Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (9): 885-905.doi: 10.17521/cjpe.2018.0083

• Review •     Next Articles

Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees

XI Ben-Ye1,*(),DI Nan1,*,CAO Zhi-Guo1,4,*,LIU Jin-Qiang1,LI Dou-Dou1,WANG Ye1,2,LI Guang-De3,DUAN Jie1,JIA Li-Ming1,ZHANG Rui-Na1   

  1. 1Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China
    2Institute of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology, Beijing 100093, China
    3Faculty of Agriculture, Forestry and Medicine, The Open University of China, Beijing 100039, China
    4 Key Laboratory for Yellow River and Huaihe River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
  • Received:2018-04-11 Revised:2018-09-10 Online:2018-09-26 Published:2018-09-20
  • Contact: Ben-Ye XI,Nan DI,Zhi-Guo CAO
  • Supported by:
    Supported by the National Natural Science Foundation of China(31872702);Supported by the National Natural Science Foundation of China(31670625);Supported by the National Natural Science Foundation of China(31400532);the National Key Research and Development Program of China(2016YFD0600403);the Key Technologies R&D Program of China(2015BAD09B02)


Root water uptake is an essential part of tree water relations and plays a crucial role in tree physiological activities. Water resource in deep soil is relatively abundant and can provide plenty of water to trees to guarantee their survival and healthy growth during dry seasons. Thus, a good comprehension of the characteristics and underlying mechanisms of deep soil water uptake and utilization by trees will deepen the understanding of the interaction between trees and the environment, tree survival and growth strategies, coexistence and competition among different species, etc. This knowledge is important in establishing green cultivation schemes for plantations, which depend less on the external water resources input and avoid the adverse effects on the water ecological environment. From existing studies, the characteristics and underlying mechanisms of deep water uptake and utilization by trees are reviewed. Firstly, the definition of deep roots and deep soil is discussed, and 1 m depth is recommended as the average (reference) definition standard in main forest vegetation types except the boreal forest. The reasons for the formation of deep tree roots around the globe were also determined. Secondly, the observed deep soil water uptake characteristics of trees and their influencing factors are summarized. Then, from the aspects of the adjustment of deep root traits and the coordination of hydraulic traits of different organs, the mechanisms of deep water uptake by trees are discussed. For example, the spatial, temporal and efficiency adjustment strategies of deep roots can be used to facilitate the absorption of deep soil water. Finally, some implications of deep soil water uptake for the cultivation of plantations are proposed, such as “for water management in plantations, trees should be induced to moderately utilize some deep soil water and an appropriate irrigation frequency should be selected”, “appropriate mixed planting of different tree species can facilitate the buffering effect of deep soil water storage”, “developing techniques of selecting trees for thinning based on the water uptake depths of different species”, etc. Deficiencies of existing studies and some future research directions were also pointed out.

Key words: deep root, deep soil, root water uptake, hydraulic lift, fine root, plantation

Table 1

The estimated depths of 95% cumulative roots (d95) for global vegetation types (data from Schenk & Jackson, 2002a)"

植被类型 Vegetation type d95 (cm)*
苔原 Tundra 29
寒温带针叶林 Boreal forest 58
Cool-temperate forest (including plantations)
Warm-temperate forest (including plantations)
森林草甸 Meadows in the forest zone 40
草原 Prairie 91
半荒漠草地 Semi-desert steppe 120
温带稀树草原 Temperate savanna 140
地中海灌丛/林地 Mediterranean shrubland/woodland 171
半荒漠灌丛 Semi-desert shrubland 131
荒漠 Desert 112
干旱热带稀树草原 Dry tropical savannas 144
湿润热带稀树草原 Humid tropical savannas 94
Tropical semi-deciduous and deciduous forest
热带常绿林 Tropical evergreen forest 91

Fig. 1

Potential deep tree root trait adjustment strategies for absorbing deep soil water."

[1] Adane ZA, Gates JB ( 2015). Determining the impacts of experimental forest plantation on groundwater recharge in the Nebraska Sand Hills (USA) using chloride and sulfate. Hydrogeology Journal, 23, 81-94.
doi: 10.1007/s10040-014-1181-6
[2] Adriano E, Laclau JP, Rodrigues JD ( 2017). Deep rooting of rainfed and irrigated orange trees in Brazil. Trees, 31, 285-297.
doi: 10.1007/s00468-016-1483-5
[3] Amazonas NT, Forrester DI, Oliveira RS, Brancalion PHS ( 2018). Combining Eucalyptus wood production with the recovery of native tree diversity in mixed plantings: Implications for water use and availability. Forest Ecology and Management, 418, 34-40.
doi: 10.1016/j.foreco.2017.12.006
[4] Antunes C, Barradas MCD, Zunzunegui M, Vieira S, Pereira A, Anjos A, Correia O, Pereira MJ, Máguas C ( 2018). Contrasting plant water-use responses to groundwater depth in coastal dune ecosystems. Functional Ecology, 32, 1931-1943.
doi: 10.1111/fec.2018.32.issue-8
[5] Baddeley JA, Watson CA ( 2005). Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium. Plant and Soil, 276, 15-22.
[6] Barbeta A, Pe?uelas J ( 2017). Relative contribution of groundwater to plant transpiration estimated with stable isotopes. Scientific Reports, 7, 10580. DOI: 10.1038/s41598-017-?09643-x.
doi: 10.1038/s41598-017-09643-x pmid: 5585407
[7] Barron-Gafford GA, Sanchezca?ete EP, Minor RL, Hendryx SM, Lee E, Sutter L, Tran N, Parra E, Colella T, Murphy P, Hamerlynck E, Kumar P, Scott R ( 2017). Impacts of hydraulic redistribution on grass-tree competition vs facilitation in a semi-arid savanna. New Phytologist, 215, 1451-1461.
doi: 10.1111/nph.14693
[8] Billings SA, Hirmas D, Sullivan PL, Lehmeier CA, Bagchi S, Min K, Brecheisen Z, Hauser E, Stair R, Flournoy R, Richter D ( 2018). Loss of deep roots limits biogenic agents of soil development that are only partially restored by decades of forest regeneration. Elementa: Science of the Anthropocene, 6, 34. DOI: 10.1525/elementa.287.
