Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (9): 793-805.doi: 10.17521/cjpe.2018.0173

• Research Articles • Previous Articles     Next Articles

Species composition and phylogenetic structure of major shrublands in North China

CHAI Yong-Fu1,XU Jin-Shi1,LIU Hong-Yan2,LIU Quan-Ru3,ZHENG Cheng-Yang2,KANG Mu-Yi4,5,LIANG Cun-Zhu6,WANG Ren-Qing7,GAO Xian-Ming8,ZHANG Feng9,SHI Fu-Chen10,LIU Xiao1,YUE Ming1,*()   

  1. 1Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
    2Institute of Ecology, College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
    3College of Life Sciences, Beijing Normal University, Beijing 100875, China
    4State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    5College of Resources Science & Technology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    6College of Ecology and Environment, Inner Mongolia University, Key Laboratory of Ecology and Resource Utilization of the Mongolian Plateau, Ministry of Education, Hohhot 010021, China
    7School of Life Sciences, Shandong University, Jinan 250100, China
    8State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    9Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
    10College of Life Sciences, Nankai University, Tianjin 300071, China
  • Received:2018-07-30 Accepted:2018-10-29 Online:2020-01-03 Published:2019-09-20
  • Contact: YUE Ming
  • Supported by:
    Supported by the National Basic Work of Science and Technology of China(2011FY110300);and the National Natural Science Foundation of China(31700348)


Aims Shrublands are widely distributed in the North China. Understanding species composition and community assembly of the shrublands has important implications for promoting vegetation restoration in this area. Community phylogenetic structure can reflect community assembly process. In the present study, we explored the distribution patterns, species composition and phylogenetic structure of major shrubland types from North China, and then analyzed the effects of temperature and precipitation on these patterns with the help of the WorldClim dataset.
Methods A total 2 331 plots were setup to survey species composition and phylogenetic structure of major shrubland types in North China. A multiple stepwise regression was used to determine the effects of climatic factors on community phylogenetic structure, and a generalize linear model was used to test the interaction of environmental factors and formation types or vegetation types.
Important findings A total of 570 woody species belonging to 207 genera from 75 families, together with 1 221 herb species belonging to 491 genera from 99 families were recorded during the investigation. Five vegetation types and 195 formation types were identified, and the major formation types were Ostryopsis davidiana formation, Vitex negundo var. heterophylla, Vitex negundo var. heterophylla + Hippophae rhamnoides and Hippophae rhamnoides formation. The species richness of herb layer was higher than that of shrub layer. The phylogenetic structure was over-dispersed for herb layer and was convergent for shrub layer. The phylogenetic structure differed remarkable among different vegetation types. The phylogenetic structures of both shrub and herb layers were significantly correlated with climatic factors, and the interaction of climate factors and vegetation types or formation types as well. Our results indicates that large scale variation of climatic factors regulate community phylogenetic structure of different layers in shrub community, and the effects depend on vegetation types and formation types.

Key words: North China, shrubland, phylogenetic structure, community assembly, environmental filtering

Fig. 1

Distribution of survey plots for shrubland in North China."

Table 1

Environmental variables used in the study of major shrublands in North China"

编码 Code 环境因子 Environmental variables 缩写 Abbreviation
Bio1 年平均气温 Annual mean air temperature AMT
Bio2 每月最高气温与最低气温差值的平均值 Mean diurnal air temperature range MDTR
Bio3 等温性 Isothermality ISO
Bio4 季节性气温变异 Air temperature seasonality TS
Bio5 最热月的最高气温 Max temperature of the warmest month MTWM
Bio6 最冷月的最低气温 Min temperature of the coldest month MTCM
Bio7 气温的年较差 Temperature annual range TAR
Bio8 最湿季度的平均气温 Mean temperature of the wettest quarter MTWEQ
Bio9 最干季度的平均气温 Mean temperature of the driest quarter MTDQ
Bio10 最热季度的平均气温 Mean temperature of the warmest quarter MTWAQ
Bio11 最冷季度的平均气温 Mean temperature of the coldest quarter MTCQ
Bio12 年降水量 Annual precipitation AP
Bio13 最湿月的降水量 Precipitation of the wettest month PWM
Bio14 最干月的降水量 Precipitation of the driest month PDM
Bio15 降水季节性变化 Precipitation seasonality PS
Bio16 最湿季度的降水量 Precipitation of the wettest quarter PWEQ
Bio17 最干季度的降水量 Precipitation of the driest quarter PDQ
Bio18 最热季度的降水量 Precipitation of the warmest quarter PWAQ
Bio19 最冷季度的降水量 Precipitation of the coldest quarter PCQ
Alt 海拔 Altitude Alt

