Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (9): 963-970.doi: 10.17521/cjpe.2018.0085

• Review • Previous Articles     Next Articles

Effects of the supply levels and ratios of nitrogen and phosphorus on seed traits of Chenopodium glaucum

TIAN Da-Shuan()   

  1. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2018-02-26 Revised:2018-05-29 Online:2018-09-26 Published:2018-09-20
  • Contact: Da-Shuan TIAN
  • Supported by:
    Supported by the National Natural Science Foundation of China.(31600356);the National Basic Research Program of China(2017YFA0604801)


Aims Global nitrogen (N) deposition not only alters soil N and phosphorus (P) availability, but also changes their ratio. The levels and ratios of N and P supply and their interaction may simultaneously influence plant seed traits. However, so far there has been no experiments to distinguish these complex impacts on plant seed traits in the field.

Methods A pot experiment with a factorial design of three levels and ratios of N and P supply was conducted in the Nei Mongol grassland to explore the effects of levels and ratios of N and P supply and their interaction on seed traits of Chenopodium glaucum.

Important findings We found that the relative contribution (15%-24%) of N and P supply levels in affecting the N concentrations, P concentrations and germination rates of seeds was larger than that (3%-7%) of N:P supply ratios, whereas seed size was only significantly influenced by N:P. Simultaneously, seed N and P concentrations were impacted by the interaction of N and P supply levels and ratios. At the same N:P, decrease in nutrient supply levels increased seed N concentrations, P concentrations and germination rates. N:P supply ratios only had a significant effect on seed size and germination rates under low nutrient levels. Overall, these results indicate that different seed traits of C. glaucum show different sensitivities to N or P limitations, leading to adaptive and passive responses under different nutrient limitations. This study presents the the first field experiment to distinguish the effects of nutrient supply levels, ratios and their interactions on plant seed traits, which provides a new case study on the influences of global N deposition on future dynamics of plant population and community.

Key words: seed trait, nutrient supply level, phosphorus supply level, N:P, sand cultured pot experiment, adaptive response

Table 1

Levels and ratios of nitrogen and phosphorus supply in each treatment"

N:P 氮/磷供应量 N/P supply amount (mg·pot-1)
低量 Low 中量 Middle 高量 High
5 8.80/1.76 26.55/5.28 79.15/15.83
15 15.15/1.01 45.75/3.05 137.11/9.14
45 26.55/0.59 79.15/1.76 237.62/5.28

Table 2

Effects of nitrogen (N) and phosphorus (P) supply levels, ratios and their interactions on the size, N concentrations, P concentrations, germination rates and germination speed of seeds"

Seed trait
N and P supply level
N:P supply
Their interaction
自由度 d.f. 2 2 4
种子大小 Seed size 0.74%ns 4.41%* 5.38%ns
氮浓度 N concentration 23.58%*** 2.90%ns 13.77%**
磷浓度 P concentration 23.21%*** 7.07%** 17.45%***
萌发率 Germination rate 15.13%*** 5.86%** 2.79%ns
Germination speed
0.20%ns 2.00%ns 4.07%ns

Fig. 1

Effects of N and P supply levels or ratios on seed size of Chenopodium glaucum (mean ± SE, n = 20). * represents a significant impact of N:P at the same nutrient supply level."

Fig. 2

Effects of nitrogen (N) and phosphorus (P) supply levels or ratios on seed N and P contents of Chenopodium glaucum (mean ± SE, n = 20). * represents a significant effect of N:P at the same nutrient supply level. Different letters indicate a significant effect of nutrient supply level at the same N:P."

Fig. 3

Effects of nitrogen (N) and phosphorus (P) supply levels or ratios on seed germination rate and speed of Chenopodium glaucum (mean ± SE, n = 20). * indicates a significant effect of N:P at the same nutrient supply level. Different letters indicate a significant effect of nutrient supply level at the same N:P."

