Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (12): 1179-1191.doi: 10.17521/cjpe.2018.0176

• Research Articles • Previous Articles     Next Articles

Impact of environmental factors on the decoupling coefficient and the estimation of canopy stomatal conductance for ever-green broad-leaved tree species

ZHANG Zhen-Zhen1,*(),ZHAO Ping2,ZHAO Xiu-Hua2,ZHANG Jin-Xiu1,ZHU Li-Wei2,OUYANG Lei2,ZHANG Xiao-Yan1   

  1. 1 School of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 231004, China
    2 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
  • Received:2018-07-30 Revised:2018-10-23 Online:2019-04-04 Published:2018-12-20
  • Contact: Zhen-Zhen ZHANG E-mail:zhangzhen@zjnu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(41630752);Supported by the National Natural Science Foundation of China(41701226);Supported by the National Natural Science Foundation of China(41030638)

Abstract:

Aims Accurate simulation of canopy stomatal conductance (GS) is quite important for the assessment of regional evapotranspiration.

Methods In this study, two planted broad-leaved tree species, Eucalyptus urophylla (exotic species) and Schima superba (native species), were chosen to estimate their GS with two different methods of K?stner (GS1) and inversed Penman-Monteith equation (GS2). The effect of environmental factors on canopy decoupling coefficient (Ω) was evaluated before they were adopted to assess the reasonability of GSsimulated by the two methods.

Important findings Results showed that the GS of the two tree species was well coupled with meteorological conditions (Ω = 0.10 ± 0.03 for E. urophylla and 0.17 ± 0.03 for S. superba). Principal component analysis showed that photosynthetically active radiation (PAR) and vapor pressure deficit (D) significantly dominated the variations of Ω, while the effect of wind speed (u) was very weak. Multivariate correlation analysis also found weak relations between those environmental factors and Ω. Boundary line analysis revealed that the increase of D and PAR would eventually force Ω approaching a constant value as determined by tree species (S. superba ≈ 0.20, E. urophylla ≈ 0.05), while Ω decreases exponentially with the increase of u. Compared with S. superba, E. urophylla has higher GS. The annual averages GS2 of E. urophylla and S. superba were (33.42 ± 9.37) mmol·m-2·s-1 and (23.40 ± 2.03) mmol·m-2·s-1, respectively. Linear fitting showed that the GS2/GS1 ratio of E. urophylla and S. superba was 0.92 (R2 ≈ 0.70) and 0.98 (R2 ≈ 0.76), respectively, implying the overestimated canopy stomatal conductance for GS1 (p < 0.01). In addition, the ratio of the sensitivity of canopy stomatal conductance to vapor pressure deficit to stomatal conductance at D = 1 kPa (GSiref) for GS1 and GS2 is closely related to Ω. Based on the estimation, GS1 was relatively reliable when Ω = 0.05-0.15 (83.1% of all the data) and 0.10-0.20 (47.8% of all the data) for E. urophylla and S. superba.

Key words: plant transpiration, canopy stomatal conductance, the decoupling coefficient, environmental factor

Table 1

Stand parameters of Schima superba and Eucalyptus urophylla"

树种 Species 密度 Density n DBH H As LAI l Al Ac
木荷 S. superba 603 21 15.5 (1.3)a 12.7 (0.5)a 0.018 (0.002)a 4.3 (0.1)a 9.1 (0.4)a 66.6 (10.2)a 20.7 (2.9)a
尾叶桉 E. urophylla 1 375 15 10.1 (0.6)b 11.5 (0.8)a 0.007 (0.001)b 1.5 (0.1)b 10.9 (0.2)b 21.0 (2.7)b 4.0 (0.2)b

Fig. 1

Meteorological conditions during study periods. A, Photosynthetic photon flux density (PAR). B, Vapor pressure deficit (D). C, Daily mean air temperature (Ta). D, Soil water content (SWC)."

Fig. 2

Monthly decoupling coefficients (Ω) of Eucalyptus urophylla and Schima superba stands."

Fig. 3

Diurnal course of photosynthetically active radiation (PAR, μmol m-2·s-1) (A, B), vapor pressure deficit (D, kPa) (C, D), and decoupling coefficient (Ω) (E, F) for Eucalyptus urophylla and Schima superba stands (mean ± SE) respectively."

Fig. 4

Relationships between decoupling coefficient (Ω) and (A, D) photosynthetically active radiation (PAR,) as well as (B, E) vapor pressure deficit (D), (C, F) wind speed in Eucalyptus urophylla and Schima superba stands. Only boundary line data area shown in the figure."

Fig. 5

Decoupling coefficient (Ω) in relation to canopy stomatal conductance estimated with the inverse Penman-Monteith equation (GS2)."

Fig. 6

Daily variation of canopy stomatal conductance (GS) estimated from the K?stner equation (GS1, ○) and the inverse Penman-?Monteith equation (GS2, △) for Eucalyptus urophylla (A-D) and Schima superba (E-H)."