[9] Bordron B, Robin A, Oliveira IR, Guillemot J, Laclau JP, Jourdan C, Nouvellon Y, Abreu-Junior CH, Trivelin PCO, Gonc?alves JLM, Plassard C, Bouillet JP ( 2018). Fertilization increases the functional specialization of fine roots in deep soil layers for young Eucalyptus grandis trees. Forest Ecology and Management, (in press). DOI: 10.1016/j.?foreco.?2018.03.018.
doi: 10.1016/j.foreco.2018.03.018
[10] B?rja I, Godbold DL, Světlík J, Nagy NE, Gebauer R, Urban J, Vola?ík D, Lange H, Krokene P, ?ermák P, Eldhuset TD ( 2017). Norway spruce fine roots and fungal hyphae grow deeper in forest soils after extended drought. In: Lukac M, Grenni P, Gamboni M eds . Soil Biological Communities and Ecosystem Resilience. Springer International Publishing, Berlin. 123-142.
doi: 10.1007/978-3-319-63336-7_8
[11] Broedel E, Tomasella J, Candido LA, von Randow C ( 2017). Deep soil water dynamics in an undisturbed primary forest in central Amazonia: Differences between normal years, and the 2005 drought. Hydrological Processes, 31, 1749-1759.
doi: 10.1002/hyp.11143
[12] Brum M, Teodoro GS, Abrah?o A, Oliveira RS ( 2017). Coordination of rooting depth and leaf hydraulic traits defines drought-related strategies in the campos rupestres, a tropical montane biodiversity hotspot. Plant and Soil, 420, 467-480.
doi: 10.1007/s11104-017-3330-x
[13] Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Arce ME ( 2009). Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species. Oecologia, 160, 631-641.
doi: 10.1007/s00442-009-1331-z pmid: 19330355
[14] Caldwell MM, Dawson TE, Richards JH ( 1998). Hydraulic lift: Consequences of water efflux from the roots of plants. Oecologia, 113, 151-161.
doi: 10.1007/s004420050363 pmid: 28308192
[15] Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED ( 1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108, 583-595.
doi: 10.1007/BF00329030 pmid: 28307789
[16] Chen YN, Li WH, Zhou HH, Chen YP, Hao XM, Fu AH, Ma JX ( 2016). Field experiment on water transport in desert riparian forests downstream of the Heihe River. Journal of Beijing Normal University (Natural Science), 52, 271-276.
doi: 10.16360/j.cnki.jbnuns.2016.03.004
[ 陈亚宁, 李卫红, 周洪华, 陈亚鹏, 郝兴明, 付爱红, 马建新 ( 2016). 黑河下游荒漠河岸林植物水分传输观测试验研究. 北京师范大学学报(自然科学版), 52, 271-276.]
doi: 10.16360/j.cnki.jbnuns.2016.03.004
[17] Chen YP, Chen YN, Xu CC, Li WH ( 2016). The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosissima in the hyperarid region of Northwestern China. Environmental Science and Pollution Research, 23, 17404-17412.
[18] Chitra-Tarak R, Ruiz L, Dattaraja HS, Kumar MSM, Riotte J, Suresh HS, McMahon SM, Sukumar R ( 2018). The roots of the drought: Hydrology and water uptake strategies mediate forest-wide demographic response to precipitation. Journal of Ecology, 106, 1495-1507.
doi: 10.1111/1365-2745.12925
[19] Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Field TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE ( 2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755.
doi: 10.1038/nature11688
[20] Christina M, Laclau JP, Goncalves LM, Jourdan C, Nouvellon Y, Bouillet JP ( 2011). Almost symmetrical vertical growth rates above and below ground in one the world’s most productive forests. Ecoshpere, 2, 1-10.
doi: 10.1890/ES10-00158.1
[21] Christina M, le Maire G, Nouvellon Y, Vezy R, Bordon B, Battie-Laclau P, Goncalves JLM, Delgado-Rojas JS, Bouillet JP, Laclau JP ( 2018). Simulating the effects of different potassium and water supply regimes on soil water content and water table depth over a rotation of a tropical Eucalyptus grandis plantation. Forest Ecology and Management, 418, 4-14.
doi: 10.1016/j.foreco.2017.12.048
[22] Christina M, Nouvellon Y, Laclau JP, Stape JL, Bouillet JP, Lambais GR, le Maire G ( 2017). Importance of deep water uptake in tropical eucalypt forest. Functional Ecology, 31, 509-519.
doi: 10.1111/1365-2435.12727
[23] Comas LH, Becker SR, Cruz VMV, Byme PF, Dierig DA ( 2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4, 1-16.
doi: 10.3389/fpls.2013.00442 pmid: 24204374
[24] Cubera E, Moreno G ( 2007). Effects of single Quercus ilex trees upon spatial and seasonal changes in soil water content in dehesas of central western Spain. Annals of Forest Science, 64, 355-364.
doi: 10.1051/forest:2007012
[25] da Silva EV, Bouillet JP, de Moraes GJL, Junior CHA, Trivelin PCO, Hinsinger P, Jourdan C, Nouvellon Y, Stape JL, Laclau JP ( 2011). Functional specialization of Eucalyptus fine roots: Contrasting potential uptake rates for nitrogen, potassium and calcium tracers at varying soil depths. Functional Ecology, 25, 996-1006.
doi: 10.1111/j.1365-2435.2011.01867.x
[26] Dawson TE, Ehleringer JR ( 1991). Streamside trees that do not use stream water. Nature, 350, 335-337.
