Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (10): 1000-1008.doi: 10.17521/cjpe.2018.0129

• Research Articles • Previous Articles     Next Articles

Construction of CO2-response model of electron transport rate in C4 crop and its application

YE Zi-Piao1,DUAN Shi-Hua2,AN Ting1,KANG Hua-Jing3,*()   

  1. 1 College of Math and Physics, Jinggangshan University, Ji’an, Jiangxi 343009, China
    2 School of Life Sciences, Jinggangshan University, Ji’an, Jiangxi 343009, China
    3 Wenzhou Academy of Agricultural Sciences, Wenzhou, Zhejiang 325006, China
  • Received:2018-05-29 Online:2019-01-30 Published:2018-10-20
  • Contact: Hua-Jing KANG
  • Supported by:
    Supported by the National Natural Science Foundation of China(31560069)


Aims Accurate estimation of variation tendency of photosynthetic electron flow response to CO2 is of great significance to understand the photosynthetic processes.
Methods A model of electron transport rate (J) response to CO2 (model II) was developed based on a new model of photosynthesis response to CO2 (model I). The data of maize (Zea mays) and grain amaranth (Amaranthus hypochondriacus) that were measured by LI-6400-40 portable photosynthetic apparatus were fitted by the two models, respectively.
Important findings The results indicated that the model II could well characterize and fit the CO2-response curves of electron transport rate (J-Ca curve) for maize and grain amaranth, and the maximum electron transport rates of maize and grain amaranth were 262.41 and 393.07 mmol·m -2·s -1, which were in very close agreement with the estimated values (p > 0.05), respectively. Based on these results, the allocation to other pathways of photosynthetic electronic flow were discussed. At 380 mmol·mol -1 CO2, the photosynthetic electron flows for carbon assimilation of maize and grain amaranth carbon were 247.92 and 285.16 mmol·m -2·s -1, respectively, when the CO2 for recovery of mitochondrial respiration was considered, and the photosynthetic electron flows for other pathways were 14.49 and 107.91 mmol·m -2·s -1, respectively. The photosynthetic electron flows for other pathways in grain amaranth were more six times than that in maize. The analysis shows that this difference is closely related to the types of catalytic decarboxylase and the locations of decarboxylation reactions. This finding provides a new perspective for investigating the differences between the two subtypes of nicotinamide adenine dinucleotide phosphate malic acid enzyme type and nicotinamide adenine dinucleotide malic acid enzyme type in C4 species. In addition, the CO2-response model of electron transport rate offers us an alternative mathematical tool for investigating the photosynthetic electron flow of C4 crop.

Key words: C4 crop, electron transport rate, CO2 response, electron flow allocation, model development

Fig. 1

CO2-response curves of photosynthesis in maize and grain amaranth (mean ± SE, n = 5)."

Table 1

Estimated values and results fitted by model I for CO2-response curves of photosynthesis (Ac-Ca) in maize and grain amaranth (mean ± SE, n = 5)"

Photosynthetic parameter
玉米 Maize 千穗谷 Grain amaranth
拟合值 Fitted value 估算值 Estimated value 拟合值 Fitted value 估算值 Estimated value
αc 0.247 ± 0.033b 0.334 ± 0.022a
Ac-max (mmol·m-2·s-1) 59.12 ± 0.67b ? 60.39 69.97 ± 0.71a ? 70.49
Ca-sat (mmol·mol-1) 1 335.74 ± 196.52a ? 1 400 976.25 ± 12.06b ? 1 000
Γ (mmol·mol-1) 4.35 ± 2.08b ? 4.25b 12.77 ± 0.53a ? 13.41
Rl (mmol·m-2·s-1) 1.13 ± 0.64b ? 0.24 2.44 ± 0.15a ? 0.28
R2 0.997 0.991

Fig. 2

CO2-response curves of photosynthetic electron transport rate (J-Ca) in maize and grain amaranth (mean ± SE, n = 5)."