[1] Aarssen LW, Burton SM ( 1990). Maternal effects at 4 levels in Senecio vulgaris(Asteraceae) grown on a soil nutrient gradient. American Journal of Botany, 77, 1231-1240.
doi: 10.1002/j.1537-2197.1990.tb13622.x
[2] Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X ( 2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from inner Mongolia Grasslands. Global Change Biology, 16, 358-372.
doi: 10.1111/j.1365-2486.2009.01950.x
[3] Balestri E, Gobert S, Lepoint G, Lardicci C ( 2009). Seed nutrient content and nutritional status of Posidonia oceanica seedlings in the northwestern Mediterranean Sea. Marine Ecology Progress Series, 388, 99-109.
doi: 10.3354/meps08104
[4] Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B ( 2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30-59.
doi: 10.1890/08-1140.1
[5] Breen AN, Richards JH ( 2008). Irrigation and fertilization effects on seed number, size, germination and seedling growth: Implications for desert shrub establishment. Oecologia, 157, 13-19.
doi: 10.1007/s00442-008-1049-3
[6] Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM ( 2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065-1071.
doi: 10.1111/j.1461-0248.2008.01219.x pmid: 18627410
[7] Defalco LA, Bryla DR, Smith-Longozo V, Nowak RS ( 2003). Are Mojave Desert annual species equal? Resource acquisition and allocation for the invasive grass Bromus madritensis subsp rubens (Poaceae) and two native species. American Journal of Botany, 90, 1045-1053.
[8] Fortunel C, Violle C, Roumet C, Buatois B, Navas ML, Garnier E ( 2009). Allocation strategies and seed traits are hardly affected by nitrogen supply in 18 species differing in successional status. Perspectives in Plant Ecology Evolution and Systematics, 11, 267-283.
doi: 10.1016/j.ppees.2009.04.003
[9] Fujita Y, de Ruiter PC, Wassen MJ, Heil GW ( 2010). Time-dependent, species-specific effects of N:P stoichiometry on grassland plant growth. Plant and Soil, 334, 99-112.
doi: 10.1007/s11104-010-0495-y
[10] Galloway LF ( 2001). Parental environmental effects on life history in the herbaceous plant Campanula americana. Ecology, 82, 2781-2789.
[11] Grant CA, Flaten DN, Tomasiewicz DJ, Sheppard SC ( 2001). The importance of early season phosphorus nutrition. Canadian Journal of Plant Science, 81, 211-224.
doi: 10.4141/P00-093
[12] Groom PK, Lamont BB ( 2010). Phosphorus accumulation in Proteaceae seeds: A synthesis. Plant and Soil, 334, 61-72.
doi: 10.1007/s11104-009-0135-6
[13] Gusewell S ( 2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266.
doi: 10.1111/j.1469-8137.2004.01192.x
[14] Gusewell S ( 2005a ). High nitrogen: phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges. New Phytologist, 166, 537-550.
doi: 10.1111/j.1469-8137.2005.01320.x
[15] Gusewell S ( 2005b ). Responses of wetland graminoids to the relative supply of nitrogen and phosphorus. Plant Ecology, 176, 35-55.
doi: 10.1007/s11258-004-0010-8
[16] Gusewell S, Bollens U ( 2003). Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply. Basic and Applied Ecology, 4, 453-466.
doi: 10.1078/1439-1791-00174
[17] Hejcman M, Kristalova V, Cervena K, Hrdlickova J, Pavlu V ( 2012). Effect of nitrogen, phosphorus and potassium availability on mother plant size, seed production and germination ability of Rumex crispus. Weed Research, 52, 260-268.
doi: 10.1111/j.1365-3180.2012.00914.x
[18] Horak MJ, Wax LM ( 1991). Germination and seedling development of bigroot morningglory ( Ipomoea pandurata). Weed Science, 39, 390-396.
doi: 10.1007/BF00012049
