Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (1): 1-15.doi: 10.17521/cjpe.2018.0091

• Research Articles •     Next Articles

Species richness patterns and resource plant conservation assessments of Rosaceae in China

Dong-Ting ZOU1,Qing-Gang WANG2,Ao LUO1,Zhi-Heng WANG1,*()   

  1. 1 Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    2 College of Resources and Environmental Sciences, and Key Laboratory of Biodiversity and Organic Farming of Beijing City, China Agricultural University, Beijing 100193, China
  • Received:2018-04-18 Accepted:2018-05-29 Online:2019-04-25 Published:2019-01-20
  • Contact: Zhi-Heng WANG E-mail:zhiheng.wang@pku.edu.cn
  • Supported by:
    Supported by the National Basic Research Program of China(2017YFA0605101);the National Natural Science Foundation of China(31522012);the National Natural Science Foundation of China(31470564);the National Natural Science Foundation of China(31621091)

Abstract:

Aims Rosaceae is a widely-distributed family with numerous economic resource plants in China. However, the species richness pattern and the current conservation status of resource plants remain poorly evaluated. Here we aim to identify the economic resource plants of Rosaceae in China, estimate the species richness patterns for all Rosaceae plants combined and for different resource groups and evaluate the relationships between species richness patterns and environmental variables. We also evaluate the current conservation status of economic resource plants of Rosaceae.
Methods We first made the species list of all 914 Rosaceae species in China and identified the species with different economic usages, including edible, ornamental, medicinal plants and fruit germplasm resources. We then collected high-resolution distribution maps of all Rosaceae species, estimated the species richness patterns by overlapping these maps, and identified the diversity hotspots of different species groups. With high-resolution environmental data, we compared the effects of different environmental variables on the species richness and species composition of all Rosaceae species combined and the four main resource groups using generalized linear models (GLM) and redundancy analysis (RDA). Finally, we evaluated the conservation status of Rosaceae with distribution data overlaid by maps of nature reserves of China in ArcGIS.
Important findings 1) The species richness hotspots of Rosaceae in China are mainly located in the mountain areas in the north, east and west of Sichuan basin as well as Hengduan Mountains. 2) Species richness patterns of Rosaceae are mainly determined by humidity factors. 3) Poorly protected species are mainly in Hengduan Mountains, Southeast Yunnan and Xizang, and concentrated in the genus of Rubus.

Key words: Rosaceae, species richness, humidity, plant resource, plant diversity conservation, natural reserve

Table 1

Numbers of resources plant species and poorly protected species in genera with ≥15 species in Rosaceae"

属名
Genus name
物种总数
Number of
species
保护薄弱物
种数(比例)
Number (proportion) of poorly protected species
食用植物
Edible plants
园林植物
Ornamental plants
药用植物
Medicinal plants
水果种质资源
Fruit germplasm resource
资源物种总数
Total number of resource species
保护薄弱的资源
物种总数(比例)
Number (proportion)
of poorly protected resource species
悬钩子属 Rubus 206 74 (0.359) 27 10 63 171 175 51 (0.291)
蔷薇属 Rosa 94 27 (0.287) 10 53 37 36 57 3 (0.053)
委陵菜属 Potentilla 83 11 (0.133) 4 16 36 0 40 0
绣线菊属 Spiraea 67 13 (0.194) 0 37 23 0 39 3 (0.077)
花楸属 Sorbus 64 13 (0.203) 2 11 17 22 26 0
栒子属 Cotoneaster 61 4 (0.066) 0 20 16 55 58 3 (0.052)
石楠属 Photinia 43 17 (0.395) 0 7 9 1 10 0
樱属 Cerasus 38 0 5 13 15 19 23 0
苹果属 Malus 23 2 (0.087) 7 19 14 20 21 1 (0.048)
山楂属 Crataegus 18 5 (0.278) 6 6 13 15 16 4 (0.250)
绣线梅属 Neillia 15 7 (0.467) 0 6 3 0 6 0

Fig. 1

Species richness pattern of Rosaceae in China. Colors reflect number of Rosaceae species in each grid cell."

Fig. 2

Species richness patterns and hotspots of the four main resource groups (edible, ornamental, medicinal plants and fruit germplasm resources) of Rosaceae. The left column shows species richness patterns. The central column shows species richness hotspots (different colors represent different quantiles of species richness in each grid cell). The right column shows the ratios of the number of resource species and the number of all species in each grid cell."

