 0.48 ± 0.07a 0.35 ± 0.07b 0.30 ± 0.08b 0.38 ± 0.04a 0.28 ± 0.05b 0.29 ± 0.06b
锰 Mn 0.62 ± 0.23b 0.86 ± 0.38b 1.40 ± 0.86a 0.30 ± 0.10b 0.30 ± 0.08b 0.45 ± 0.05a 0.35 ± 0.02b 0.47 ± 0.15b 1.09 ± 0.12a
磷 P 67.26 ± 4.58a 35.04 ± 2.63b 26.52 ± 1.06c 41.09 ± 5.89a 22.40 ± 2.24b 15.97 ± 1.85c 39.47 ± 3.45a 30.31 ± 4.23b 20.60 ± 2.67c
硼 B 2.48 ± 0.68a 1.49 ± 0.64a 1.55 ± 0.45a 0.96 ± 0.60a 0.95 ± 0.20a 0.86 ± 0.21a 1.55 ± 0.31a 2.42 ± 0.81a 2.00 ± 0.29a
[1] Asaeda T, Nam LH, Hietz P, Tanaka N, Karunaralne S ( 2002). Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: Implications of duration of aerobic conditions for litter mineralization and sedimentation. Aquatic Botany, 73, 223-239.
doi: 10.1016/S0304-3770(02)00027-X
[2] Dai X, Zhang BJ, Zhang Q, Mao SG ( 2009). Effect of different concentrations of manganese treatments on the growth of wheat seedlings and the activities of SOD·POD under salt stress. Journal of Anhui Agriculture Science, 37, 13000-13001.
[ 戴鑫, 张边江, 章琦, 毛善国 ( 2009). 盐胁迫下不同浓度的锰处理对小麦幼苗生长及SOD·POD的影响. 安徽农业科学, 37, 13000-13001.]
[3] Hai X, Wan ZJ, Yu SP, Lou XZ, Sun GY ( 2004). The restoration of wetlands in Songnen Plain l50 years ago. Journal of Northeast Normal University Natural Science Edition, 36(2), 75-81.
doi: 10.3321/j.issn:1000-1832.2004.02.014
[ 海霞, 万忠娟, 于少鹏, 罗新正, 孙广友 ( 2004). 松嫩平原距今150年湿地景观结构重建. 东北师大学报自然科学版, 36(2), 75-81.]
doi: 10.3321/j.issn:1000-1832.2004.02.014
[4] Kiviat E ( 2013). Ecosystem services of phragmites in North America with emphasis on habitat functions. A nnals of Botany Plants, 5, 1-29.
doi: 10.1093/aobpla/plt008 pmid: 4104640
[5] Kobayashi T, Nishizawa NK ( 2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63, 131-152.
doi: 10.1146/annurev-arplant-042811-105522 pmid: 22404471
[6] Li XJ, Li QS, Wang ZC, Liu XT ( 2002). A research on characteristics and rational exploitation of soda saline land in the western Songnen Plain. Research of Agricultural Modernization, 23, 361-400.
doi: 10.3969/j.issn.1000-0275.2002.05.010
[ 李秀军, 李取生, 王志春, 刘兴土 ( 2002). 松嫩平原西部盐碱地特点及合理利用研究. 农业现代化研究, 23, 361-400.]
doi: 10.3969/j.issn.1000-0275.2002.05.010
[7] Liu XX, Yang YF ( 2012). Allometry analysis of reproductive ramets of Phragmites australis populations from different habitats in the Songnen Plain of China.Acta Prataculturae Sinica, 21, 313-318.
doi: 10.11686/cyxb20120438
[ 刘秀香, 杨允菲 ( 2012). 松嫩平原不同生境芦苇生殖分株的异速生长分析. 草业学报, 21, 313-318.]
doi: 10.11686/cyxb20120438
[8] Liu ZY, Tang YL, Luo ZC (1982). Atlas of Major Crop Malnutrition. Agriculture Press, Beijing. 47-48.