[19] Howard TG, Goldberg DE ( 2001). Competitive response hierarchies for germination, growth, and survival and their influence on abundance. Ecology, 82, 979-990.
doi: 10.2307/2679897
[20] Hrdlickova J, Hejcman M, Kristalova V, Pavlu V ( 2011). Production, size, and germination of broad-leaved dock seeds collected from mother plants grown under different nitrogen, phosphorus, and potassium supplies. Weed Biology and Management, 11, 190-201.
doi: 10.1111/j.1445-6664.2011.00420.x
[21] Hu XY, Sun ZG, Zhang DY, Sun WG, Zhu H, Ren P ( 2017). Germination and seedling growth of different N-substrate seeds of Suaeda salsa subjected to salinity stress and nitrogen loading in the newly created marshes of the Yellow River estuary, China. Acta Ecologica Sinica, 37, 8499-8510.
[ 胡星云, 孙志高, 张党玉, 孙文广, 祝贺, 任鹏 ( 2017). 黄河口不同氮基质碱蓬种子萌发及幼苗生长对盐分及氮输入的响应. 生态学报, 37, 8499-8510.]
[22] Lavorel S, Garnier E ( 2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545-556.
doi: 10.1046/j.1365-2435.2002.00664.x
[23] Leishman MR ( 2001). Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos, 93, 294-302.
doi: 10.1034/j.1600-0706.2001.930212.x
[24] Li Y, Hou L, Song B, Yang L, Li L ( 2017). Effects of increased nitrogen and phosphorus deposition on offspring performance of two dominant species in a temperate steppe ecosystem. Scientific Reports, 7, 40951. DOI: 10.1038/?srep40951.
doi: 10.1038/srep40951 pmid: 28102339
[25] Li Y, Niu S, Yu G ( 2016). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis. Global Change Biology, 22, 934-943.
doi: 10.1111/gcb.13125 pmid: 26463578
[26] Liu L, Greaver TL ( 2010). A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 13, 819-828.
doi: 10.1111/ele.2010.13.issue-7
[27] Liu QY, Jiang M, Wang GD, Lu XG, Wang M, Lou YJ, Yuan YX ( 2013). Effect of exogenous phosphorus inputs on seed germination of soil seed bank in marshes in Xingkai lake. Wetland Science, 11, 41-47.
doi: 10.3969/j.issn.1672-5948.2013.01.007
[ 刘庆艳, 姜明, 王国栋, 吕宪国, 王铭, 娄彦景, 袁宇翔 ( 2013). 外源磷输入对兴凯湖沼泽土壤种子库种子萌发的影响. 湿地科学, 11, 41-47.]
doi: 10.3969/j.issn.1672-5948.2013.01.007
[28] Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A ( 2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462.
doi: 10.1038/nature11917 pmid: 23426264
[29] Liu Y, Gao P, Zhang L, Niu X, Wang B ( 2016). Spatial heterogeneity distribution of soil total nitrogen and total phosphorus in the Yaoxiang watershed in a hilly area of northern China based on geographic information system and geostatistics. Ecology and Evolution, 6, 6807-6816.
doi: 10.1002/ece3.2410 pmid: 5513238
[30] Liu ZM, Li RP, Li XH, Luo YM, Wang HM, Jiang DM, Nan YH ( 2004a ). A comparative study of seed weight of 69 plant species in Horqin Sandyland, China. Acta Phytoecologica Sinica, 28, 225-230.
doi: 10.17521/cjpe.2004.0033
[ 刘志民, 李荣平, 李雪华, 骆永明, 王红梅, 蒋德明, 南寅镐 ( 2004a ). 科尔沁沙地69种植物种子重量比较研究. 植物生态学报, 28, 225-230.]
doi: 10.17521/cjpe.2004.0033
[31] Liu ZM, Li XH, Li RP, Jiang DM, Cao CY, Chen XL ( 2004b ). A comparative of seed germination for 31 annual species of the Horqin steppe. Acta Ecologica Sinica, 24, 648-653.
doi: 10.3321/j.issn:1000-0933.2004.03.036
[ 刘志民, 李雪华, 李荣平, 蒋德明, 曹成有, 常学礼 ( 2004b ). 科尔沁沙地31种1年生植物萌发特性比较研究. 生态学报, 24, 648-653.]
doi: 10.3321/j.issn:1000-0933.2004.03.036
[32] Lu M, Yang Y, Luo Y, Fang C, Zhou X, Chen J, Yang X, Li B ( 2011). Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytologist, 189, 1040-1050.
doi: 10.1111/j.1469-8137.2010.03563.x pmid: 21138438
[33] Luo X, Mazer SJ, Guo H, Zhang N, Weiner J, Hu S ( 2016). Nitrogen: phosphorous supply ratio and allometry in five alpine plant species. Ecology and Evolution, 6, 8881-8892.
doi: 10.1002/ece3.2587 pmid: 5192882