Table 2

Estimated values and results fitted by model II for CO2-response curves of photosynthetic electron transport rate (J-Ca) in maize and grain amaranth (mean ± SE, n = 5)"

Photosynthetic parameter
玉米 Maize 千穗谷 Grain amaranth
拟合值 Fitted value 估算值 Estimated value 拟合值 Fitted value 估算值 Estimated value
αce (mol·m-2·s-1) 1.215 ± 0.543a 1.208 ± 0.357a
Jmax (mmol·m-2·s-1) 262.41 ± 1.64b ? 265.66 393.07 ± 37.84a ? 397.82
Ca-sat (mmol·mol-1) 1 198.58 ± 342.78a ? 1 200 1 229.10 ± 59.14a ? 1 200
J0 (mmol·m-2·s-1) 22.22 ± 8.35a ? 27.69 27.43 ± 4.97a ? 29.26
R2 0.978 0.992

Table 3

Comparison of photosynthetic parameters and allocation of electron flow in maize and grain amaranth at 2 000 μmol·m-2·s-1 light intensity"

[CO2] = 380 mmol·mol-1 [CO2] = 0 mmol·mol-1
Ac-max 59.12 69.97 - -
Rn 2.86 1.32 3.27 3.17
Rd 1.43 0.66 0.24 0.28
Re 1.43 0.66 3.02 2.89
Jmax 262.41 393.07 - -
J0 - - 22.22 27.43
Jc 242.20 282.52 0.96 1.12
Ja 20.21 110.55 21.26 26.31
J°c 247.92 285.16 13.08 12.68
J°a 14.49 107.91 9.14 14.75
1 Baker NR ( 2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
2 Berry JA, Farquhar GD ( 1978). The CO2 concentrating function of C4 photosynthesis: A biochemical model. In: Hall D, Coombs J, Goodwin T eds. The Proceedings of the Fourth International Congress on Photosynthesis. Biochemical Society of London, London. 119-131.
3 Collatz GJ, Ribas-Carbo M, Berry JA ( 1992). Coupled photosynthesis stomatal model for leaves of C4 plants. Australian Journal of Plant Physiology, 19, 519-538.
4 Eichelmann H, Oja V, Peterson RB, Laisk A ( 2011). The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis. Journal of Experimental Botany, 62, 2205-2215.
doi: 10.1093/jxb/erq428 pmid: 3060700
5 Epron D, Godard D, Cornic G, Genty B ( 1995). Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant, Cell & Environment, 18, 43-51.
6 Farquhar GD, Busch FA ( 2017). Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: A model. New Phytologist, 214, 570-584.
doi: 10.1111/nph.14512 pmid: 28318033
7 Feng RY, Bai YF, Li P, Zhang WF, Wang YY, Yang WD ( 2011). Molecular cloning and expression analysis of C4 phosphoenolpyruvate carboxylase gene from A. hypochondriacus L. Acta Agronomica Sinica, 37, 1801-1808.
doi: 10.3724/SP.J.1006.2011.01801
[ 冯瑞云, 白云凤, 李平, 张维锋, 王媛媛, 杨武德 ( 2011). 籽粒苋C4型磷酸烯醇式丙酮酸羧化酶基因的克隆和表达. 作物学报, 37, 1801-1808.]
doi: 10.3724/SP.J.1006.2011.01801
8 Fila G, Badeck FW, Meyer S, Cerovic Z, Ghashghaie J ( 2006). Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. Journal of Experimental Botany, 57, 2687-2695.
doi: 10.1093/jxb/erl040 pmid: 16837534
9 Foyer CH, Noctor G ( 2000). Oxygen processing in photosynthesis: Regulation and signaling. New Phytologist, 146, 359-388.
doi: 10.1046/j.1469-8137.2000.00667.x
10 Hatch MD ( 1987). C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochimica et Biophysica Acta, 895, 81-106.
doi: 10.1016/S0304-4173(87)80009-5
11 He FY, Yan JJ, Bai YF, Feng RY, Zhang WF ( 2017). Prokaryotic expression and enzyme activity determination of C4 key enzyme pyruvate phosphate dikinase gene in Amaranth hypochondriacus. Acta Agriculturae Boreli-Sinica, 32, 61-65.
doi: 10.7668/hbnxb.2017.02.010
[ 贺飞燕, 闫建俊, 白云凤, 冯瑞云, 张维锋 ( 2017). 籽粒苋C4关键酶丙酮酸磷酸双激酶基因的原核表达及酶活性测定. 华北农学报, 32, 61-65.]
doi: 10.7668/hbnxb.2017.02.010
12 Heber U ( 2002). Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynthesis Research, 73, 223-231.
doi: 10.1023/A:1020459416987
13 Kang HJ, Li H, Quan W, Ouyang Z ( 2014). Causes of decreasing mitochondrial respiration under light in four crops, Chinese Journal of Plant Ecology, 38, 1110-1116.