doi: 10.1038/350335a0
[27] de Deurwaerder H, Hervé-Fernández P, Stahl C, Burban B, Petronelli P, Hoffman B, Bonal D, Boeckx P, Verceeck H ( 2018). Liana and tree below-ground water competition— Evidence for water resource partitioning during the dry season. Tree Physiology, 38, 1071-1083.
doi: 10.1093/treephys/tpy002 pmid: 29509954
[28] Dhiman I, Bilheux H, DeCarlo K, Painter SL, Santodonato L, Warren JM ( 2017). Quantifying root water extraction after drought recovery using sub-mm in situ empirical data. Plant and Soil, 424, 73-89.
doi: 10.1007/s11104-017-3408-5
[29] Di N, Liu Y, Mead DJ, Xie YQ, Jia LM, Xi BY ( 2018). Root-system characteristics of plantation-grown Populus tomentosa adapted to seasonal fluctuation in the groundwater table. Trees, 32, 137-149.
doi: 10.1007/s00468-017-1619-2
[30] Domec JC, Warren JM, Meinzer FC, Brooks JR, Coulombe R ( 2004). Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: Mitigation by hydraulic redistribution. Oecologia, 141, 7-16.
doi: 10.1007/s00442-004-1621-4 pmid: 15338263
[31] Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Oterocasal C ( 2017). Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences of the United States of America, 114, 10572-10577.
doi: 10.1073/pnas.1712381114 pmid: 28923923
[32] Gambetta GA, Knipfer T, Fricke W, Mcelrone AJ ( 2017). Aquaporin and root water uptake. In: Fran?ois C, Stephen DT eds . Plant Aquaporins. Springer International Publishing, Cham, Switzerland. 133-153.
doi: 10.1007/978-3-319-49395-4_6
[33] Germon A, Cardinael R, Prieto I, Mao Z, Kim J, Stokes A, Dupraz C, Laclau JP, Jourdan C ( 2016). Unexpected phenology and lifespan of shallow and deep fine roots of walnut trees grown in a silvoarable Mediterranean agroforestry system. Plant and Soil, 401, 409-426.
doi: 10.1007/s11104-015-2753-5
[34] Germon A, Guerrini IA, Bordron B, Bouillet JP, Nouvellon Y, de Moraes Gon?alves JL, Jourdan C, Paula RR, Laclau JP ( 2017). Consequences of mixing Acacia mangium and Eucalyptus grandis on soil exploration by fine-roots down to a depth of 17 m. Plant and Soil, 424, 203-220.
[35] Guderle M, Bachmann D, Milcu A, Gockele A, Bechmann M, Fisher C, Roscher C, Landais D, Ravel O, Devidal S, Roy J, Gessler A, Buchmann N, Weigelt A, Hildebrandt A ( 2018). Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Functional Ecology, 32, 214-227.
doi: 10.1111/1365-2435.12948
[36] Hardanto A, R?ll A, Hendrayanto, H?lscher D ( 2017). Tree soil water uptake and transpiration in mono-cultural and jungle rubber stands of Sumatra. Forest Ecology and Management, 397, 67-77.
doi: 10.1016/j.foreco.2017.04.032
[37] Hasenmueller EA, Gu X, Weitzman JN, Adams TS, Stinchcomb GE, Eissenstat DM, Drohan PJ, Brantley SL, Kaye JP ( 2017). Weathering of rock to regolith: The activity of deep roots in bedrock fractures. Geoderma, 300, 11-31.
doi: 10.1016/j.geoderma.2017.03.020
[38] Hayes FA, Stoeckler JH ( 1935). Possibilities of Shelterbelt Planting in the Plains Regions. US Forest Service, Wash-ington . 111-155.
[39] He CX, Chen P, Meng P, Zhang JS, Yang HG ( 2016). Interspecific water use strategies of a Juglans regia and Isatis tinctoria/Senna tora agroforestry system in a hilly area of Northern China. Chinese Journal of Plant Ecology, 40, 151-164.
doi: 10.17521/cjpe.2015.0360
[ 何春霞, 陈平, 孟平, 张劲松, 杨洪国 ( 2016). 华北低丘山区果药复合系统种间水分利用策略. 植物生态学报, 40, 151-164.]
doi: 10.17521/cjpe.2015.0360
[40] He Y, Lan ZP, Sun SW, Liu JQ ( 2015). Effects of drip irrigation on the growth and use efficiency of water and fertilizer of Young ‘107’ poplar plantation. Journal of Northeast Forestry University, 43(11), 37-41.
[ 贺勇, 兰再平, 孙尚伟, 刘俊琴 ( 2015). 地面滴灌对107杨幼林生长和水肥利用的影响. 东北林业大学学报, 43(11), 37-41.]
[41] Holloway JV, Rillig MC, Gurnell AM ( 2017). Physical environmental controls on riparian root profiles associated with black poplar ( Populus nigra L.) along the Tagliamento River, Italy. Earth Surface Processes and Landforms, 42, 1262-1273.
doi: 10.1002/esp.4076
[42] Ishikawa CM, Bledsoe CS ( 2000). Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks: Evidence for hydraulic lift. Oecologia, 125, 459-465.
doi: 10.1007/s004420000470 pmid: 28547214
[43] Jackson RB, Mooney HA, Schulze ED ( 1997). A global budget for fine root biomass, surface area, and nutrient contents. Ecology, 94, 7362-7366.
doi: 10.2307/42683 pmid: 11038557
[44] Jasińska AK, Alber M, Tullus A, Rahi M, Sellin A ( 2015). Impact of elevated atmospheric humidity on anatomical and hydraulic traits of xylem in hybrid aspen. Functional Plant Biology, 42, 565-578.
doi: 10.1071/FP14224
[45] Jin Y, Wang CK ( 2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032.
doi: 10.17521/cjpe.2015.0099
[ 金鹰, 王传宽 ( 2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.]
doi: 10.17521/cjpe.2015.0099
[46] Johnson DM, Brodersen CR, Reed M, Domec JC, Jackson RB ( 2014 a). Role of aquaporin activity in regulating deep and shallow root hydraulic conductance during extreme drought. Trees, 28, 1323-1331.