[34] Ma QF, Longnecker N, Atkins C ( 2002). Varying phosphorus supply and development, growth and seed yield in narrow-leafed lupin. Plant and Soil, 239, 79-85.
doi: 10.1023/A:1014988219743
[35] Manning P, Houston K, Evans T ( 2009). Shifts in seed size across experimental nitrogen enrichment and plant density gradients. Basic and Applied Ecology, 10, 300-308.
doi: 10.1016/j.baae.2008.08.004
[36] Milberg P, Lamont BB ( 1997). Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytologist, 137, 665-672.
doi: 10.1046/j.1469-8137.1997.00870.x
[37] Moles AT, Westoby M ( 2004). Seedling survival and seed size: A synthesis of the literature. Journal of Ecology, 92, 372-383.
doi: 10.1111/jec.2004.92.issue-3
[38] Nadeem M, Mollier A, Morel C, Vives A, Prud’homme L, Pellerin S ( 2011). Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize ( Zea mays L.) nutrition during early growth stages. Plant and Soil, 346, 231-244.
doi: 10.1007/s11104-011-0814-y
[39] Naegle ER, Burton JW, Carter TE, Rufty TW ( 2005). Influence of seed nitrogen content on seedling growth and recovery from nitrogen stress. Plant and Soil, 271, 329-340.
doi: 10.1007/s11104-004-3242-4
[40] Navarro L, Guitian J ( 2003). Seed germination and seedling survival of two threatened endemic species of the northwest Iberian peninsula. Biological Conservation, 109, 313-320.
doi: 10.1016/S0006-3207(02)00151-9
[41] Pe?uelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E ( 2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934. DOI: 10.1038/?ncomms3934.
doi: 10.1038/ncomms3934 pmid: 24343268
[42] Schmid B, Dolt C ( 1994). Effects of maternal and paternal environment and genotype on offspring phenotype in Solidago altissima L. Evolution, 48, 1525-1549.
doi: 10.2307/2410246 pmid: 28568418
[43] Stevens CJ, Dise NB, Mountford JO, Gowing DJ ( 2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876-1879.
doi: 10.1126/science.1094678 pmid: 15031507
[44] Sultan SE ( 1996). Phenotypic plasticity for offspring traits in Polygonum persicaria. Ecology, 77, 1791-1807.
[45] Sun ZG, Song HL, Hu XY ( 2017). Response of germination and seedling growth of Suaeda salsa seeds from tidal marshes in the Yellow River estuary to N/P ratio of soil. Wetland Science, 15, 10-19.
[ 孙志高, 宋红丽, 胡星云 ( 2017). 黄河口潮滩碱蓬种子萌发与幼苗生长对土壤中氮磷比的响应. 湿地科学, 15, 10-19.]
[46] Tripathi RS, Khan ML ( 1990). Effects of seed weight and microsite characteristics on germination and seedling fitness in 2 species of Quercus in a subtropical wet hill forest. Oikos, 57, 289-296.
doi: 10.2307/3565956
[47] Tungate KD, Burton MG, Susko DJ, Sermons SM, Rufty TW ( 2006). Altered weed reproduction and maternal effects under low-nitrogen fertility. Weed Science, 54, 847-853.
doi: 10.1614/WS-05-145R.1
[48] Verdu M, Traveset A ( 2005). Early emergence enhances plant fitness: A phylogenetically controlled meta-analysis. Ecology, 86, 1385-1394.
doi: 10.1890/04-1647
[49] Vergeer P, Rengelink R, Ouborg NJ, Roelofs JGM ( 2003). Effects of population size and genetic variation on the response of Succisa pratensis to eutrophication and acidification. Journal of Ecology, 91, 600-609.
doi: 10.1046/j.1365-2745.2003.00785.x
[50] Violle C, Castro H, Richarte J, Navas ML ( 2009). Intraspecific seed trait variations and competition: Passive or adaptive response? Functional Ecology, 23, 612-620.
doi: 10.1111/j.1365-2435.2009.01539.x
[51] Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E ( 2007). Let the concept of trait be functional! Oikos, 116, 882-892.
doi: 10.1111/oik.2007.116.issue-5
[52] Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P ( 2011). Climate change and plant regeneration from seed. Global Change Biology, 17, 2145-2161.