doi: 10.3724/SP.J.1258.2014.00105
[ 康华靖, 李红, 权伟, 欧阳竹 ( 2014). 四种作物光下暗呼吸速率降低的原因. 植物生态学报, 38, 1110-1116.]
doi: 10.3724/SP.J.1258.2014.00105
14 Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M ( 1999). High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnology, 17, 76-80.
doi: 10.1038/5256 pmid: 9920274
15 Li XB, Xu WG, Lei MY, Zhang QC, Wang HW, Li Y, Hua X, Gao C ( 2017). The response of photosynthetic characteristics of maize C4-type pepc, ppdk and nadp-me transgenetic Arabidopsis thaliana to high light stress. Molecular Plant Breeding, 15, 911-919.
[ 李小博, 许为钢, 雷明月, 张庆琛, 王会伟, 李艳, 华夏, 高崇 ( 2017). 转玉米C4光合途径pepcppdknadp-me基因拟南芥光合特性对强光胁迫的反应. 分子植物育种, 15, 911-919.]
16 Liang XY, Liu SR ( 2017). A review on the FvCB biochemical model of photosynthesis and the measurement of A-Ci curves. Chinese Journal of Plant Ecology, 41, 693-706.
doi: 10.17521/cjpe.2016.0283
[ 梁星云, 刘世荣 ( 2017). FvCB生物化学光合模型及A-Ci曲线测定. 植物生态学报, 41, 693-706.]
doi: 10.17521/cjpe.2016.0283
17 Lin ZF, Peng CL, Sun ZJ, Lin GZ ( 2000). The influence of light intensity on photosynthetic electron transport partitioning in photorespiration for four subtropical forest species. Science China (Ser C), 30, 72-77.
doi: 10.3321/j.issn:1006-9259.2000.01.011
[ 林植芳, 彭长连, 孙梓健, 林桂珠 ( 2000). 光强对4种亚热带森林植物光合电子传递向光呼吸分配的影响. 中国科学(C辑), 30, 72-77. ]
doi: 10.3321/j.issn:1006-9259.2000.01.011
18 Loreto F, Delfine S, Di-marco G ( 1999). Estimation of photorespiratory carbon dioxide recycling during photosynthesis. Australian Journal of Plant Physiology, 26, 733-736.
doi: 10.1071/PP99096
19 Loreto F, Velikova VB, Marco GDA ( 2001). Respiration in the light measured by 12CO2 emission in 13CO2 atmosphere in maize leaves . Australian Journal of Plant Physiology, 28, 1103-1108.
20 Miyake C ( 2010). Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: Molecular mechanisms and physiological functions. Plant and Cell Physiology, 51, 1951-1963.
doi: 10.1093/pcp/pcq173 pmid: 21068108
21 Miyake C, Yonekura K, Kobayashi Y, Yokota A ( 2002). Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves. Plant and Cell Physiology, 43, 951-957.
doi: 10.1093/pcp/pcf113 pmid: 12198198
22 Peltier G, Tolleter D, Billon E, Cournac L ( 2010). Auxiliary electron transport pathways in chloroplasts of micro algae. Photosynthesis Research, 106, 19-31.
doi: 10.1007/s11120-010-9575-3
23 Silva-Pérez V, Furbank RT, Condon AG, Evans J ( 2017). Biochemical model of C3 photosynthesis applied to wheat at different temperatures. Plant, Cell and Environment, 40, 1552-1564.
doi: 10.1111/pce.12953 pmid: 28338213
24 Tang XL, Cao YH, Gu LH, Zhou BZ ( 2017 a). Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model. Acta Ecologica Sinica, 37, 6633-6645.
[ 唐星林, 曹永慧, 顾连宏, 周本智 ( 2017 a). 基于FvCB模型的叶片光合生理对环境因子的响应研究进展. 生态学报, 37, 6633-6645.]
25 Tang XL, Zhou BZ, Zhou Y, Ni X, Cao YH, Gu LH ( 2017 b). Photo-physiological and photo-biochemical characteristics of several herbaceous and woody species based on FvCB model. Chinese Journal of Applied Ecology, 28, 1482-1488.
doi: 10.13287/j.1001-9332.201705.029
[ 唐星林, 周本智, 周燕, 倪霞, 曹永慧, 顾连宏 ( 2017 b). 基于FvCB 模型的几种草本和木本植物光合生理生化特性. 应用生态学报, 28, 1482-1488.]
doi: 10.13287/j.1001-9332.201705.029
26 Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G, Coates S, Wingler A, Fernie AR, Hibberd JM ( 2010). Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant Journal, 62, 641-652.
doi: 10.1111/j.1365-313X.2010.04179.x pmid: 20202167