doi: 10.1007/s00468-014-1036-8
[47] Johnson DM, Brodersen CR, Reed M, Domec JC, Jackson RB ( 2014b ). Contrasting hydraulic architecture and function in deep and shallow roots of tree species from a semi-arid habitat. Annals of Botany, 113, 617-627.
doi: 10.1093/aob/mct294 pmid: 3936587
[48] Johnson DM, Wortemann R, McCulloh KA, Meille LJ, Ward E, Warren JM, Palmroth S, Domec JC ( 2016). A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology, 36, 983. DOI: 10.1093/treephys/tpw031.
doi: 10.1093/treephys/tpw031 pmid: 27146334
[49] Kirfel K, Leuschner C, Hertel D, Schuldt B ( 2017). Influence of root diameter and soil depth on the xylem anatomy of fine- to medium-sized roots of mature beech trees in the top- and subsoil. Frontiers in Plant Science, 8, 1194. DOI: 10.3389/fpls.2017.01194.
doi: 10.3389/fpls.2017.01194 pmid: 5522885
[50] Kleidon A, Heimann M ( 1998). A method of determining rooting depth from a terrestrial biosphere model and its impacts on the global water and carbon cycle. Global Change Biology, 4, 275-286.
doi: 10.1046/j.1365-2486.1998.00152.x pmid: 1530432
[51] Kumagai T, Mudd RG, Giambelluca TW, Kobayashi N, Miyazawa Y, Lim TK, Liu W, Huang MY, Fox JM, Ziegler AD, Yin S, Mak SV, Kasemasp P ( 2015). How do rubber ( Hevea brasiliensis) plantations behave under seasonal water stress in northeastern Thailand and central Cambodia? Agricultural and Forest Meteorology, 213, 10-22.
doi: 10.1016/j.agrformet.2015.06.011
[52] Laclau JP, da Silva EA, Lambais GR, Bernoux M, Maire GI, Stape JL, Bouillet JP, de Moraes Goncalves JL, Jourdan C, Nouvellon Y ( 2013). Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandisplantations. Frontiers in Plant Science, 4, 1-12.
doi: 10.3389/fpls.2013.00243 pmid: 3705191
[53] Laclau PB, Laclau JP ( 2009). Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops Research, 114, 351-360.
doi: 10.1016/j.fcr.2009.09.004
[54] Lambais GR, Jourdan C, de Cássia Piccolo M, Germon A, Pinheiro RC, Nouvellon Y, Stape JL, Campoe OC, Robin A, Bouillet JP, le Maire G, Laclau JP ( 2017). Contrasting phenology of Eucalyptus grandisfine roots in upper and very deep soil layers in Brazil. Plant and Soil, 421, 301-318.
doi: 10.1007/s11104-017-3460-1
[55] Lee JE, Oliveira RS, Dawson TE, Fung I ( 2005). Root functioning modifies seasonal climate. Proceedings of the National Academy of Sciences of the United States of America, 102, 17576-17581.
doi: 10.1073/pnas.0508785102
[56] Lindh M, Zhang L, Falster D, Franklin O, Br?nnstr?m ? ( 2014). Plant diversity and drought: The role of deep roots. Ecological Modelling, 290, 85-93.
doi: 10.1016/j.ecolmodel.2014.05.008
[57] Liu XL, Ma LH, Yang RH, Wu PT, Wang YK ( 2014). Deep soil water depletion characteristic of jujube plantation in loess semiarid region. Transactions of the Chinese Society for Agricultural Machinery, 45, 139-145.
doi: 10.6041/j.issn.1000-1298.2014.12.021
[ 刘晓丽, 马理辉, 杨荣慧, 吴普特, 汪有科 ( 2014). 黄土半干旱区枣林深层土壤水分消耗特征. 农业机械学报, 45, 139-145.]
doi: 10.6041/j.issn.1000-1298.2014.12.021
[58] Liu XL, Wang YK, Ma LH, Liang Y ( 2013). Relationship between deep soil water vertical variation and root distribution in dense jujube plantation. Transactions of the Chinese Society of Agricultural Machinery, 44, 90-97.
doi: 10.6041/j.issn.1000-1298.2013.07.017
[ 刘晓丽, 汪有科, 马理辉, 梁宇 ( 2013). 密植枣林地深层土壤水分垂直变化与根系分布关系. 农业机械学报, 44, 90-97.]
doi: 10.6041/j.issn.1000-1298.2013.07.017
[59] Liu Y, Miao HT, Huang Z, Cui Z, He HH, Zheng JY, Han FP, Chang XF, Wu GL ( 2018a ). Soil water depletion patterns of artificial forest species and ages on the Loess Plateau (China). Forest Ecology and Management, 417, 137-143.
doi: 10.1016/j.foreco.2018.03.005
[60] Liu ZQ, Jia GD, Yu XX, Lu WW, Zhang JM ( 2018b ). Water use by broadleaved tree species in response to changes in precipitation in a mountainous area of Beijing. Agriculture, Ecosystem and Environment, 251, 132-140.
[61] Luo DD, Wang CK, Jin Y ( 2017). Plant water-regulation strategies: Isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 41, 1020-1032.
doi: 10.17521/cjpe.2016.0366
[ 罗丹丹, 王传宽, 金鹰 ( 2017). 植物水分调节对策: 等水与非等水行为. 植物生态学报, 41, 1020-1032.]
doi: 10.17521/cjpe.2016.0366
[62] Ma LH, Liu XL, Wang YK, Wu PT ( 2013). Effects of drip irrigation on the deep root distribution, rooting depth, and soil water profile of jujube in a semiarid region. Plant and Soil, 373, 995-1006.
doi: 10.1007/s11104-013-1880-0
[63] Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Mccormack ML, Hedin LO ( 2018). Evolutionary history resolves global organization of root functional roots. Nature, 555, 48-56.
doi: 10.1038/nature25761 pmid: 29493588
[64] Maeght JL, Gonkhamdee S, Clément C, Ayutthaya SIN, Stokes A, Pierret A ( 2015). Seasonal patterns of fine root production and turnover in a mature rubber tree ( Hevea brasiliensisMüll. Arg.) stand—Differentiation with soil depth and implications for soil carbon stocks. Frontiers in Plant Science, 6, 1022. DOI: 10.3389/fpls.2015.01022.