doi: 10.1111/j.1365-2486.2010.02368.x
[53] Walters MB, Reich PB ( 2000). Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade. Ecology, 81, 1887-1901.
doi: 10.2307/177279
[54] Wulff RD, Causin HF, Benitez O, Bacalini PA ( 1999). Intraspecific variability and maternal effects in the response to nutrient addition in Chenopodium album. Canadian Journal of Botany, 77, 1150-1158.
doi: 10.1139/b99-124
[55] Zhang H, Chang R, Guo X, Liang X, Wang R, Liu J ( 2017). Shifts in growth and competitive dominance of the invasive plant Alternanthera philoxeroides under different nitrogen and phosphorus supply. Environmental and Experimental Botany, 135, 118-125.
doi: 10.1016/j.envexpbot.2016.12.014
[56] Zhang M, Nyborg M, Mcgill WB ( 1990). Phosphorus concentration in barley ( Hordeum vulgare L.) seed: Influence on seedling growth and dry-matter production. Plant and Soil, 122, 79-83.
doi: 10.1007/BF02851912
[57] Zhu YG, Smith SE ( 2001). Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi. Plant and Soil, 231, 105-112.
doi: 10.1023/A:1010320903592
[1] YIN Shuang, WANG Chuan-Kuan, JIN Ying, ZHOU Zheng-Hu. Changes in soil-microbe-exoenzyme C:N:P stoichiometry along an altitudinal gradient in Mt. Datudingzi, Northeast China [J]. Chin J Plant Ecol, 2019, 43(11): 999-1009.
[2] HE Qing-Hai, YANG Shao-Zong, LI Yin-Gang, SHEN Xin, LIU Xin-Hong. Phenotypic variations in seed and fruit traits of Liquidambar formosana populations [J]. Chin J Plan Ecolo, 2018, 42(7): 752-763.
[3] SUN Xiao-Mei, CHEN Jing-Jing, LI Jin-Xia, LI Liang, HAN Guo-Jun, CHEN Nian-Lai. Hierarchical responses of plant stoichiometry to phosphorus addition in an alpine meadow community [J]. Chin J Plan Ecolo, 2018, 42(1): 78-85.
[4] Ju-Ying HUANG, Hai-Long YU. Responses of growth of four desert species to different N addition levels [J]. Chin J Plan Ecolo, 2016, 40(2): 165-.
[5] Chao-Chen HU, Xue-Yan LIU, Yan-Bao LEI, Yun-Hong TAN, Peng ZHANG, Yu-Ping DONG, Cong-Qiang LIU. Foliar nitrogen and phosphorus stoichiometry of alien invasive plants and co-occurring natives in Xishuangbanna [J]. Chin J Plan Ecolo, 2016, 40(11): 1145-1153.
[6] SU Hua, LIU Wei, and LI Yong-Geng. Ecological implications of hydraulic redistribution in nutrient cycling of soil-plant system [J]. Chin J Plan Ecolo, 2014, 38(9): 1019-1028.
[7] BIN Zhen-Jun, WANG Jing-Jing, ZHANG Wen-Peng, XU Dang-Hui, CHENG Xue-Han, LI Ke-Jie, and CAO De-Hao. Effects of N addition on ecological stoichiometric characteristics in six dominant plant species of alpine meadow on the Qinghai-Xizang Plateau, China [J]. Chin J Plan Ecolo, 2014, 38(3): 231-237.
[8] LIU Chao, WANG Yang, WANG Nan, and WANG Gen-Xuan. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: a review [J]. Chin J Plan Ecolo, 2012, 36(11): 1205-1216.
[9] YANG Kuo, HUANG Jian-Hui, DONG Dan, MA Wen-Hong, HE Jin-Sheng. Canopy leaf N and P stoichiometry in grassland communities of Qinghai-Tibetan Plateau, China [J]. Chin J Plan Ecolo, 2010, 34(1): 17-22.
[10] LIU Xing-Zhao, ZHOU Guo-Yi, ZHANG De-Qiang, LIU Shi-Zhong, CHU Guo-Wei, YAN Jun-Hua. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China [J]. Chin J Plan Ecolo, 2010, 34(1): 64-71.
[11] YAN En-Rong, WANG Xi-Hua, GUO Ming, ZHONG Qiang, ZHOU Wu. C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China [J]. Chin J Plan Ecolo, 2010, 34(1): 48-57.
[12] Zhigang Zhao;Junjie Guo;Er Sha;Kaiqin Lin;Jie Zeng*;Jianmin Xu. Geographic Distribution and Phenotypic Variation of Fruit and Seed of Erythrophleum fordii in China [J]. Chin Bull Bot, 2009, 44(03): 338-344.
Full text