Fig. 3

The overlaid map of species richness hotspots of the four resource groups (edible, ornamental, medicinal plants and fruit germplasm resources) of Rosaceae. The orange and red colors represent the number of resource groups sharing the grid cell as their hotspot (see Materials and Methods 1.5). Green color represents national and provincial natural reserves in China."

Table 2

Relationships between species richness patterns and environmental variables for all species combined and for the four main resource groups (i.e. edible, ornamental, medicinal plants and fruit germplasm resources) of Rosaceae"

环境变量
Environmental variables
总体
All
species
食用植物
Edible plants
园林植物
Ornamental plants
药用植物
Medicinal plants
水果资源
Fruit Germplasm Resource
气温
Temperature
MAT 14.4 24.1 15.4 16.6 19.0
MTCQ 21.4 20.5 18.0 18.1 29.2
MTWQ 3.7 20.1 7.7 9.3 3.7
降水
Precipitaion
AP 25.2 27.3 21.6 25.9 27.9
MI 35.0 24.3 28.7 31.1 36.2
AET 23.2 35.3 24.7 28.4 28.0
气候季节性 Climate
Seasonality
TSN -19.3 -5.2 -9.7 -8.2 -30.6
PSN -11.1 -8.6 -9.8 -12.7 -12.0
生境异质性 Habitat
heterogeneity
logELER 21.0 2.4 11.3 10.9 19.4
logMATR 20.1 2.0 10.8 10.2 18.7
logAPR 9.3 2.3 5.6 5.8 7.1
末次盛冰期以
来的气候变化
Climate Change since the LGM
anomaly_MAT -12.7 -7.7 -7.1 -9.0 -17.1
anomaly_AP -5.5 n.s. -3.7 -1.8 -6.8
velocity_MAT -25.3 -10.6 -17.2 -17.4 -30.9
velocity_AP -11.5 -15.9 -11.9 -10.5 -17.8

Table 3

Conservation status of species diversity hotspots of Rosaceae"

热点地区类型
Type of hotspot
网格数
Number of
grid cells
被保护区覆盖的
网格比例
Proportion of grid cells covered by natural reserves
网格内保护区的
平均个数
Mean number of natural reserves in each grid cell
保护区覆盖面积比例
Proportion of area
covered by natural reserves
保护区覆盖面积小于10%的网格数量比例
Proportion of grid cells with < 10% of area covered by natural reserve
所有物种 All species 189 0.693 1.47 0.135 0.397
食用植物 Edible plants 165 0.721 1.58 0.102 0.327
园林植物 Ornamental plants 187 0.717 1.52 0.124 0.380
药用植物 Medicinal plants 185 0.735 1.55 0.122 0.373
水果种质资源 Fruit germplasm resource 172 0.727 1.57 0.137 0.424
四类热点 Type IV hotspot 78 0.782 2.01 0.161 0.333
三类热点 Type III hotspot 94 0.691 1.18 0.091 0.426
二类热点 Type II hotspot 25 0.680 1.40 0.116 0.360
单一热点 Type I hotspot 65 0.631 1.11 0.068 0.446

Table 4

The number of poorly protected species of the four main resource groups (edible, ornamental, medicinal plants and fruit germplasm resources) of Rosaceae"

资源类型
Resource type
物种总数
Total number
of species
保护薄弱物种数
Number of poorly protected species
保护薄弱物种占比
Proportion of poorly protected species
食用植物
Edible plants
120 1 0.008
园林植物
Ornamental plants
286 12 0.042
药用植物
Medicinal plants
495 8 0.016
水果种质资源
Fruit germplasm resource
398 61 0.153

Fig. 4

Species richness pattern of poorly protected species in Rosaceae. The definition of poorly protected species is the intersection between narrowly-ranged species (bottom 25% of range sizes) and the species whose distributed grid cells are less protected (bottom 25% numbers of distributed grids covered by natural reserves)."