[65] Maeght JL, Rewald B, Pierret A ( 2013). How to study deep roots and why it matters. Frontiers in Plant Science, 4, 299. DOI: 10.3389/fpls.2013.00299.
doi: 10.3389/fpls.2013.00299 pmid: 23964281
[66] McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Lepp?lammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M ( 2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
doi: 10.1111/nph.13363 pmid: 25756288
[67] McCulley RL, Jobbágy EG, Pockman WT, Jackson RB ( 2004). Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia, 141, 620-628.
doi: 10.1007/s00442-004-1687-z pmid: 15322902
[68] McElrone AJ, Bichler J, Pockman WT, Addington RN, Linder CR, Jackson RB ( 2007). Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves. Plant, Cell & Environment, 30, 1411-1421.
doi: 10.1111/j.1365-3040.2007.01714.x pmid: 17897411
[69] McElrone AJ, Pockman WT, Martínez-Vilalta J, Jackson RB ( 2004). Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytologist, 163, 507-517.
doi: 10.1111/j.1469-8137.2004.01127.x
[70] Meinzer FC, Brooks JR, Bucci S, Goldstein G, Scholz FG, Warren JM ( 2004). Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiology, 24, 919-928.
doi: 10.1093/treephys/24.8.919 pmid: 15172842
[71] Miao B, Meng P, Zhang JS, He FJ, Sun SJ ( 2017). Difference of water relationships of poplar trees in Zhangbei County, Hebei, China based on stable isotope and thermal dissipation method. Chinese Journal of Applied Ecology, 28, 2111-2118.
doi: 10.13287/j.1001-9332.201707.037
[ 苗博, 孟平, 张劲松, 何方杰, 孙守家 ( 2017). 基于稳定同位素和热扩散技术的张北杨树水分关系差异. 应用生态学报, 28, 2111-2118.]
doi: 10.13287/j.1001-9332.201707.037
[72] Mulia R, Dupraz C ( 2006). Unusual fine root distributions of two deciduous tree species in southern France: What consequences for modeling of tree root dynamics? Plant and Soil, 281, 71-85.
doi: 10.1007/s11104-005-3770-6
[73] Nadezhdina N, Ferreira MI, Concei??o N, Pacheco CA, H?usler M, David TS ( 2014). Water uptake and hydraulic redistribution under a seasonal climate: Long-term study in a rainfed olive orchard. Ecohydrology, 8, 387-397.
doi: 10.1002/eco.1545
[74] Naumburg E, Mata-Gonzalez R, Hunter RG, Mclendon T, Martin DW ( 2005). Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation. Environmental Management, 35, 726-740.
doi: 10.1007/s00267-004-0194-7 pmid: 15940400
[75] Nepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S ( 1994). The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372, 666-669.
[76] Neumann RB, Cardon ZG ( 2012). The magnitude of hydraulic redistribution by plant roots: A review and synthesis of empirical and modeling studies. New Phytologist, 194, 337-352.
doi: 10.1111/j.1469-8137.2012.04088.x pmid: 22417121
[77] Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira AM ( 2005). Deep root function in soil water dynamics in cerrado savannas of central Brazil. Functional Ecology, 19, 574-581.
doi: 10.1111/j.1365-2435.2005.01003.x
[78] Pan YP, Chen YP ( 2014). Recent advances in leaf hydraulic traits. Chinese Journal of Ecology, 33, 2834-2841.
[ 潘莹萍, 陈亚鹏 ( 2014). 叶片水力性状研究进展. 生态学杂志, 33, 2834-2841.]
[79] Pate JS, Jeschke WD, Aylward MJ ( 1995). Hydraulic architecture and xylem structure of the dimorphic roots systems of South-West Australian species of Proteaceae. Journal of Experimental Botany, 46, 907-915.
doi: 10.1093/jxb/46.8.907
[80] Pierret A, Lacombe G ( 2018). Hydrologic regulation of plant rooting depth: Breakthrough or observational conundrum? Proceedings of the National Academy of Sciences of the United States of America, 114, 10572-10577.
[81] Pierret A, Maeght JL, Clément C, Montoroi JP, Hartmann C, Gonkhamdee S ( 2016). Understanding deep roots and their functions in ecosystems: An advocacy for more unconventional research. Annals of Botany, 118, 621-635.
doi: 10.1093/aob/mcw130 pmid: 27390351
[82] Pinheiro RC, de Deus Jr JC, Nouvellon Y, Campoe O, Stape JL, Aló LL, Guerrini IA, Jourdan C, Laclau JP ( 2016). A fast exploration of very deep soil layers by Eucalyptusseedlings and clones in Brazil. Forest Ecology and Management, 366, 143-152.
doi: 10.1016/j.foreco.2016.02.012
[83] Prieto I, Roumet C, Cardinael R, Dupraz C, Jourdan C, Kim JH, Maeght JL, Mao Z, Pierret A, Portillo N, Roupsard O, Thammahacksa C, Stokes A ( 2015). Root functional parameters along a land-use gradient: Evidence of a community-?level economics spectrum. Journal of Ecology, 103, 361-373.
doi: 10.1111/1365-2745.12351
[84] Qi J, Markewitz D, Radcliffe D ( 2018). Modeling the effect of changing precipitation inputs on deep soil water utilization. Hydrological Processes, 32, 672-686.
doi: 10.1002/hyp.11452
[85] Rempe DM, Dietrich WE ( 2018). Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proceedings of the National Academy of Sciences of the United States of America, 115, 2664-2669.