Fig. 2

Major vegetation types (A) and formation types (B) of shrubland in North China. Vegetation types: a, bamboo thickets; b, deciduous thickets; c, desert thickets; d, evergreen needle-leaved thickets; e, evergreen leather-leaved thickets. Formation types: 1, Ostryopsis davidiana shrub; 2, Vitex negundo var. heterophylla shrub; 3, Vitex negundo var. heterophylla + Ziziphus jujube shrub; 4, Hippophae rhamnoides shrub; 5, Armeniaca sibirica shrub; 6, Rosa xanthine shrub; 7, Spiraea salicifolia shrub; 8, Caragana sinica shrub; 9, Caragana korshinskii shrub; 10, Ziziphus jujube shrub; 11, Reaumuria soongarica shrub; 12, Tamarix chinensis shrub; 13, Gleditsia microphylla shrub; 14, Sophora davidii shrub; 15, Rosa hugonis shrub."

Fig. 3

Distribution of major vegetation types of shrubland in North China. BEJ, Beijing; TIJ, Tianjin; HEB, Hebei; HEN, Henan; SHX, Shaanxi; SAX, Shanxi; SHD, Shandong; NIX, Ningxia; NMG, Nei Mongol; GSU, Gansu."

Table 2

Top ten families with the most species of major shrubland in North China"

木本植物 Woody species 草本植物 Herbaceous species
科名 Family 物种数 No. of species 科名 Family 物种数 No. of species
1 蔷薇科 Rosaceae 101 菊科 Asteraceae 219
2 豆科 Fabaceae 62 禾本科 Poaceae 138
3 忍冬科 Caprifoliaceae 24 豆科 Fabaceae 101
4 鼠李科 Rhamnaceae 23 毛茛科 Ranunculaceae 60
5 木犀科 Oleaceae 20 唇形科 Lamiaceae 55
6 杨柳科 Salicaceae 17 蔷薇科 Rosaceae 48
7 壳斗科 Fagaceae 16 苋科 Amaranthaceae 40
8 卫矛科 Celastraceae 14 伞形科 Apiaceae 37
9 榆科 Ulmaceae 12 十字花科 Brassicaceae 27
10 小檗科 Berberidaceae 11 蓼科 Polygonaceae 26
合计 Total 300 合计 Total 751

Table 3

Top ten species with the most frequency of major shrubland in North China"

木本植物 Woody species 草本植物 Herbaceous species
种名 Species 相对频度 Relative frequency 种名 Species 相对频度 Relative frequency
1 荆条 Vitex negundo var. heterophylla 9.53 白莲蒿 Artemisia sacrorum 2.35
2 酸枣 Ziziphus jujuba var. spinosa 4.76 大披针薹草 Carex lanceolata 2.24
3 虎榛子 Ostryopsis davidiana 3.98 狗尾草 Setaria viridis 1.74
4 山杏 Armeniaca sibirica 3.12 北京隐子草 Cleistogenes hancei 1.52
5 土庄绣线菊 Spiraea pubescens 2.78 委陵菜 Potentilla chinensis 1.52
6 沙棘 Hippophae rhamnoides 2.76 小红菊 Dendranthema chanetii 1.45
7 三裂绣线菊 Spiraea trilobata 2.71 阿尔泰狗娃花 Heteropappus altaicus 1.37
8 黄刺玫 Rosa xanthina 2.50 茜草 Rubia cordifolia 1.31
9 二色胡枝子 Lespedeza bicolor 2.16 山蒿 Artemisia brachyloba 1.31
10 绣线菊 Spiraea salicifolia 1.83 野青茅 Deyeuxia arundinacea 1.29
合计 Total 36.13 合计 Total 16.10

Fig. 4

Species richness of shrub species and herb species of shrubland in North China (mean ± SE). A, Differences of species richness between herb and shrub species for all communities. B, Differences among vegetation types. Differences between herb and shrub species for all communities was texted by t test and differences among vegetation types were tested using a one-way ANOVA with a Tukey post hoc test of significance. Significance different at p < 0.05 was indicated by different letters. a, bamboo thickets; b, deciduous thickets; c, desert thickets; d, evergreen needle-leaved thickets; e, evergreen leather-leaved thickets."