[ 刘芷宇, 唐永良, 罗质超 (1982). 主要作物营养失调症状图谱. 农业出版社,北京. 47-48.]
[9] Lu JL (2003). Plant Nutriology. China Agricultural University Press, Beijing.
[ 陆景陵 (2003). 植物营养学. 中国农业大学出版社, 北京.]
[10] Munns R, Tester M ( 2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911
[11] Nakamura T, Ishitani M, Harinasut P, Nomura M, Takabe T, Takabe T ( 1996). Distribution of glycinebetaine in old and young leaf blades of salt-stressed barley plants. Plant and Cell Physiology, 37, 873-877.
doi: 10.1093/oxfordjournals.pcp.a029026
[12] Pan RC (2004). Plant Physiology. Higher Education Press, Beijing.
[ 潘瑞炽 (2004). 植物生理学. 高等教育出版社, 北京.]
[13] Qiu T ( 2014). Biological and ecological characterization of Phragmites australis in Songnen Prairie. Acta Pratacultural Science, 31, 300-305.
doi: 10.11829\j.issn.1001-0629.2013-0086
[ 邱天 ( 2014). 松嫩平原芦苇的生物学和生态学特征. 草业科学, 31, 300-305.]
doi: 10.11829\j.issn.1001-0629.2013-0086
[14] Song J, Yang YX, Nie LL, Zhang Y, Liu ZQ ( 2010). Comparative study on physiological characteristics of salt tolerance between Phragmites communis and Puccinellia tenuiflora. Tianjin Agricultural Sciences, 16(6), 10-12.
doi: 10.3969/j.issn.1006-6500.2010.06.004
[ 宋建, 杨迎霞, 聂莉莉, 张越, 刘仲齐 ( 2010). 芦苇和碱茅耐盐生理特性的比较分析. 天津农业科学, 16(6), 10-12.]
doi: 10.3969/j.issn.1006-6500.2010.06.004
[15] Wang F, Liu P, Zhu JW ( 2004). Effect of magnesium (Mg) on root activity, chlorophyll content and membrane permeability of soybean. Journal of Agro-Environment Science, 23, 235-239.
[ 王芳, 刘鹏, 朱靖文 ( 2004). 镁对大豆根系活力叶绿素含量和膜透性的影响. 农业环境科学学报, 23, 235-239.]
[16] Wang F, Wan SB, Meng QW, Li XG ( 2012). Regulation of Ca 2+ in plant response mechanisms under salt stress . Life Science Research, 16, 362-367.
doi: 10.3969/j.issn.1007-7847.2012.04.015
[ 王芳, 万书波, 孟庆伟, 李新国 ( 2012). Ca2+在植物盐胁迫响应机制中的调控作用 . 生命科学研究, 16, 362-367.]
doi: 10.3969/j.issn.1007-7847.2012.04.015
[17] Xia J, Wishart DS ( 2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6, 743-760.
doi: 10.1038/nprot.2011.319 pmid: 21637195
[18] Xiang M, Ye HC, Li GF, Chen JL ( 2000). Comparison of some characteristics between Phragmites communis and its salt tolerant variant. Acta Botanica Sinica, 42, 1126-1130.
doi: 10.3321/j.issn:1672-9072.2000.11.005
[ 祥明, 叶和春, 李国凤, 陈建林 ( 2000). 芦苇耐盐变异体与野生型植株某些特性的比较. 植物学报, 42, 1126-1130.]
doi: 10.3321/j.issn:1672-9072.2000.11.005
[19] Yan DF, Yang YF, Zhao MQ ( 2012). Phenotypic plasticity of leaves on reed populations in heterogeneous habitats in the Songnen Plains of China. Journal of Northeast Normal University (Natural Science Edition), 44(2), 78-83.
[ 严德福, 杨允菲, 赵明清 ( 2012). 松嫩平原异质生境芦苇种群叶片的表型可塑性. 东北师大学报(自然科学版), 44(2), 78-83.]