doi: 10.1073/pnas.1800141115 pmid: 29490920
[86] Richards JH, Caldwell MM ( 1987). Hydraulic lift: Substantial nocturnal water transport between soil layers by Artem isiatridentate roots. Oecologia, 73, 486-489.
doi: 10.1007/BF00379405 pmid: 28311963
[87] Ryel RJ, Caldwell MM, Yoder CK, Or D, Leffler AJ ( 2002). Hydraulic redistribution in a stand of Artemisia tridentate: Evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 130, 173-184.
doi: 10.1016/j.jada.2004.04.031 pmid: 28547139
[88] Schenk HJ ( 2008). The shallowest possible water extraction profile: A null model for global root distribution. Vadose Zone Journal, 7, 1119-1124.
doi: 10.2136/vzj2007.0119
[89] Schenk HJ, Jackson RB ( 2002a ). The global biogeography of roots. Ecological Monographs, 72, 311-328.
doi: 10.2307/3100092
[90] Schenk HJ, Jackson RB ( 2002b ). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90, 480-494.
doi: 10.1046/j.1365-2745.2002.00682.x
[91] Schenk HJ, Jackson RB ( 2005). Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126, 129-140.
doi: 10.1016/j.geoderma.2004.11.018
[92] Schippers B, Schroth MN, Hildebrand DC ( 1967). Emanation of water from underground plant parts. Plant and Soil, 27, 81-91.
doi: 10.1007/BF01373979
[93] Sekiya N, Araki H, Yano K ( 2011). Applying hydraulic lift in an agroecosystem: Forage plants with shoots removed supply water to neighboring vegetable crops. Plant and Soil, 341, 39-50.
doi: 10.1007/s11104-010-0581-1
[94] Shangguan W, Hengl T, de Jesus JM, Yuan H, Dai YJ ( 2017). Mapping the global depth to bedrock for land surface modeling. Journal of Advances in Modeling Earth System, 9, 65-88.
doi: 10.1002/2016MS000686
[95] Si JH, Feng Q, Cao SK, Yu TF, Zhao CY ( 2014). Water sources of desert riparian Populus euphraticaforests. Environmental Monitoring and Assessment, 186, 5469-5477.
[96] Siqueira M, Katul G, Porporato A ( 2008). Onset of water stress, hysteresis in plant conductance, and hydraulic lift: Scaling soil water dynamics from millimeters to meters. Water Resources Research, 44, 358-366.
doi: 10.1029/2007WR006094
[97] Song LN, Zhu JJ, Li MC, Zhang JX, Lv LY ( 2016). Sources of water used by Pinus sylvestrisvar. mongolica trees based on stable isotope measurements in a semiarid sandy region of Northeast China. Agricultural Water Management, 164, 281-290.
[98] Sprackling JA, Read RA ( 1979). Tree Root Systems in Eastern Nebraska. The Conservation and Survey Division, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE. Nebraska Conservation Bulletin 37.
[99] Stahl C, Hérault B, Rossi V, Burban B, Bréchet C, Bonal D ( 2013). Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter? Oecologia, 173, 1191-1201.
doi: 10.1007/s00442-013-2724-6 pmid: 23852028
[100] Steggles EK, Holland KL, Chittleborough DJ, Doudle SL, Clarke LJ, Watling JR, Facelli JM ( 2016). The potential for deep groundwater use by Acacia papyrocarpa( Western myall) in a water-limited environment. Ecohydrology, 10, e1791. DOI: 10.1002/eco.1791.
doi: 10.1002/eco.1791
[101] Stone EL, Kalisz PJ ( 1991). On the maximum extent of tree roots. Forest Ecology and Management, 46, 59-102.
doi: 10.1016/0378-1127(91)90245-Q
[102] Stratton LC, Goldstein G, Meinzer FC ( 2000). Temporal and spatial partitioning of water resources among eight woody species in a Hawaiian dry forest. Oecologia, 124, 309-317.
doi: 10.1007/s004420000384 pmid: 28308768
[103] Su H, Liu W, Li YG ( 2014). Ecological implications of hydraulic redistribution in nutrient cycling of soil-plant system. Chinese Journal of Plant Ecology, 38, 1019-1028.
doi: 10.3724/SP.J.1258.2014.00096
[ 苏华, 刘伟, 李永庚 ( 2014). 水分再分配对土壤-植物系统养分循环的生态意义. 植物生态学报, 38, 1019-1028.]
doi: 10.3724/SP.J.1258.2014.00096
[104] Sun SJ, He CX, Qiu LF, Li CY, Zhang JS, Meng P ( 2018). Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the three-north shelter forest in Northern China. Agricultural and Forest Meteorology, 252, 39-48.
doi: 10.1016/j.agrformet.2017.12.264
[105] Wagg JWB ( 1967). Origin and Development of White Spruce Root-Forms. Queen’s Printer and Controller of Stationery, Ottawa, Ontario, Canada. Forestry Branch Departmental Publication No. 1192.
[106] Wang X, Tang C, Guppy CN, Sale PWG ( 2009). The role of hydraulic lift and subsoil P placement in P uptake of cotton ( Gossypium hirsutum L.). Plant and Soil, 325, 263-275.
doi: 10.1007/s11104-009-9977-1
[107] Wang Y, Dong XY, Wang HF, Wang ZQ, Gu JC ( 2015). Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species. Tree Physiology, 36, 99-108. DOI: 10.1093/treephys/tpv094.
doi: 10.1093/treephys/tpv094 pmid: 26423336
[108] Wang ZQ, Guo DL ( 2008). Root ecology. Journal of Plant Ecology (Chinese Version), 32, 1213-1216.
[ 王政权, 郭大立 ( 2008). 根系生态学. 植物生态学报, 32, 1213-1216.]