Fig. 5

Net relatedness index (NRI) of shrub species and herb species of shrubland in North China (mean ± SE). A, Differences of species richness between herb and shrub species for all communities. B, Differences among vegetation types. Differences between herb and shrub species for all communities was texted by t test and differences among vegetation types were tested using a one-way ANOVA with a Tukey post hoc test of significance. Significance different at p < 0.05 was indicated by different letters. * indicates that the mean of NRI was different with zero. a, bamboo thickets; b, deciduous thickets; c, desert thickets; d, evergreen needle-leaved thickets; e, evergreen leather-leaved thickets."

Table 4

Effects of environmental factors on net relatedness index (NRI) of shrub layer and herb layer species of shrubland in North China"

Structural layer
R2 p 显著环境因子
Significant environmental factors
Beta regression coefficient
t p
Shrub layer
0.18 <0.05 MTWEQ 6.81 7.91 <0.01
PWEQ 5.08 5.16 <0.01
MDTR 2.39 2.19 0.03
MTCQ 1.74 2.73 0.01
Alt 0.22 2.44 0.01
ISO -0.89 -2.71 0.01
PWAQ -5.45 -4.64 <0.01
MTWM -9.54 -8.32 <0.01
Herb layer
0.05 <0.05 TS 0.12 2.46 0.01
MTWEQ 0.12 2.56 0.01
PDM 0.12 2.84 <0.01
PS 0.08 2.39 0.02

Table 5

Interactions of environmental factors and vegetation types on NRI in North China"

交互作用 灌木 Shrub
d.f. F p
MDTR × VT 4 39.15 <0.01
ISO × VT 4 36.33 <0.01
MTWM × VT 4 35.02 <0.01
MTWEQ × VT 4 36.63 <0.01
MTCQ × VT 4 42.16 <0.01
PWEQ × VT 4 28.76 <0.01
PWAQ × VT 4 28.70 <0.01
Alt × VT 4 39.59 <0.01
TS × VT 4 5.69 <0.01
MTWEQ × VT 4 4.33 <0.01
PDM × VT 4 1.86 <0.01
PS × VT 4 12.6 <0.01

Table 6

Interactions of environmental factors and formation types on NRI in North China"