[1] Ai TM ( 2016). Medicinal Flora of China. Vol. 3. Peking University Medical Press, Beijing.
[ 艾铁民 ( 2016). 中国药用植物志. 第3卷. 北京大学医学出版社, 北京.]
[2] Aldasoro JJ, Aedo C, Navarro C ( 2005). Phylogenetic and phytogeographical relationships in Maloideae(Rosaceae) based on morphological and anatomical characters. Blumea—?Biodiversity, Evolution and Biogeography of Plants, 50, 3-32.
[3] Amsellem L, Noyer JL, Le BT, Hossaertmckey M ( 2000). Comparison of genetic diversity of the invasive weed Rubus alceifolius Poir.(Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Molecular Ecology, 9, 443-455.
[4] Araiso T, Dunford HB ( 2005). A test of the higher-taxon approach in the identification of candidate sites for marine reserves. Biodiversity and Conservation, 14, 3151-3168.
doi: 10.1007/s10531-004-0383-y
[5] Araújo MB, Rahbek C ( 2008). Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 31, 8-15.
doi: 10.1111/j.2007.0906-7590.05318.x
[6] Brehm JM, Maxted N, Martins-Loução MA, Ford-Lloyd BV ( 2010). New approaches for establishing conservation priorities for socio-economically important plant species. Biodiversity and Conservation, 19, 2715-2740.
doi: 10.1007/s10531-010-9871-4
[7] Brown JH ( 2014). Why are there so many species in the tropics? Journal of Biogeography, 41, 8-22.
doi: 10.1111/jbi.12228 pmid: 4320694
[8] Bureau of Local Products and Wastes,Ministry of Commerce,People’s Republic of China,Institute of Botany,Chinese Academy of Sciences ( 2012). Flora of Economic Plants of China. Science Press, Beijing.
[ 中华人民共和国商业部土产废品局, 中国科学院植物研究所 ( 2012). 中国经济植物志. 科学出版社, 北京.]
[9] Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A ( 2005). Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: A comparison of co-occurring mediterranean oaks that differ in leaf lifespan. New Phytologist, 168, 597-612.
doi: 10.1111/j.1469-8137.2005.01555.x pmid: 16313643
[10] Chin SW, Shaw J, Haberle R, Wen J, Potter D ( 2014). Diversification of almonds, peaches, plums and cherries— Mmolecular systematics and biogeographic history of Prunus(Rosaceae). Molecular Phylogenetics & Evolution, 76, 34-48.
doi: 10.1016/j.ympev.2014.02.024 pmid: 24631854
[11] Collins JP, Halliday T ( 2005). Forecasting changes in amphibian biodiversity: Aiming at a moving target. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360, 309-314.
doi: 10.1098/rstb.2004.1588 pmid: 1569460
[12] Currie DJ ( 1991). Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49.
doi: 10.2307/2462155
[13] Dobeš C, Paule J ( 2010). A comprehensive chloroplast DNA- based phylogeny of the genus Potentilla(Rosaceae): Implications for its geographic origin, phylogeography and generic circumscription. Molecular Phylogenetics & Evolution, 56, 156-175.
doi: 10.1016/j.ympev.2010.03.005 pmid: 20214995
[14] Dong YC, Liu X ( 2006). Crops and Their Wild Relatives in China. China Agricultural Press, Beijing.
[ 董玉琛, 刘旭 ( 2006). 中国作物及其野生近缘植物. 中国农业出版社, 北京.]
[15] Faith DP ( 1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
doi: 10.1016/0006-3207(92)91201-3
[16] Fan L, Zhang MY, Liu QZ, Li LT, Song Y, Wang LF, Zhang SL, Wu J ( 2013). Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Molecular Biology Reporter, 31, 1271-1282.
doi: 10.1007/s11105-013-0586-z pmid: 24415844
[17] Fang JY, Wang ZH, Tang ZY ( 2011). Atlas of Woody Plants in China: Distribution and Climate. Springer-Verlag, Berlin.
[18] Fjeldså J, Bowie RCK, Rahbek C ( 2012). The role of mountain ranges in the diversification of birds. Annual Review of Ecology Evolution & Systematics, 43, 249-265.
doi: 10.1146/annurev-ecolsys-102710-145113
[19] Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Proches S, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V ( 2007). Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757-760.