[109] Wason JW, Anstreicher KS, Stephansky N, Huggett BA, Brodersen CR ( 2018). Hydraulic safety margins and air-seeding thresholds in roots, trunks, branches and petioles of four northern hardwood trees. New Phytologist, 219, 77-88.
doi: 10.1111/nph.15135 pmid: 29663388
[110] Weemstra M, Sterck FJ, Visser EJW, Kuyper TW, Goudzwaard L, Mommer L ( 2017). Fine-root trait plasticity of beech ( Fagus sylvatica) and spruce( Picea abies) forests on two contrasting soils. Plant and Soil, 415, 175-188.
[111] Wei XG, Chen DY, Liu SY, Wang X, Gao ZY, Wang YK ( 2014). Effect of trim on jujube transpiration in Loess hilly region. Transactions of the Chinese Society for Agricultural Machinery, 45, 194-202.
doi: 10.6041/j.issn.1000-1298.2014.12.029
[ 魏新光, 陈滇豫, Liu Shouyang, 汪星, 高志永, 汪有科 ( 2014). 修剪对黄土丘陵区枣树蒸腾的调控作用. 农业机械学报, 45, 194-202.]
doi: 10.6041/j.issn.1000-1298.2014.12.029
[112] Wu Y, Liu WY, Song L, Chen X, Lu HZ, Li S, Shi XM ( 2016). Advances in ecological studies of epiphytes using canopy cranes. Chinese Journal of Plant Ecology, 40, 508-522.
doi: 10.17521/cjpe.2015.0424
[ 吴毅, 刘文耀, 宋亮, 陈曦, 卢华正, 李苏, 石贤萌 ( 2016). 基于林冠塔吊的附生植物生态学研究进展. 植物生态学报, 40, 508-522.]
doi: 10.17521/cjpe.2015.0424
[113] Xi BY, Bloomberg M, Watt MS, Wang Y, Jia LM ( 2016). Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosaplantation located on the North China Plain. Agricultural Water Management, 176, 243-254.
doi: 10.1016/j.agwat.2016.06.017
[114] Xi BY, Di N, Liu JQ, Zhang RN, Cao ZG ( 2018). Hydrologic regulation of plant rooting depth: Pay attention to the widespread scenario with intense seasonal groundwater table fluctuation. Proceedings of the National Academy of Sciences of the United States of America, 115. DOI: 10.1073/pnas.1803987115.
[115] Xi BY, Di N, Wang Y, Duan J, Jia LM ( 2017). Modeling stand water use response to soil water availability and groundwater level for a mature Populus tomentosa plantation located on the North China Plain. Forest Ecology and Management, 391, 63-74.
doi: 10.1016/j.foreco.2017.02.016
[116] Xi BY, Li GD, Bloomberg M, Jia LM ( 2014). The effect of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosain the North China Plain. Australian Forestry, 77, 159-167.
doi: 10.1080/00049158.2014.920552
[117] Xi BY, Wang Y, Jia LM, Bloomberg M, Li GD, Di N ( 2013). Characteristics of fine root system and water uptake in a triploid Populus tomentosa plantation in the North China Plain: Implications for irrigation water management. Agricultural Water Management, 117, 83-92.
doi: 10.1016/j.agwat.2012.11.006
[118] Xu GQ, Li Y ( 2008). Rooting depth and leaf hydraulic conductance in the xeric tree Haloxyolon ammodendron growing at sites of contrasting soil texture. Functional Plant Biology, 35, 1234-1242.
doi: 10.1071/FP08175
[119] Yang FT, Feng ZM, Wang HM, Dai XQ, Fu XL ( 2017). Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-?annual variation in tree growth in four subtropical plantations. Agricultural and Forest Meteorology, 234, 106-114.
[120] Yoder CK, Nowak RS ( 1999). Hydraulic lift among native plant species in the Mojave Desert. Plant and Soil, 215, 93-102.
doi: 10.1023/A:1004729232466
[121] Yu TF, Feng Q, Si JH, Mitchell PJ, Forester MA, Zhang XY, Zhao CY ( 2018). Depressed hydraulic redistribution of roots more by stem refilling than by nocturnal transpiration for Populus euphraticaOliv. in situ measurement. Ecology and Evolution, 8, 2607-2616.
doi: 10.1002/ece3.3875
[122] Yu TF, Feng Q, Si JH, Zhang XY ( 2014). Patterns, magnitude and controlling factors of hydraulic redistribution by Populus euphratica roots. Journal of Beijing Forestry University, 36, 22-29.
doi: 10.13332/j.cnki.jbfu.2014.02.009
[ 鱼腾飞, 冯起, 司建华, 张小由 ( 2014). 胡杨根系水力再分配的模式、大小及其影响因子. 北京林业大学学报, 36, 22-29.]
doi: 10.13332/j.cnki.jbfu.2014.02.009
[123] Yu TF, Feng Q, Si JH, Zhang XY, Zhao CY ( 2017). The contribution of hydraulic lift to evapotranspiration by Tamarix ramosissima Ledeb. in the lower Heihe River, China. Acta Ecologica Sinica, 37, 6029-6037.
doi: 10.5846/stxb201606301324
[ 鱼腾飞, 冯起, 司建华, 张小由, 赵春彦 ( 2017). 黑河下游柽柳根系水力提升对林分蒸散的贡献. 生态学报, 37, 6029-6037.]
doi: 10.5846/stxb201606301324
[124] Yuan GF, Zhang P, Xue SS, Zhuang W ( 2012). Change characteristics in soil water content in root zone and evidence of root hydraulic lift in Tamarix ramosissima thickets on sand dunes. Chinese Journal of Plant Ecology, 36, 1033-1042.
doi: 10.3724/SP.J.1258.2012.01033
[ 袁国富, 张佩, 薛沙沙, 庄伟 ( 2012). 沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据. 植物生态学报, 36, 1033-1042.]
doi: 10.3724/SP.J.1258.2012.01033
[125] Zhang H, Cao J, Wang HB, Song B, Jia GD, Liu ZQ, Yu XX, Zeng J ( 2018). Water utilization characteristics of the degraded poplar shelterbelts in Zhangbei, Hebei, China. Chinese Journal of Applied Ecology, 29, 1381-1388.
doi: 10.13287/j.1001-9332.201805.026
[ 张欢, 曹俊, 王化冰, 宋波, 贾国栋, 刘自强, 余新晓, 曾佳 ( 2018). 张北地区退化杨树防护林的水分利用特征. 应用生态学报, 29, 1381-1388.]
doi: 10.13287/j.1001-9332.201805.026
[126] Zhu JL, Bo HJ, Li X, Song LJ, Wang J, Nie LS, Tian J ( 2017). Effects of soil water and nitrogen on the stand volume of four hybrid Populus tomentosa clones. Forests, 8, 250. DOI: 10.3390/f8070250.