交互作用 灌木 Shrub
d.f. F p
MDTR × FT 194 4.15 <0.01
ISO × FT 194 4.12 <0.01
MTWM × FT 194 4.12 <0.01
MTWEQ × FT 194 4.09 <0.01
MTCQ × FT 194 4.02 <0.01
PWEQ × FT 194 3.95 <0.01
PWAQ × FT 194 3.94 <0.01
Alt × FT 194 4.17 <0.01
TS × FT 194 2.60 <0.01
MTWEQ × FT 194 2.54 <0.01
PDM × FT 194 2.33 <0.01
PS × FT 194 2.63 <0.01
[1] Bhaskar R, Dawson TE, Balvanera P ( 2014). Community assembly and functional diversity along succession post-management. Functional Ecology, 28, 1256-1265.
[2] Chai YF, Yue M ( 2016). Research advances in plant community assembly mechanisms. Acta Ecologica Sinica, 36, 4557-4572.
[ 柴永福, 岳明 ( 2016). 植物群落构建机制研究进展. 生态学报, 36, 4557-4572.]
[3] Chen LZ, Sun H, Guo K ( 2014). Flora and Vegetation Geography of China. Science Press, Beijing.
[ 陈灵芝, 孙航, 郭柯 ( 2014). 中国植物区系与植被地理. 科学出版社, 北京.]
[4] Dai S, Wang XP, Liu C, Wu X, Li QY, Wang M ( 2013). Relationship between shrub species richness and climate across central Inner Mongolia, China. Acta Scientiarum Naturalium Universitatis Pekinensis, 49, 689-698.
[ 代爽, 王襄平, 刘超, 武娴, 李巧燕, 王敏 ( 2013). 内蒙古灌木群落物种丰富度与气候的关系. 北京大学学报(自然科学版), 49, 689-698.]
[5] Donoghue MJ ( 2008). Aphylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 105, 11549-11555.
[6] Dou YP, Yan SH, An ZX ( 1985). Organization of Artemisia in Xinjiang. Journal of Xinjiang Agricultural University, ( 1), 3-12.
[ 窦燕平, 燕顺红, 安争夕 ( 1985). 新疆蒿属植物的整理. 新疆农业大学学报, ( 1), 3-12.]
[7] Du YL ( 2013). Study on the Community Diversity and Regeneration Characteristic of Typical Secondary Shrub Community in Midpiece of Qinling Mountains. Master degree dissertation, Northwest A&F University, Yangling, ‌‌ Shaanxi.
[ 杜焰玲 ( 2013). 秦岭中段典型灌丛群落物种多样性及更新特征研究. 硕士学位论文, 西北农林科技大学, 陕西杨凌.]
[8] Gilliam FS ( 2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience, 57, 845-858.
[9] Gotelli NJ ( 2000). Null model analysis of species co-occurrence patterns. Ecology, 81, 2606-2621.
[10] Guo YP, Yang X, Mohhamot A, Liu HY, Ma WH, Yu SL, Tang ZY ( 2017). Storage of carbon, nitrogen and phosphorus in temperate shrubland ecosystems across northern China. Chinese Journal of Plant Ecology, 41, 14-21.
[ 郭焱培, 杨弦, 安尼瓦尔·买买提, 刘鸿雁, 马文红, 于顺利, 唐志尧 ( 2017). 中国北方温带灌丛生态系统碳、氮、磷储量. 植物生态学报, 41, 14-21.]
[11] Helmus MR, Savage K, Diebel MW, Maxted JT, Ives AR ( 2007). Separating the determinants of phylogenetic community structure. Ecology Letters, 10, 917-925.
[12] Hou XY ( 1982). Vegetation Map of the People’s Republic of China. China Map Press, Beijing.
[ 侯学煜 ( 1982). 中华人民共和国植被图. 中国地图出版社, 北京.]
[13] Hu HF, Wang ZH, Liu GH, Fu BJ ( 2006). Vegetation carbon storage of major shrublands in China. Chinese Journal of Plant Ecology (Chinese Version), 30, 539-544.
[ 胡会峰, 王志恒, 刘国华, 傅伯杰 ( 2006). 中国主要灌丛植被碳储量. 植物生态学报, 30, 539-544.]
[14] Huang JX, Zhang J, Shen Y, Lian JY, Cao HL, Ye WH, Wu LF, Bin Y ( 2014). Different relationships between temporal phylogenetic turnover and phylogenetic similarity and in two forests were detected by a new null model. PLOS ONE, 9, e95703. DOI: 10.1371/journal.pone. 0095703.
[15] Huang JX, Zheng FY, Mi XC ( 2010). Influence of environmental factors on phylogenetic structure at multiple spatial scales in an evergreen broad-leaved forest of China. Chinese Journal of Plant Ecology, 34, 309-315.
[ 黄建雄, 郑凤英, 米湘成 ( 2010). 不同尺度上环境因子对常绿阔叶林群落的谱系结构的影响. 植物生态学报, 34, 309-315.]
[16] Hubbell SP ( 2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.
[17] Hui JA, Li XY, Wang SM ( 2003). The district characteristics and geographical distribution of the Rosaceae in Xinjiang. Journal of Shihezi University (Natural Science), 7(1), 59-62.
[ 惠俊爱, 李学禹, 王绍明 ( 2003). 新疆蔷薇科植物的区系特点和地理分布. 石河子大学学报(自然科学版), 7(1), 59-62.]
[18] Kembel SW, Hubbell SP ( 2006). The phylogenetic structure of a neotropical forest tree community. Ecology, 87, S86-S99.
[19] Li JX, Xiong GM, Xu WT, Li YL, Lu ZJ, Zhao CM, Xie ZQ ( 2017a). Composition of plant life forms of subtropical shrubland in China and its correlation with temperature and precipitation. Chinese Journal of Plant Ecology, 41, 147-156.