doi: 10.1038/nature05587 pmid: 17301791
[20] Gaston KJ ( 2000). Global patterns in biodiversity. Nature, 405, 220-227.
doi: 10.1038/35012228
[21] Gent PR, Danabasoglu G ( 2011). Response to increasing southern hemisphere winds in CCSM4. Journal of Climate, 24, 4992-4998.
doi: 10.1175/JCLI-D-10-05011.1
[22] Hawkins BA, Porter EE ( 2003). Relative influences of current and historical factors on mammal and bird diversity patterns in deglaciated North America. Global Ecology & Biogeography, 12, 475-481.
doi: 10.1046/j.1466-822X.2003.00060.x
[23] Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A ( 2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
doi: 10.1002/joc.1276
[24] Hu XS ( 1955). Handbook of Economic Plants. Science Press, Beijing.
[ 胡先骕 ( 1955). 经济植物手册. 科学出版社, 北京.]
[25] Hughes CE, Atchison GW ( 2015). The ubiquity of alpine plant radiations: From the Andes to the Hengduan Mountains. New Phytologist, 207, 275-282.
doi: 10.1111/nph.13230 pmid: 25605002
[26] Jetz W, Rahbek C ( 2002). Geographic range size and determinants of avian species richness. Science, 297, 1548-1551.
doi: 10.1126/science.1072779
[27] Kerr JT, Packer L ( 1997). Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385, 252-254.
[28] Kimura MK, Uchiyama K, Nakao K, Moriguchi Y, San Jose-Maldia L, Tsumura Y ( 2014). Evidence for cryptic northern refugia in the last glacial period in Cryptomeria japonica. Annals of Botany, 114, 1687-1700.
[29] Laity T, Laffan SW, González-Orozco CE, Faith DP, Dan FR, Byrne M, Miller JT, Grayn D, Costion C, Moritz CC, Newport K ( 2015). Phylodiversity to inform conservation policy: An Australian example. Science of the Total Environment, 534, 131-143.
doi: 10.1016/j.scitotenv.2015.04.113 pmid: 25976346
[30] Lee S, Wen J ( 2001). A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using its sequences of nuclear ribosomal DNA. American Journal of Botany, 88, 150-160.
doi: 10.2307/2657135 pmid: 11159135
[31] Li Y ( 1999). An investigation and studies on the origin and evolution of Malus domestica Borkh. in the world. Acta Horticulturae Sinica, 26, 213-220.
[32] Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, Mcghie TK, Espley RV, Hellens RP, Allan AC ( 2010). An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 10, 50-66.
doi: 10.1186/1471-2229-10-50 pmid: 2923524
[33] Liston A, Cronn R, Ashman TL ( 2014). Fragaria: A genus with deep historical roots and ripe for evolutionary and ecological insights. American Journal of Botany, 101, 1686-1699.
doi: 10.3732/ajb.1400140 pmid: 25326614
[34] Liu YM, Huang QN ( 2012). Ornamental Plant Species 1000. Fujian Science and Technology Press, Fuzhou.
[ 刘与明, 黄全能 ( 2012). 园林植物1000种. 福建科学技术出版社, 福州.]
[35] Liu YP, Shen ZH, Wang QG, Su XY, Zhang WJ, Shrestha N, Xu XT, Wang ZH ( 2017). Determinants of richness patterns differ between rare and common species: Implications for Gesneriaceae conservation in China. Diversity & Distributions, 23, 235-246.
doi: 10.1111/ddi.12523
[36] Lo EYY, Stefanović S, Christensen KI, Dickinson TA ( 2009). Evidence for genetic association between East Asian and western North American Crataegus L.(Rosaceae) and rapid divergence of the eastern North American lineages based on multiple DNA sequences. Molecular Phylogenetics & Evolution, 51, 157-168.
doi: 10.1016/j.ympev.2009.01.018 pmid: 19640428
[37] Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD ( 2009). The velocity of climate change. Nature, 462, 1052-1055.
doi: 10.1038/nature08649 pmid: 20033047
[38] López-Pujol J, Zhang FM, Sun HQ, Ying TS, Ge S ( 2011). Centres of plant endemism in China: Places for survival or for speciation? Journal of Biogeography, 38, 1267-1280.
doi: 10.1111/jbi.2011.38.issue-7