27 Valentini R, Epron D, de Angelis P, Matteucci G, Dreyer E ( 1995). In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Tukey oak (Q. cerris L.) leaves: Diurnal cycles under different levels of water supply. Plant, Cell and Environment, 18, 631-640.
doi: 10.1111/j.1365-3040.1995.tb00564.x
28 von Caemmerer S ( 2013). Steady-state models of photosynthesis. Plant, Cell and Environment, 36, 1617-1630.
doi: 10.1111/pce.12098 pmid: 23496792
29 von Caemmerer S, Furbank RT ( 1999). Modeling of C4 photosynthesis. In: Sage RF, Monson R eds. C4 Plant Biology. Academic Press, San Diego, USA. 169-207.
30 Xue X, Xu HM, Wu HY, Shen YB, Xiao JW, Wan YL ( 2017). Research progress of cyclic electron transport in plant photosynthesis. Plant Physiology Journal, 53, 145-158.
[ 薛娴, 许会敏, 吴鸿洋, 沈应柏, 肖建伟, 万迎朗 ( 2017). 植物光合作用循环电子传递的研究进展. 植物生理学报, 53, 145-158.]
31 Ye ZP ( 2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34, 727-740.
doi: 10.3773/j.issn.1005-264x.2010.06.012
[ 叶子飘 ( 2010). 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 34, 727-740.]
doi: 10.3773/j.issn.1005-264x.2010.06.012
32 Ye ZP, Wang YJ, Wang LL, Kang HJ ( 2017). Response of photorespiration of Glycine max leaves to light intensity and CO2 concentration. Chinese Journal of Ecology, 36, 2535-2541.
doi: 10.13292/j.1000-4890.201709.009
[ 叶子飘, 王怡娟, 王令俐, 康华靖 ( 2017). 大豆叶片光呼吸对光强和CO2浓度的响应. 生态学杂志, 36, 2535-2541.]
doi: 10.13292/j.1000-4890.201709.009
33 Yin XY, Sun ZP, Struik PC, Gu JF ( 2011). Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. Journal of Experimental Botany, 62, 3489-3499.
doi: 10.1093/jxb/err038 pmid: 21382918
[1] Zi-Piao YE, Shi-Hua DUAN, Ting AN, Hua-Jing KANG. Determination of maximum electron transport rate and its impact on allocation of electron flow [J]. Chin J Plan Ecolo, 2018, 42(4): 498-507.
[2] LI Li-Yuan, LI Jun, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru. Simulation on the light-response curves of electron transport rate of Quercus variabilis and Robinia pseudoacacia leaves in the Xiaolangdi area, China [J]. Chin J Plant Ecol, 2018, 42(10): 1009-1021.
[3] Zi-Piao YE, Wen-Hai HU, Xiao-Hong YAN. Comparison on light-response models of actual photochemical efficiency in photosystem II [J]. Chin J Plan Ecolo, 2016, 40(11): 1208-1217.
[4] LUO Fu-Yan, CHEN Wei-Ying, and CHEN Zhen-Yong. Applicability of modified exponential model in photosynthetic-CO2 response curve of barley [J]. Chin J Plan Ecolo, 2013, 37(7): 650-655.
[5] SU Hua, LI Yong-Geng, SU Ben-Ying, and SUN Jian-Xin. Effects of groundwater decline on photosynthetic characteristics and stress tolerance of Ulmus pumila in Hunshandake Sandy Land, China [J]. Chin J Plan Ecolo, 2012, 36(3): 177-186.
[6] JIAO Juan-Yu, YIN Chun-Ying, CHEN Ke. Effects of soil water and nitrogen supply on the photosynthetic characteristics of Jatropha curcas seedlings [J]. Chin J Plan Ecolo, 2011, 35(1): 91-99.
[7] YE Zi-Piao. A review on modeling of responses of photosynthesis to light and CO2 [J]. Chin J Plan Ecolo, 2010, 34(6): 727-740.
[8] ZHANG Xu-Cheng, YU Xian-Feng, GAO Shi-Ming. Effects of nitrogen application rates on photosynthetic energy utilization in wheat leaves under elevated atmospheric CO2 concentration [J]. Chin J Plan Ecolo, 2010, 34(10): 1196-1203.
[10] ZHANG Qi-De;LU Cong-Ming;ZHANG Shi-Ping and ZHANG Qi-Feng. The Comparison of Photosynthetic Functions Among Hybrid Rice and Their Parents in Some Heterosis and Non-Heterosis Hybrid Combinations [J]. Chin Bull Bot, 1998, 15(01): 50-55.
Full text