[ 李家湘, 熊高明, 徐文婷, 李跃林, 卢志军, 赵常明, 谢宗强 ( 2017a). 中国亚热带灌丛植物生活型组成及其与水热因子的相关性. 植物生态学报, 41, 147-156.]
[20] Li JX, Xu WT, Xiong GM, Wang Y, Zhao CM, Lu ZJ, Li YL, Xie ZQ ( 2017b). Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China. Chinese Journal of Plant Ecology, 41, 31-42.
[ 李家湘, 徐文婷, 熊高明, 王杨, 赵常明, 卢志军, 李跃林, 谢宗强 ( 2017b). 中国南方灌丛优势木本植物叶的氮、磷含量及其影响因素. 植物生态学报, 41, 31-42.]
[21] Liu M, Chen FQ, Wang YB, Lü K, Liu YY ( 2018). Species biodiversity of seven typical shrub communities in the middle of Guangxi Zhuang Autonomous Region. Journal of Tropical and Subtropical Botany, 26, 157-163.
[ 刘梦, 陈芳清, 王玉兵, 吕坤, 刘杨赟 ( 2018). 广西中部7种典型灌丛群落的物种多样性特征. 热带亚热带植物学报, 26, 157-163.]
[22] Lu MM, Huang XC, Ci XQ, Yang GP, Li J ( 2014). Phylogenetic community structure of subtropical forests along elevational gradients in Ailao Mountains of southwest China. Biodiversity Science, 22, 438-448.
[ 卢孟孟, 黄小翠, 慈秀芹, 杨国平, 李捷 ( 2014). 沿海拔梯度变化的哀牢山亚热带森林群落系统发育结构. 生物多样性, 22, 438-448.]
[23] Mayfield MM, Levine JM ( 2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085-1093.
[24] Michalski SG, Michalski SG, Bruelheide H, Durka W ( 2017). Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales. Ecology and Evolution, 7, 11079-11091.
[25] Murphy SJ, Salpeter K, Comita LS ( 2016). Higher β-diversity observed for herbs over woody plants is driven by stronger habitat filtering in a tropical understory. Ecology, 97, 2074-2084.
[26] Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, Seidel R ( 2013). Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16, 151-157.
[27] Neufeld HS, Young DR ( 2014). Ecophysiology of the herbaceous layer in temperate deciduous forests. In: Gilliam FS ed. The Herbaceous Layer in Forests of Eastern North America. 2nd edn. Oxford University Press, New York, USA.
[28] Niu HY, Wang ZF, Lian JY, Ye WH, Shen H ( 2011). New progress in community assembly: Community phylogenetic structure combining evolution and ecology. Biodiversity Science, 19, 275-283.
[ 牛红玉, 王峥峰, 练琚愉, 叶万辉, 沈浩 ( 2011). 群落构建研究的新进展: 进化和生态相结合的群落谱系结构研究. 生物多样性, 19, 275-283.]
[29] Niu KC, Liu YN, Shen ZH, He FL, Fang JY ( 2009). Community assembly: The relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593.
[ 牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 ( 2009). 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.]
[30] Peng HY, Li XY, Tong SY ( 2013). Effects of shrub encroachment on biomass and biodiversity in the typical steppe of Inner Mongolia. Acta Ecologica Sinica, 33, 7221-7229.
[ 彭海英, 李小雁, 童绍玉 ( 2013). 内蒙古典型草原灌丛化对生物量和生物多样性的影响. 生态学报, 33, 7221-7229.]
[31] Qian H, Hao ZQ, Zhang J ( 2014). Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in ‌forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology, 7, 154-165.
[32] R Development Core Team ( 2014). R: A language and environment for statistical computing. ‌‌ .
[33] Rosindell J, Hubbell SP, Etienne RS ( 2011). The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology & Evolution, 26, 340-348.
[34] Shen WH, He QF, Peng YH, Huang XR, Pang SL, Li YL ( 2016). Species composition and diversity of different shrub communities in west Guangxi. Guihaia, 36, 1165-1171.
[ 申文辉, 何琴飞, 彭玉华, 黄小荣, 庞世龙, 李跃林 ( 2016). 桂西不同灌丛植物群落物种组成及其多样性. 广西植物, 36, 1165-1171.]
[35] Song CY, Guo K ( 2007). Relationship between plant community and soil on the inter-dune lowland in the middle of Otingdag sand land. Journal of Plant Ecology (Chinese Version), 31, 40-49.
[ 宋创业, 郭柯 ( 2007). 浑善达克沙地中部丘间低地植物群落分布与土壤环境关系. 植物生态学报, 31, 40-49.]
[36] Song K, Mi XC, Jia Q, Ren HB, Bebber D, Ma KP ( 2011). Variation in phylogenetic structure of forest communities along a human disturbance gradient in Gutianshan forest, China. Biodiversity Science, 19, 190-196.
[ 宋凯, 米湘成, 贾琪, 任海保, Dan Bebber, 马克平 ( 2011). 不同程度人为干扰对古田山森林群落谱系结构的影响. 生物多样性, 19, 190-196.]
[37] Sturm M, Racine C, Tape K ( 2001). Increasing shrub abundance in the Arctic. Nature, 411, 546-547.
[38] Swenson NG, Enquist BJ, Thompson J, Zimmerman JK ( 2007). The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology, 88, 1770-1780.