[20] Yang F, Deng W, Yang JF, Zhang GX, Li XJ ( 2006). Effects of soil moisture and electrical conductivity on growth and population distribution of Phoebe chekiangensis.Journal of Soil and Water Conservation, 20, 199-201.
[ 杨帆, 邓伟, 杨建锋, 章光新, 李秀军 ( 2006). 土壤含水量和电导率对芦苇生长和种群分布的影响. 水土保持学报, 20, 199-201]
[21] Yang YF, Lang HQ ( 1998). A study of population regulation of Phragmites communis as a clonal plant in different ecological conditions. Acta Pratacultural Science, 7(2), 1-9.
[ 杨允菲, 郎惠卿 ( 1998). 不同生态条件下芦苇无性系种群调节分析. 草业学报, 7(2), 1-9.]
[22] Yasar F, Uzal O, Tufenkci S, Yildiz K ( 2006). Ion accumulation in different organs of green bean genotypes grown under salt stress. Plant Soil and Environment, 52, 476-480.
doi: 10.1626/pps.9.83
[23] Zhang J, Wu LH, Wang MY ( 2007). Effect of iron and nitrogen mixed fertilizers on the content of Fe, Zn, Ca, Mg and protein in brown rice. Journal of Agro-Environment Science, 26, 122-125.
[ 张进, 吴良欢, 王敏艳 ( 2007). 铁氮配施对稻米中铁、锌、钙、镁和蛋白质含量的影响. 农业环境科学学报, 26, 122-125.]
[24] Zhang SG, Qiu JJ, Zhang H ( 2000). Salinized soil resources in China and their comprehensive harnessing. Chinese Journal of Agricultural Resources and Regional Planning, 21(1), 52-56.
[ 张士功, 邱建军, 张华 ( 2000). 我国盐渍土资源及其综合治理. 中国农业资源与区划, 21(1), 52-56.]
[25] Zhang X, Xiao XL, Li PB, Sun YF, Guo WY, Yao YA ( 2015). Physiological responses of Populus alba var. pyramidalis leaves with different maturity to alkali stress. Scientia Silvae Sinicae, 51(12), 9-16.
doi: 10.11707/j.1001-7488.20151202
[ 张选, 肖薪龙, 李鹏勃, 孙玉芳, 郭琬莹, 姚银安 ( 2015). 新疆杨不同成熟度叶片在碱胁迫下的生理响应. 林业科学, 51(12), 9-16.]
doi: 10.11707/j.1001-7488.20151202
[26] Zhang YX ( 2005). Effect of manganese on yield in different soybean genetic types . Chinese Agricultural Science Bulletin, 2, 245-247.
doi: 10.3969/j.issn.1000-6850.2005.07.074
[ 张玉先 ( 2005). 锰元素对不同基因型大豆产量的影响. 中国农学通报, 2, 245-247.]
doi: 10.3969/j.issn.1000-6850.2005.07.074
[27] Zhao KF, Feng LT, Zhang SQ ( 1998). Adaptive physiology of different ecotypes of Phragmites communis to salinity in the Yellow River Delta I. Osmotica and their contributions to the osmotic adjustment. Acta Ecologica Sinica, 18, 1-10.
doi: 10.3321/j.issn:1000-0933.1998.05.003
[ 赵可夫, 冯立田, 张圣强 ( 1998). 黄河三角洲不同生态型芦苇对盐度适应生理的研究I. 渗透调节物质及其贡献. 生态学报, 18, 1-10.]
doi: 10.3321/j.issn:1000-0933.1998.05.003
[28] Zhao LP, Shang QC, Li CL ( 2000). Present situation and problems of sodic soil improvement and using in Songliao Plain. Journal of Jilin Agricultural University, 22(Suppl.), 79-83, 85.
[ 赵兰坡, 尚庆昌, 李春林 ( 2000). 松辽平原苏打盐碱土改良利用研究现状及问题. 吉林农业大学学报, 22(Suppl.), 79-83, 85.]