[39] Mccabe GJJ, Wolock DM, Hay LE, Ayers MA ( 1990). Effects of climatic change on the Thornthwaite moisture index. Jawra Journal of the American Water Resources Association, 26, 633-643.
doi: 10.1111/j.1752-1688.1990.tb01400.x
[40] Mcglone MS ( 1996). When history matters: Scale, time, climate and tree diversity. Global Ecology & Biogeography Letters, 5, 309-314.
doi: 10.2307/2997586
[41] Mendoza W, Cano A ( 2011). Diversity of the genus Polylepis(Rosaceae, Sanguisorbeae) in the Peruvian Andes. Revista Peruana De Biología, 18, 197-200.
[42] Montoya D, Rodríguez MA, Zavala MA, Hawkins BA ( 2007). Contemporary richness of holarctic trees and the historical pattern of glacial retreat. Ecography, 30, 173-182.
doi: 10.1111/eco.2007.30.issue-2
[43] Morales CG, Pino MT, Pozo AD ( 2013). Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars. Scientia Horticulturae, 162, 234-241.
doi: 10.1016/j.scienta.2013.07.025
[44] Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J ( 2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
doi: 10.1038/35002501 pmid: 10706275
[45] Normand S, Ricklefs RE, Flemming S, Jesper B, Oliver T, Jens-Christian S ( 2011). Postglacial migration supplements climate in determining plant species ranges in Europe. Proceedings of the Royal Society B: Biological Sciences, 278, 3644-3653.
doi: 10.1098/rspb.2010.2769 pmid: 3203492
[46] O’Brien EM ( 1993). Climatic gradients in woody plant species richness: Towards an explanation based on an analysis of southern Africa’s woody flora. Journal of Biogeography, 20, 181-198.
doi: 10.2307/2845670
[47] Oh SH, Potter D ( 2005). Molecular phylogenetic systematics and biogeography of tribe Neillieae(Rosaceae) using DNA sequences of cpDNA, rDNA, and LEAFY. American Journal of Botany, 92, 179-192.
doi: 10.3732/ajb.92.1.179 pmid: 21652396
[48] Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding TS, Rasmussen PC, Ridgely RS, Stattersfield AJ, Bennett PM, Blackburn TM, Gaston KJ, Owens PF ( 2005). Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 1016-1019.
doi: 10.1038/nature03850 pmid: 16107848
[49] Palmer MW, White PS ( 1994). Scale dependence and the species-?area relationship. The American Naturalist, 144, 717-740.
doi: 10.1086/285704
[50] Peyravi M ( 2015). Prioritizing areas for conservation of Rosaceae in Iran based on the geographic distribution analysis. Iranian Journal of Botany, 21, 47-57.
[51] Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Roberston KR, Arsenault M, Dickinson TA, Campbell CS ( 2007). Phylogeny and classification of Rosaceae. Plant Systematics & Evolution, 266, 5-43.
[52] Qin HN, Yang Y, Dong SY, He Q, Jia Y, Zhao LN, Yu SX, Liu HY, Liu B, Yan YH, Xiang JY, Xia NH, Peng H, Li ZY, Zhang ZX, He XJ, Yin LK, Lin YL, Liu QR, Hou YT, Liu Y, Liu QX, Cao W, Li JQ, Chen SL, Jin XH, Gao TG, Chen WL, Ma HY, Geng YY, Jin XF, Chang CY, Jiang H, Cai L, Zang CX, Wu JY, Ye JF, Lai CJ, Liu B, Lin QW, Xue NX ( 2017). Threatened species list of China’s higher plants. Biodiversity Science, 25, 696-744.
doi: 10.17520/biods.2017144
[ 覃海宁, 杨永, 董仕勇, 何强, 贾渝, 赵莉娜, 于胜祥, 刘慧圆, 刘博, 严岳鸿, 向建英, 夏念和, 彭华, 李振宇, 张志翔, 何兴金, 尹林克, 林余霖, 刘全儒, 侯元同, 刘演, 刘启新, 曹伟, 李建强, 陈世龙, 金效华, 高天刚, 陈文俐, 马海英, 耿玉英, 金孝锋, 常朝阳, 蒋宏, 蔡蕾, 臧春鑫, 武建勇, 叶建飞, 赖阳均, 刘冰, 林秦文, 薛纳新 ( 2017). 中国高等植物受威胁物种名录. 生物多样性, 25, 696-744.]
doi: 10.17520/biods.2017144
[53] Ricklefs RE ( 2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1-15.
doi: 10.1046/j.1461-0248.2003.00554.x
[54] Ru S, Main D, Evans K, Peace C ( 2015). Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genetics & Genomes, 11, 8. DOI: 10.1007/s11295-015-0834-5.
doi: 10.1007/s11295-015-0834-5
[55] Salick J, Yang YP, Amend A ( 2005). Tibetan land use and change near Khawa Karpo, eastern Himalayas. Economic Botany, 59, 312-325.