[39] Wang HS ( 1999). The evolution and sources of North China’s flora. Acta Geographica Sinica, 54, 213-223.
[ 王荷生 ( 1999). 华北植物区系的演变和来源. 地理学报, 54, 213-223.]
[40] Webb CO ( 2000). Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. The American Naturalist, 156, 145-155.
[41] Webb CO, Ackerly DD, McPeek MA, Donoghue MJ ( 2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
[42] Wen HD, Lin LX, Yang J, Hu YH, Cao M, Liu YH, Lu ZY, Xie YN ( 2018). Species composition and community structure of a 20 hm 2 plot of mid-mountain moist evergreen broad-leaved forest on the Mts. Ailaoshan, Yunnan Province, China . Chinese Journal of Plant Ecology, 42, 419-429.
[ 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能 ( 2018). 云南哀牢山中山湿性常绿阔叶林20 hm 2动态样地的物种组成与群落结构 . 植物生态学报, 42, 419-429.]
[43] Whitfeld TJS, Kress WJ, Erickson DL, Weiblen GD ( 2012). Change in community phylogenetic structure during tropical forest succession: Evidence from New Guinea. Ecography, 35, 821-830.
[44] Wu ZY ( 1991). The areal-types of Chinese genera of seed plants. Journal of Plant Resources and Environment, 13(S4), 1-3.
[ 吴征镒 ( 1991). 中国种子植物属的分布区类型. 植物资源与环境学报, 13(S4), 1-3.]
[45] Xie ZQ, Tang ZY ( 2017). Studies on carbon storage of shrubland ecosystems in China. Chinese Journal of Plant Ecology, 41, 1-4.
[ 谢宗强, 唐志尧 ( 2017). 中国灌丛生态系统碳储量的研究. 植物生态学报, 41, 1-4.]
[46] Xu JS, Chen Y, Zhang LX, Chai YF, Wang M, Guo YX, Li T, Yue M ( 2017). Using phylogeny and functional traits for assessing community assembly along environmental gradients: A deterministic process driven by elevation. Ecology and Evolution, 7, 5056-5069.
[47] Xu TZ ( 2001). The floristic characteristics and geographical distribution of Rosaceae in Yunnan. Acta Botanica Yunnanica, 23, 135-142.
[ 徐廷志 ( 2001). 云南蔷薇科植物的区系特征和地理分布. 云南植物研究, 23, 135-142.]
[48] Yan BG, Wen WQ, Zhang J, Yang WQ, Liu Y, Huang X, Li ZB ( 2010). Plant community assembly rules across a subalpine grazing gradient in western Sichuan, China. Chinese Journal of Plant Ecology, 34, 1294-1302.
[ 闫帮国, 文维全, 张健, 杨万勤, 刘洋, 黄旭, 李泽波 ( 2010). 放牧干扰梯度下川西亚高山植物群落的组合机理. 植物生态学报, 34, 1294-1302.]
[49] Yang LC, Zhao YH, Xu WH, Zhou GY ( 2018). Species diversity, biomass, and their relationship in the alpine shrubberies of Qinghai Province. Acta Ecologica Sinica, 38, 309-315.
[ 杨路存, 赵玉红, 徐文华, 周国英 ( 2018). 青海省高寒灌丛物种多样性、生物量及其关系. 生态学报, 38, 309-315.]
[50] Yang X, Guo YP, Mohhamot A, Liu HY, Ma WH, Yu SL, Tang ZY ( 2017). Distribution of biomass in relation to environments in shrublands of temperate China. Chinese Journal of Plant Ecology, 41, 2-30.
[ 杨弦, 郭焱培, 安尼瓦尔·买买提, 刘鸿雁, 马文红, 于顺利, 唐志尧 ( 2017). 中国北方温带灌丛生物量的分布及其与环境的关系. 植物生态学报, 41, 2-30.]
[51] Ye WH, Cao HL, Huang ZL, Lian JY, Wang ZG, Li L, Wei SG, Wang ZM ( 2008). Community structure of a 20 hm 2 lower subtropical evergreen broadleaved forest plot in Dinghushan, China . Journal of Plant Ecology (Chinese Version), 32, 274-286.
[ 叶万辉, 曹洪麟, 黄忠良, 练琚愉, 王志高, 李林, 魏识广, 王章明 ( 2008). 鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究. 植物生态学报, 32, 274-286.]
[52] Yu DJ, Lu LD, Gu CZ ( 1984). The floristic characteristics and phytogeographic distribution of the Rosaceae of Xizang. Journal of University of Chinese Academy of Sciences, 22, 351-359.
[ 俞德浚, 陆玲娣, 谷粹芝 ( 1984). 西藏蔷薇科植物的区系特点和地理分布. 中国科学院大学学报, 22, 351-359.]
[53] Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen LW, Bertin RI, Calaminus A, Govaerts R, Hemmings FA, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM ( 2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
[54] Zhang JH, Tang ZY, Shen HH, Fang JY ( 2017). Responses of growth and litterfall production to nitrogen addition treatments from common shrublands in Mt. Dongling, Beijing, China. Chinese Journal of Plant Ecology, 41, 71-80.
[ 张建华, 唐志尧, 沈海花, 方精云 ( 2017). 北京东灵山地区常见灌丛生长及凋落物生产对氮添加的响应. 植物生态学报, 41, 71-80.]
[55] Zhang Q, Li JX, Xu WT, Xiong GM, Xie ZQ ( 2017). Estimation of biomass allocation and carbon density of Rhododendron simsii shrubland in the subtropical mountainous areas of China. Chinese Journal of Plant Ecology, 41, 43-52.