[1] Xiling Dai;Jianguo Cao;Quanxi Wang* . Formation and Development of Sporoderm of Ceratopteris thalictroides (L.) Brongn. (Parkeriaceae)[J]. Chin Bull Bot, 2008, 25(01): 72 -79 .
[2] Liu De-li. Heat-Shock Proteins of Plants and their Functions[J]. Chin Bull Bot, 1996, 13(01): 14 -19 .
[3] Chengqiang Ding, Dan Ma, Shaohua Wang, Yanfeng Ding. Optimization Process and Method of 2-D Electrophoresis for Rice Proteomics[J]. Chin Bull Bot, 2011, 46(1): 67 -73 .
[4] Xing Xue-rong Lu Chun-sheng Guo Da-li. Effect of Oraganic Acid to Nitrate Reductase and Nitrite Reductase Activity in the Vegetables[J]. Chin Bull Bot, 1995, 12(专辑2): 156 -162 .
[5] SONG Ke-Min. Phosphorus Nutrition of Plants: Phosphate Transport Systems and their Regulation[J]. Chin Bull Bot, 1999, 16(03): 251 -256 .
[6] CHEN Fa-Ju;YANG Ying-Gen;ZHAO De-Xiu;GUI Yao-Lin and GUO Zhong-Chen. Advances in Studies of Species Habitats Distribution and Chemical Composition of Snow Lotuses(Saussurea) in China[J]. Chin Bull Bot, 1999, 16(05): 561 -566 .
[7] YANG Hong-QiangJIE Yu-lingLI Jun. The Stresses Messenger from Roots and Its Production and Transport in Plant[J]. Chin Bull Bot, 2002, 19(01): 56 -62 .
[8] Hui Li, Guangcan Zhang, Huicheng Xie, Jingwei Xu, Chuanrong Li, Juwen Sun. The Effect of Phenol Concentration on Photosynthetic Physiological Parameters of Salix babylonica[J]. Chin Bull Bot, 2016, 51(1): 31 -39 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 97 -98 .