doi: 10.1663/0013-0001(2005)059[0312:TLUACN]2.0.CO;2
[56] Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC ( 2011) The influence of Late Quaternary climate-change velocity on species endemism. Science, 334, 660-664.
doi: 10.1126/science.1210173
[57] Schmitt CB, Senbeta F, Woldemariam T, Rudner M, Denich M ( 2013). Importance of regional climates for plant species distribution patterns in moist Afromontane forest. Journal of Vegetation Science, 24, 553-568.
doi: 10.1111/j.1654-1103.2012.01477.x
[58] Schneider GW, Childers NF ( 1941). Influence of soil moisture on photosynthesis, respiration and transpiration of apple leaves. Plant Physiology, 16, 565-583.
doi: 10.1104/pp.16.3.565 pmid: 16653720
[59] Scientific Investigation Team for Qinghai-Xizang Plateau,Chinese Academy of Sciences (1993). Vascular Plants in Hengduan Mountains. Science Press, Beijing.
[ 中国科学院青藏高原综合科学考察队 ( 1993). 横断山区维管植物. 科学出版社, 北京.]
[60] Sher H, Ali H, Rehman S ( 2012). Identification and conservation of important plant areas (IPAs) for the distribution of medicinal, aromatic and economic plants in the Hindukush-Himalaya mountain range. Pakistan Journal of Botany, 44, 187-194.
[61] Shi S, Li J, Sun J, Yu J, Zhou S ( 2013). Phylogeny and classification of Prunus sensu lato(Rosaceae). Journal of Integrative Plant Biology, 55, 1069-1079.
doi: 10.1111/jipb.12095 pmid: 23945216
[62] Shrestha N, Su XY, Xu XT, Wang ZH ( 2018). The drivers of high Rhododendron diversity in southwest China: Does seasonality matter? Journal of Biogeography, 45, 438-447.
doi: 10.1111/jbi.13136
[63] Staff Room of Pharmacognosy of Department of Pharmacy of Second Military Medical University ( 1960). Illustrated Handbook of Chinese Medicinal Plants. Shanghai Education Press, Shanghai.
[ 第二军医大学药学系生药学教研室 ( 1960). 中国药用植物图鉴. 上海教育出版社, 上海.]
[64] Stein A, Gerstner K, Kreft H ( 2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880.
doi: 10.1111/ele.12277 pmid: 24751205
[65] Svenning JC, Skov F ( 2007 a). Ice age legacies in the geographical distribution of tree species richness in Europe. Global Ecology & Biogeography, 16, 234-245.
doi: 10.1111/j.1466-8238.2006.00280.x
[66] Svenning JC, Skov F ( 2007 b). Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecology Letters, 10, 453-460.
doi: 10.1111/j.1461-0248.2007.01038.x pmid: 17498144
[67] Thornthwaite C, Hare FK ( 1955). Climatic classification in forestry. Unasylva, 9, 51-59.
[68] Wang RX ( 2010). Pictures of Ornamental Plants. China Machine Press, Beijing.
[ 汪荣先 ( 2010). 园林景观植物树木图典. 机械工业出版社, 北京.]
[69] Wang SY, Xu XT, Shrestha N, Zimmermann NE, Tang ZY, Wang ZH ( 2017). Response of spatial vegetation distribution in China to climate changes since the last glacial maximum (LGM). PLOS ONE, 12, e0175742. DOI: 10.?1371/journal.pone.0175742.
doi: 10.1371/journal.pone.0175742 pmid: 5398547
[70] Wang ZH, Fang JY, Tang ZY, Lin X ( 2011). Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B: Biological Sciences, 278, 2122-2132.
doi: 10.1098/rspb.2010.1897 pmid: 21147804
[71] Wang ZH, Fang JY, Tang ZY, Lin X ( 2012 a). Relative role of contemporary environment versus history in shaping diversity patterns of China’s woody plants. Ecography, 35, 1124-1133.
doi: 10.1111/j.1600-0587.2011.06781.x
[72] Wang ZH, Fang JY, Tang ZY, Shi L ( 2012 b). Geographical patterns in the beta diversity of China’s woody plants: The influence of space, environment and range size. Ecography, 35, 1092-1102.
doi: 10.1111/j.1600-0587.2012.06988.x
[73] Wang ZH, Tang ZY, Fang JY ( 2009). The species-energy hypothesis as a mechanism for species richness patterns. Biodiversity Science, 17, 613-624.
doi: 10.3724/SP.J.1003.2009.09161
[ 王志恒, 唐志尧, 方精云 ( 2009). 物种多样性地理格局的能量假说. 生物多样性, 17, 613-624.]