[29] Zheng HY, Li JD ( 1995). A preliminary study on the formation of saline-alkali plant communities in the Songnen Plain. Acta Phytoecologica Sinica, 19, 1-12.
doi: 10.1007/BF02007173
[ 郑慧莹, 李建东 ( 1995). 松嫩平原盐碱植物群落形成过程的探讨. 植物生态学报, 19, 1-12.]
doi: 10.1007/BF02007173
[30] Zhu JK ( 2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6, 441-445.
doi: 10.1016/S1369-5266(03)00085-2
[31] Zhuang Y, Sun YX, Wang ZS, Yang LL, Deng ZF, Yao ZG, An SQ ( 2010). Research advances in ecotypes of Phoebe chekiangensis.Acta Ecologica Sinica, 30, 2173-2181.
[ 庄瑶, 孙一香, 王中生, 杨琳璐, 邓自发, 姚志刚, 安树青 ( 2010). 芦苇生态型研究进展. 生态学报, 30, 2173-2181.]
[1] Qun LI, Cheng-Zhang ZHAO, Lian-Chun ZHAO, Jian-Liang WANG, Wei-Tao ZHANG, Wen-Xiu YAO. Empirical relationship between specific leaf area and thermal dissipation of Phragmites australis in salt marshes of Qinwangchuan [J]. Chin J Plan Ecolo, 2017, 41(9): 985-994.
[2] Jing WANG, Shan-Shan WANG, Xian-Guo QIAO, Ang LI, Jian-Guo XUE, Muqier HASI, Xue-Yao ZHANG, Jian-Hui HUANG. Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland [J]. Chin J Plan Ecolo, 2016, 40(10): 980-990.
[3] LIU Bo,LÜ Xian-Guo,JIANG Ming,ZHANG Wen-Guang,WU Hai-Tao. Effects of light and water depth on seed germination of Phragmites australis in the wetlands of Songnen Plain [J]. Chin J Plan Ecolo, 2015, 39(6): 616-620.
[4] CHEN Qing,WANG Yi-Dong,GUO Chang-Cheng,WANG Zhong-Liang. Foliar stable carbon isotope ratios of Phragmites australis and the relevant environmental factors in marsh wetlands in Tianjin [J]. Chin J Plan Ecolo, 2015, 39(11): 1044-1052.
[5] SONG Yan-Tao, ZHOU Dao-Wei, LI Qiang, WANG Ping, and HUANG Ying-Xin. Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China [J]. Chin J Plan Ecolo, 2012, 36(3): 222-230.
[6] GENG Yun-Xia, LI Yi-Ling, ZHU Sha, ZHU Jing-Jing, JIANG Jun-Cheng, NIU Hong-Hao, and JIE Dong-Mei. Morphological changes of phytoliths in Leymus chinensis under saline-alkali stress [J]. Chin J Plan Ecolo, 2011, 35(11): 1148-1155.
[7] ZHOU Dao-Wei, ZHANG Zheng-Xiang, JIN Ying-Hua, WANG Ping, WANG Xue-Zhi. Regionalization and distribution pattern of vegetation of Northeast China [J]. Chin J Plan Ecolo, 2010, 34(12): 1359-1368.
[8] SHANG Zhan-Huan, LONG Rui-Jun, MA Yu-Shou, DING Lu-Ming. SPATIAL HETEROGENEITY AND SIMILARITY OF ADULT PLANTS AND SEEDLINGS IN ‘BLACK SOIL LAND’ SECONDARY WEED COMMUNITY, QINGHAI-TIBETAN PLATEAU [J]. Chin J Plan Ecolo, 2008, 32(5): 1157-1165.
[9] HAN Yan-Lai XU Fang-Sen DUAN Hai-Yan SHI Lei WANG Yun-Hua. Advances in Study on Proteins which Transport Nutrients in Arabidopsis thaliana [J]. Chin Bull Bot, 2003, 20(01): 23-35.
[10] HOU Ji-Hua, ZHOU Dao-Wei, JIANG Shi-Cheng. The Effect of Hill-Building Activities of Ants on the Species Diversity of Plant Communitiesin Songnen Grassland 蚂蚁筑丘活动对松嫩草地植物群落多样性的影响 [J]. Chin J Plan Ecolo, 2002, 26(3): 323-329.