[127] Zunzunegui M, Boutaleb S, Barradas DMC, Esquvias MP, Valera J, Jáuregui J, Tagma T, Ain-Lhout F ( 2017). Reliance on deep soil water in the tree species Argania spinose. Tree Physiology, 38, 678-689.
[1] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[2] LÜ Zhong-Cheng, KANG Wen-Xing, HUANG Zhi-Hong, ZHAO Zhong-Hui, DENG Xiang-Wen. Reuse of retranslocated nutrients in tissues of Chinese fir in plantations of different ages [J]. Chin J Plant Ecol, 2019, 43(5): 458-470.
[3] ZHOU Hui-Min, LI Pin, FENG Zhao-Zhong, ZHANG Yin-Bo. Short-term effects of combined elevated ozone and limited irrigation on accumulation and allocation of non-structural carbohydrates in leaves and roots of poplar sapling [J]. Chin J Plant Ecol, 2019, 43(4): 296-304.
[4] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43(3): 258-272.
[5] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[6] Chenchen Ding,Yiming Hu,Chunwang Li,Zhigang Jiang. Distribution and habitat suitability assessment of the gaur Bos gaurus in China [J]. Biodiv Sci, 2018, 26(9): 951-961.
[7] Xueming Lei,Fangfang Shen,Xuechen Lei,Wenfei Liu,Honglang Duan,Houbao Fan,Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971.
[8] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[9] Wei Mo,Zhiliang Wang,You Li,Jianjun Guo,Runzhi Zhang. Faunal communities of deep soil layers in suburban Beijing [J]. Biodiv Sci, 2018, 26(3): 248-257.
[10] CHEN Ri-Sheng, KANG Wen-Xing, ZHOU Yu-Quan, TIAN Da-Lun, XIANG Wen-Hua . Changes in nutrient cycling with age in a Cunninghamia lanceolata plantation forest [J]. Chin J Plan Ecolo, 2018, 42(2): 173-184.
[11] ZHANG Xin, XING Ya-Juan, YAN Guo-Yong, WANG Qing-Gui. Response of fine roots to precipitation change: A meta-analysis [J]. Chin J Plan Ecolo, 2018, 42(2): 164-172.
[12] LU Ying, LI Kun, NI Rui-Qiang, LIANG Qiang, LI Chuan-Rong, ZHANG Cai-Hong. Effects of fine root decomposition on bacterial community structure of four dominated tree species in Mount Taishan, China [J]. Chin J Plant Ecol, 2018, 42(12): 1200-1210.
[13] Juan XING, Cheng-Yang ZHENG, Chan-Ying FENG, Fa-Xu ZENG. Change of growth characters and carbon stocks in plantations of Pinus sylvestris var. mongolica in Saihanba, Hebei, China [J]. Chin J Plan Ecolo, 2017, 41(8): 840-849.
[14] Ze-Bin LIU, Yan-Hui WANG, Yu LIU, Ao TIAN, Ya-Rui WANG, Hai-Jun ZUO. Spatiotemporal variation and scale effect of canopy leaf area index of larch plantation on a slope of the semi-humid Liupan Mountains, Ningxia, China [J]. Chin J Plan Ecolo, 2017, 41(7): 749-760.
[15] Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN, Yu-Sheng YANG. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedlings [J]. Chin J Plan Ecolo, 2017, 41(2): 186-195.
Full text



[1] Yang Li-rui and Cheng Mu-chu. Relationship between Plant Stress Resistance and Photorespiration[J]. Chin Bull Bot, 1991, 8(01): 43 -47 .
[2] . [J]. Chin Bull Bot, 1996, 13(专辑): 74 -75 .
[3] He Ping. Investigation of Pest Species and the Control of the Main Insect Pests in the Exhibition Green House of Beijing Botanical Garden[J]. Chin Bull Bot, 1996, 13(02): 44 -47 .
[4] Cui Kai-rong;Chen Ke-ming;Wang Xiao-zhe and Wang Ya-fu. Current Reseach on Plant Somatic Embryogenesis[J]. Chin Bull Bot, 1993, 10(03): 14 -20 .
[5] Huang Yao Li Chao-luan Ma Cheng Wu Nai-hu. Chloroplast DNA and Its Application to Plant Systematic Studies[J]. Chin Bull Bot, 1994, 11(02): 11 -25 .
[6] WANG Pu ZHAO Xiu-Qin. The Effect of Extracting Condition on the Analysis Result of Allelochemicals in Wheat Straw[J]. Chin Bull Bot, 2001, 18(06): 735 -738 .
[7] Yun Zihou;Liang Mingxia;Zhang Cunjie and Tan Zhiyi. The Determination of Trace Cytokinin in a Small Plant Sample by Gas Chromatography[J]. Chin Bull Bot, 1988, 5(01): 60 -63 .
[8] Yanxia He;Zicheng Wang*. Variation of DNA Methylation in Arabidopsis thaliana Seedlings After the Cryopreservation[J]. Chin Bull Bot, 2009, 44(03): 317 -322 .
[9] Yiting Shi, ShuhuaYang. Chinese Scientists Made Breakthrough in Study on Ethylene Signaling Transduction in Plants[J]. Chin Bull Bot, 2016, 51(3): 287 -289 .