[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 91 .
[2] QIAN Ying-Qian. Some Issues in Biodiversity[J]. Chin Bull Bot, 1998, 15(06): 1 -18 .
[3] ZHANG Xiu-Juan MEI Li WANG Zheng-Quan HAN You-Zhi. Advances in Studying Fine Root Decomposition in Forests[J]. Chin Bull Bot, 2005, 22(02): 246 -254 .
[4] CHENG Long-Jun GUO De-Ping GE Hong-Juan. The Special Proteins in Sweet Potato Tuber—Sporamin[J]. Chin Bull Bot, 2001, 18(06): 672 -677 .
[5] Tang Yancheng. A Short Guide to the International Code of Botanical Nomenclature[J]. Chin Bull Bot, 1984, 2(06): 49 -54 .
[6] Chuanyuan Deng, Guiliang Xin, Wanchao Zhang, Suzhi Guo, Qiuhua Xue, Zhongxiong Lai, Luying Ye. SEM Observations and Measurements of Vestured Pits of the Secondary Xylem in the Tribe Rhizophoreae[J]. Chin Bull Bot, 2015, 50(1): 90 -99 .
[8] Zhang Jintun, Pickett S. T. A. Gradient Analysis of Forest Vegetation Along an Urban-Rural Transect in New York[J]. Chin J Plan Ecolo, 1998, 22(5): 392 -397 .
[9] JI Fang, MA Ying-Jie, FAN Zi-Li. Soil Water Regime in Populus euphratica Forest on the Tarim River Alluvial Plain[J]. Chin J Plan Ecolo, 2001, 25(1): 17 -21 .