doi: 10.3724/SP.J.1003.2009.09161
[74] Wang ZY ( 2017). Apple futures: Based on serving for “Three Rural” issues and to help anti-poverty. China Securities Journal, 2017-12-12.
[ 王朱莹 ( 2017). 苹果期货: 立足服务“三农”助力脱贫攻坚. 中国证券报, 2017-12-12.]
[75] Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M ( 2011). MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4, 845-872.
doi: 10.5194/gmd-4-845-2011
[76] Wells CE, Glenn DM, Eissenstat DM ( 2002). Changes in the risk of fine-root mortality with age: A case study in peach,Prunus persica(Rosaceae). American Journal of Botany, 89, 79-87.
[77] Wheeler JK, Sperry JS, Hacke UG, Hoang N ( 2005). Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: A basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell & Environment, 28, 800-812.
doi: 10.1111/j.1365-3040.2005.01330.x
[78] Whittaker R, Nogues-Bravo D, Araújo M ( 2007). Geographical gradients of species richness: A test of the water-energy conjecture of Hawkins et al. ( 2003) using European data for five taxa. Global Ecology & Biogeography, 16, 76-89.
doi: 10.1111/j.1466-8238.2006.00268.x
[79] Wiens JJ, Donoghue MJ ( 2004). Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19, 639-644.
doi: 10.1016/j.tree.2004.09.011 pmid: 16701326
[80] Wu ZY, Raven P ( 1994-2009). Flora of China. Science Press & Missouri Botanical Garden Press, Beijing & St Louis.
[81] Xiang YZ, Huang C, Hu Y, Wen J, Li SS, Yi TS, Chen HY, Xiang J, Ma H ( 2017). Well-resolved Rosaceae nuclear phylogeny facilitates feological time and genome duplication analyses and ancestral fruit character reconstruction. Molecular Biology and Evolution, 34, 262-281.
[82] Xing Y, Ree RH ( 2017). Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 114, 3444-3451.
doi: 10.1073/pnas.1616063114 pmid: 28373546
[83] Xu XT, Wang ZH, Rahbek C, Lessard J, Fang JY ( 2013). Evolutionary history influences the effects of water-energy dynamics on oak diversity in Asia. Journal of Biogeography, 40, 2146-2155.
doi: 10.1111/jbi.12149
[84] Xu XT, Wang ZH, Rahbek C, Sanders NJ, Fang JY ( 2016). Geographical variation in the importance of water and energy for oak diversity. Journal of Biogeography, 43, 279-288.
doi: 10.1111/jbi.12620
[85] Ye HG, Zou B, Zeng FY ( 2014). Chinese Medicinal Plants. Vol. 1. Chemical Industry Press, Beijing.
[ 叶华谷, 邹滨, 曾飞燕 ( 2014). 中国药用植物(一). 化学工业出版社, 北京.]
[86] Yu DJ, Lu LT, Gu CZ, Li CL, Guan KJ (1989). Flora Reipublicae Popularis Sinicae.. Vol.36-38(Rosaceae,Connaraceae). Science Press, Beijing.
[ 俞德浚, 陆玲娣, 谷粹芝, 李朝銮, 关克俭 ( 1989). 中国植物志. 第36-38卷(蔷薇科、牛栓藤科). 科学出版社, 北京.]
[87] Zhang SD, Jin JJ, Chen SY, Chase MW, Soltis DE, Li HT, Yang JB, Li DZ, Yi TS ( 2017). Diversification of Rosaceae since the late Cretaceous based on plastid phylogenomics. New Phytologist, 214, 1355-1367.
doi: 10.1111/nph.14461 pmid: 28186635
[88] Zhang ZJ, He JS, Li JS, Tang ZY ( 2015). Distribution and conservation of threatened plants in China. Biological Conservation, 192, 454-460.
doi: 10.1016/j.biocon.2015.10.019
[89] Zheng HC, Shun QS, Yu GD, Feng ZJ, Quan SC ( 2003). Chinese Edible Herbs. Vol. Plants. Shanghai Lexicographical Publishing House, Shanghai.
[ 郑汉臣, 顺庆生, 余国奠, 冯志坚, 全山丛 ( 2003). 中国食用本草, 植物卷. 上海辞书出版社, 上海.]
[90] Zhong DL, Ding L ( 1996). Rising process of the Qinghai-?Xizang (Tibet) Plateau and its mechanism. Science in China Series D, 39, 369-379.
doi: 10.1144/GSL.QJEGH.1996.029.P3.08
[91] Zhou HY ( 2009). Illustrated Handbook of Landscape Plant Species. China Forestry Publishing House, Beijing.
[ 周洪义 ( 2009). 园林景观植物图鉴. 中国林业出版社, 北京.]
[1] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] Guijun Yang,Min Wang,Yichun Yang,Xinyun Li,Xinpu Wang. Distribution patterns and environmental interpretation of beetle species richness in Helan Mountain of northern China [J]. Biodiv Sci, 2019, 27(12): 1309-1319.