[ 张蔷, 李家湘, 徐文婷, 熊高明, 谢宗强 ( 2017). 中国亚热带山地杜鹃灌丛生物量分配及其碳密度估算. 植物生态学报, 41, 43-52.]
[56] Zhang YR, Ouyang X, Li YL, Liu SZ, Zhang DQ, Zhou GY ( 2013). Shrub community characteristics and quantitative calculation of theirs biomass in southern China. Journal of Central South University of Forestry & Technology, 33(9), 71-79.
[ 张亚茹, 欧阳旭, 李跃林, 刘世忠, 张德强, 周国逸 ( 2013). 我国南亚热带灌丛群落特征及生物量的定量计算. 中南林业科技大学学报, 33(9), 71-79.]
[57] Zhao MF, Xue F, Wang YH, Wang GY, Xing KX, Kang MY, Wang JL ( 2017). Phylogenetic structure and diversity of herbaceous communities in the conifer forests along an elevational gradient in Luya Mountain, Shanxi, China. Chinese Journal of Plant Ecology, 41, 707-715.
[ 赵鸣飞, 薛峰, 王宇航, 王国义, 邢开雄, 康慕谊, 王菁兰 ( 2017). 山西芦芽山针叶林草本层群落谱系结构与多样性的海拔格局. 植物生态学报, 41, 707-715.]
[58] Zhu BR, Zhang DY ( 2011). A process-based theoretical framework for community ecology. Biodiversity Science, 19, 389-399.
[ 朱璧如, 张大勇 ( 2011). 基于过程的群落生态学理论框架. 生物多样性, 19, 389-399.]
[1] SHI Jing-Jing,ZHAO Ming-Fei,WANG Yu-Hang,XUE Feng,KANG Mu-Yi,JIANG Yuan. Community assembly of herbaceous layer of the planted forests in the central Loess Plateau, China [J]. Chin J Plant Ecol, 2019, 43(9): 834-842.
[2] TANG Li-Li,ZHANG Mei,ZHAO Xiang-Lin,KANG Mu-Yi,LIU Hong-Yan,GAO Xian-Ming,YANG Tong,ZHENG Pu-Fan,SHI Fu-Chen. Species distribution and community assembly rules of Juglans mandshurica in North China [J]. Chin J Plant Ecol, 2019, 43(9): 753-761.
[3] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 825-833.
[4] XU Jin-Shi,CHAI Yong-Fu,LIU Xiao,YUE Ming,GUO Yao-Xin,KANG Mu-Yi,LIU Quan-Ru,ZHENG Cheng-Yang,JI Cheng-Jun,YAN Ming,ZHANG Feng,GAO Xian-Ming,WANG Ren-Qing,SHI Fu-Chen,ZHANG Qin-Di,WANG Mao. Community assembly, diversity patterns and distributions of broad-leaved forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 732-741.
[5] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[6] CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226.
[7] HAO Shu-Jun, LI Xiao-Yu, HOU Man-Man, ZHAO Xiu-Hai. Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China [J]. Chin J Plant Ecol, 2019, 43(3): 208-216.
[8] LIU Jin-Liang, YU Ming-Jian. Community assembly processes in fragmented forests and its testing methods [J]. Chin J Plant Ecol, 2019, 43(11): 929-945.
[9] Weng Changlu,Zhang Tiantian,Wu Donghao,Chen Shengwen,Jin Yi,Ren Haibao,Yu Mingjian,Luo Yuanyuan. Drivers and patterns of α- and β-diversity in ten main forest community types in Gutianshan, eastern China [J]. Biodiv Sci, 2019, 27(1): 33-41.
[10] Meixiang Gao, Lin Lin, Liang Chang, Xin Sun, Dong Liu, Donghui Wu. Spatial patterns and assembly rules in soil fauna communities: A review [J]. Biodiv Sci, 2018, 26(10): 1034-1050.
[11] Yunfeng Song, Shengwen Chen, Wei Wang, Jianping Yu, Haiyuan Qian, Yunquan Wang, Lei Chen, Xiangcheng Mi, Haibao Ren, Duo Ye, Jianhua Chen, Keping Ma. Effects of negative density dependence and habitat filtering on the functional diversity of seedlings in the subtropical forest of Gutianshan [J]. Biodiv Sci, 2017, 25(9): 959-965.
[12] Ming-Fei ZHAO, Feng XUE, Yu-Hang WANG, Guo-Yi WANG, Kai-Xiong XING, Mu-Yi KANG, Jing-Lan WANG. Phylogenetic structure and diversity of herbaceous communities in the conifer forests along an elevational gradient in Luya Mountain, Shanxi, China [J]. Chin J Plan Ecolo, 2017, 41(7): 707-715.
[13] Xingfeng Si, Yuhao Zhao, Chuanwu Chen, Peng Ren, Di Zeng, Lingbing Wu, Ping Ding. Beta-diversity partitioning: methods, applications and perspectives [J]. Biodiv Sci, 2017, 25(5): 464-480.
[14] Rong Li,Hang Sun. Phylofloristics: a case study from Yunnan, China [J]. Biodiv Sci, 2017, 25(2): 195-203.
[15] Yang Meng, Yue Qiu, Liang Zhang, Cuiling Wang, Zhenhua Zang, Xueyao Zhang, Guozhen Shen, Caifeng Yan, Quansheng Chen. Effects of geographical distance and differences in climate and altitude on species dissimilarity of vascular plant communities in the Dulongjiang River Watershed Area [J]. Biodiv Sci, 2017, 25(12): 1313-1320.
Full text