[11] XIANG Wen-Hua, TIAN Da-Lun. Nutrient Cycling in Pinus massonina Stands of Different Age Classes [J]. Chin J Plan Ecolo, 2002, 26(1): 89-95.
[12] YANG Chi, JIA Zhi-Bin, HONG Yang, HAN Xiang-Hong. A Comparative Study on Reproductive Allocation of Mutual Species in Moderate-temperate and Warm-temperate Steppe [J]. Chin J Plan Ecolo, 2002, 26(1): 39-43.
[13] HUANG Jian-Hui, LI Hai-Tao, HAN Xing-Guo, CHEN Ling-Zhi. Nutrient Characteristics of Stemflow and Throughfall in two Coniferous Forest Ecosystems [J]. Chin J Plan Ecolo, 2000, 24(2): 248-251.
[14] YAN Chang-Rong, CHN Ling-Zhi, HUANG Jian-Hui, HAN Xing-Guo. A Study on Nutrient Cycling of Pine Stands in Eastern art of China [J]. Chin J Plan Ecolo, 1999, 23(4): 351-360.
[15] ZHANG Zhong-Heng;ZHANG Chong-Bang and LI Jian-Dong. Study on the Dynamic Relationship between Puccinellia tenuiflora Biomass and Environmental Factors in Degraded Grasslands [J]. Chin Bull Bot, 1999, 16(06): 708-711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yuliang Chen;Feixiong Zhang;Guiyou Zhang*. Key Caspase-like Enzymes in Programmed Cell Death in Plants[J]. Chin Bull Bot, 2008, 25(05): 616 -623 .
[2] Zhu Ru-xing;Xiao Wen-qiao;Wang Man-si;Cao Ri-qiang and Pan Da-qian. Antibiotic Effect of the Main Constituents in the Onosma paniculatum Callus[J]. Chin Bull Bot, 1992, 9(03): 40 -43 .
[3] Zhu Zheng-ge;Pan Yan-yun;Zhang Zhao-duo and Liu Zhi-yi. The Extraction and Analysis of Mitochondriat DNA from Common Wheat[J]. Chin Bull Bot, 1995, 12(增刊): 42 -45 .
[4] Guan Jun-feng. Effect of Water Loss and Wilting of Harvested Spinach Leaves on Membrane Permeability and Lipid Perexidation[J]. Chin Bull Bot, 1992, 9(04): 38 -40 .
[5] Li Rong-hui;Zhang Shu-ying and Zhang Zhi-min. Embryo Culture of Viburnum lantana in Vitro[J]. Chin Bull Bot, 1989, 6(02): 104 -107 .
[6] Jian Ling-cheng. Germplasm Long-term Conservation Associated with Cryobiology in Plant[J]. Chin Bull Bot, 1988, 5(02): 65 -68 .
[7] Yongmei Wu, Xue Mao, Shujian Wang, Jinai Xue, Xiaoyun Jia, Jiping Wang, Zhirong Yang, Runzhi Li. Systematic Metabolic Engineering of ω-7 Fatty Acids in Plants[J]. Chin Bull Bot, 2011, 46(5): 575 -585 .
[8] Niu Zi-mian Fang Yao-ren. Study on the ABSCISIC Acid in Leaf of Spur-type Variety of Apple[J]. Chin Bull Bot, 1994, 11(02): 49 -50 .
[9] Hongmei Xi, Wenzhong Xu, Mi Ma. Advances in Biological Function of Arabidopsis Bifunctional Enzyme SAL1[J]. Chin Bull Bot, 2016, 51(3): 377 -386 .
[10] Dandan Qin, Songchao Xie, Gang Liu, Zhongfu Ni, Yingyin Yao, Qixin Sun, Huiru Peng. Isolation and Functional Characterization of Heat-stressresponsive Gene TaWTF1 from Wheat[J]. Chin Bull Bot, 2013, 48(1): 34 -41 .