[4] Zhou Haonan, Zhao Yuhao, Zeng Di, Liu Juan, Jin Tinghao, Ding Ping. Spatial patterns and influencing factors of ground ant species diversity on the land-bridge islands in the Thousand Island Lake, China [J]. Biodiv Sci, 2019, 27(10): 1101-1111.
[5] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[6] Xu Xiang, Zhang Huayong, Xie Ting, Sun Qingqing, Tian Yonglan. Elevational pattern of seed plant diversity in Xishuangbanna and its mechanisms [J]. Biodiv Sci, 2018, 26(7): 678-689.
[7] Zejin Zhang,Yanpei Guo,Jin-Sheng He,Zhiyao Tang. Conservation status of Wild Plant Species with Extremely Small Populations in China [J]. Biodiv Sci, 2018, 26(6): 572-577.
[8] Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(4): 430-441.
[9] Zhang Ping, Hao Xiuying, Yu Ruifeng, Zhou Hongmei, Zhu Jianjun. A Tentative Method for Monitoring the Dynamic Features of Transpiration Regulation in Ferula krylovii Leaves [J]. Chin Bull Bot, 2018, 53(3): 353-363.
[10] Binqiang Li, Pengying Li, Jiawei Yang, Hongjun Zi, Xingquan Li, Xihuan Duan, Xu Luo. Wildlife monitoring in Weishan Qinghua Green Peafowl Nature Reserve using infrared cameras, Yunnan Province [J]. Biodiv Sci, 2018, 26(12): 1343-1347.
[11] Ge Gao,Bin Wang,Chenxiang He,Xu Luo. Biodiversity of birds and mammals in alpine habitat of Mt. Gaoligong, Lushui County, Yunnan [J]. Biodiv Sci, 2017, 25(3): 332-339.
[12] Xiaobo Huang, Shuaifeng Li, Jianrong Su, Wande Liu, Xuedong Lang. The relationship between species richness and ecosystem multifunctionality in the Pinus yunnanensis natural secondary forest [J]. Biodiv Sci, 2017, 25(11): 1182-1191.
[13] Jianming Wang, Wenjuan Wang, Jingwen Li, Yiming Feng, Bo Wu, Qi Lu. Biogeographic patterns and environmental interpretation of plant species richness in desert regions of Northwest China [J]. Biodiv Sci, 2017, 25(11): 1192-1201.
[14] Yuanjie Xu,Dunmei Lin,Ming Shi,Yanjie Xie,Yizhi Wang,Zhenhua Guan,Jianying Xiang. Spatial heterogeneity and its causes in evergreen broad-leaved forests in the Ailao Mountains, Yunnan Province [J]. Biodiv Sci, 2017, 25(1): 23-33.
[15] Xiao-Ting WANG, Xue-Fa WEN. Leaf water δD and δ18O enrichment process and influencing factors in spring maize (Zea mays) grown in the middle reaches of Heihe River Basin [J]. Chin J Plan Ecolo, 2016, 40(9): 912-924.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chin Bull Bot, 1995, 12(04): 22 -27 .
[2] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chin Bull Bot, 1998, 15(03): 54 -56 .
[3] Zhang Jing-tan. Abbreviations for Some Commonly Used Term[J]. Chin Bull Bot, 1985, 3(01): 57 -58 .
[4] DU Gui-Sen;ZANG Yu-Long and WANG Mei-Zhi. Study on Spore Morphology of 6 Species of The Family Pottiaceae in China[J]. Chin Bull Bot, 1998, 15(03): 57 -60 .
[5] TIAN Xin-Zhi. On Plant Illustration and Artistic Drawing and Painting[J]. Chin Bull Bot, 1999, 16(04): 470 -476 .
[6] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chin Bull Bot, 2003, 20(03): 264 -269 .
[7] LIU Hong-Tao LI Bing ZHOU Ren-Gang. Calcium_calmodulin Signal Transduction Pathway and Environment Stimulation[J]. Chin Bull Bot, 2001, 18(05): 554 -559 .
[8] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chin Bull Bot, 2010, 45(01): 66 -72 .
[9] Sanxiong Fu;Cunkou Qi*. Identification of Genes Differentially Expressed in Seeds of Brassica napus Planted in Nanjing and Lhasa by Arabidopsis Microarray[J]. Chin Bull Bot, 2009, 44(02): 178 -184 .
[10] Xiaofen Sun;Yu Chen;Junsong Pan;Yuliang Wang;Kexing Sun;Kexuan Tang*;Run Cai*. Correlation and Path Analyses of Vindoline with Major Agronomic Traits in Catharanthus roseus[J]. Chin Bull Bot, 2009, 44(01): 96 -102 .