[1] . [J]. Chin Bull Bot, 2002, 19(01): 121 -124 .
[2] ZHANG Shi-Gong;GAO Ji-Yin and SONG Jing-Zhi. Effects of Betaine on Activities of Membrane Protective Enzymes in Wheat (Triticum aestivum L.) Seedlings Under NaCl Stress[J]. Chin Bull Bot, 1999, 16(04): 429 -432 .
[3] SHE Chao-WenSONG Yun-Chun LIU Li-Hua. Analysis on the G_banded Karyotypes and Its Fluctuation at Different Mitotic Phases and Stages in Triticum tauschii (Aegilops squarrosa)[J]. Chin Bull Bot, 2001, 18(06): 727 -734 .
[4] Guijun Yang, Wenjiang Huang, Jihua Wang, Zhurong Xing. Inversion of Forest Leaf Area Index Calculated from Multi-source and Multi-angle Remote Sensing Data[J]. Chin Bull Bot, 2010, 45(05): 566 -578 .
[5] Man Chen, YishengTu, Linan Ye, Biyun Yang. Effect of Amino Acids on Thallus Growth and Huperzine-A Accumulation in Huperzia serrata[J]. Chin Bull Bot, 2017, 52(2): 218 -224 .
[6] Yefei Shang, Ming Li, Bo Ding, Hao Niu, Zhenning Yang, Xiaoqiang Chen, Gaoyi Cao, Xiaodong Xie. Advances in Auxin Regulation of Plant Stomatal Development[J]. Chin Bull Bot, 2017, 52(2): 235 -240 .
[7] CUI Xiao-Yong, Du Zhan-Chi, Wang Yan-Fen. Photosynthetic Characteristics of a Semi-arid Sandy Grassland Community in Inner Mongolia[J]. Chin J Plan Ecolo, 2000, 24(5): 541 -546 .
[8] LI Wei, ZHANG Ya-Li, HU Yuan-Yuan, YANG Mei-Sen, WU Jie, and ZHANG Wang-Feng. Research on the photoprotection and photosynthesis characteristics of young cotton leaves under field conditions[J]. Chin J Plan Ecolo, 2012, 36(7): 662 -670 .
[9] WEI Jie, YU Hui, KUANG Ting-Yun, BEN Gui-Ying. Ultrastructure of Polygonum viviparum L. Grown at Different Elevations on Qinghai Plateau[J]. Chin J Plan Ecolo, 2000, 24(3): 304 -307 .
[10] CHEN Jin, LI Yang, HUANG Jian-Hui. Decomposition of mixed litter of four dominant species in an Inner Mongolia steppe[J]. Chin J Plan Ecolo, 2011, 35(1): 9 -16 .