Fig. 7

Relationship between stomatal conductance estimated from the K?stner equation (GS1) and the inverse Penman-Monteith equation (GS2) for Eucalyptus urophylla and Schima superba."

Fig. 8

Proportional increase of sensitivity of tree crown-level stomatal conductance (GS) to vapor pressure deficit (-m) with the conductance at vapor pressure deficit (D) = 1 kPa (GSref). Values are from boundary line fits of one month subsets of data. Lines are the least-square fit (p < 0.001) for each method combination. GS1, line and open circle; GS2, dash dot and asterisk"

Table 2

Common variables and their abbreviations"

变量 Variables 缩写 Abbreviations 单位 Units
冠层气孔导度 Canopy stomatal conductance GS mmol·m-2·s-1
冠层脱耦联系数 Canopy decoupling coefficient Ω 无纲量 No dimension
光合有效辐射 Photosynthetically active radiation PAR μmol·m-2·s-1
水汽压亏缺 Water vapor deficit D kPa
风速 Wind speed u m·s-1
水汽导度 Water vapor conductance GT mmol·m-2·s-1
冠层导度 Canopy conductance gc mmol·m-2·s-1
空气动力学导度 Aerodynamic conductance ga mmol·m-2·s-1
树木蒸腾速率 Tree transpiration rates E g·m-2·s-1
叶面积指数 Leaf area index LAI m2·m-2
胸径 Diameter at breast height DBH cm
树高 Tree height H m
边材面积 Sap wood area AS m2
总叶面积 Total leaf area Al m2
气动阻力 Stomatal resistance ra s·m-1
土壤含水量 Soil water content SWC m3·m-3

Table 3

The proportion between the ratio of the sensitivity of canopy stomatal conductance to vapor pressure deficit (-m) and stomatal conductance at vapor pressure deficit = 1 kPa (GSiref) (Pi) for Ecalyptus urophylla and Schima superba at each canopy decoupling coefficient (Ω) interval"

树种 Species Ω区间 Ω interval Pi
0.00-0.05 -
0.05-0.10 0.57 (0.06)
尾叶桉
E. urophylla
0.10-0.15 0.58 (0.06)
0.15-0.20 1.04 (0.16)**
0.20-0.25 8.32 (7.62)**
0.25-0.3 1.43(5.02)**
0.00-0.05 -
0.05-0.10 0.75 (0.13)**
木荷
S. superba
0.10-0.15 0.61 (0.10)
0.15-0.20 0.58 (0.08)
0.20-0.25 0.70 (0.13)**
0.25-0.30 1.21 (0.40)**
[1] Anton H, Andrés I, James B ( 2008). Effect of Pinus radiata plantations on water balance in Chile. Hydrological Processes, 22, 142-148.
[2] Aphalo P, Jarvis P ( 1991). Do stomata respond to relative humidity?Plant, Cell & Environment, 14, 127-132.
doi: 10.1111/j.1365-3040.1991.tb01379.x
[3] Barradas VL, Nicolás E, Torrecillas A, Alarcón JJ ( 2005). Transpiration and canopy conductance in young apricot ( Prunus armenica L.) trees subjected to different PAR levels and water stress. Agricultural Water Management, 77, 323-333.
doi: 10.1016/j.agwat.2004.09.035
[4] Bladon KD, Silins U, Landh?usser SM, Lieffers VJ ( 2006). Differential transpiration by three boreal tree species in response to increased evaporative demand after variable retention harvesting. Agricultural and Forest Meteorology, 138, 104-119.
doi: 10.1016/j.agrformet.2006.03.015
[5] Blanken PD, Black TA, Yang PC, Neumann HH, Nesic Z, Staebler R, den Hartog G, Novak MD, Lee X ( 1997). Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. Journal of Geophysical Research: Atmospheres, 102, 28915-28927.
doi: 10.1029/97JD00193
[6] Cabral OM, Rocha HR, Gash JH, Ligo MA, Freitas HC, Tatsch JD ( 2010). The energy and water balance of a Eucalyptus plantation in southeast Brazil. Journal of Hydrology, 388, 208-216.
doi: 10.1016/j.jhydrol.2010.04.041
[7] Campbell-Clause J ( 1998). Stomatal response of grapevines to wind. Australian Journal of Experimental Agriculture, 38, 77-82.
doi: 10.1071/EA91220
[8] Cienciala E, Ku?era J, Malmer A ( 2000). Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo. Journal of Hydrology, 236, 109-120.
doi: 10.1016/S0022-1694(00)00291-2 pmid: 2617573
[9] Cienciala E, Kucera J, Ryan MG, Lindroth A ( 1998). Water flux in boreal forest during two hydrologically contrasting years: Species specific regulation of canopy conductance and transpiration. Annales des Sciences Forestieres, 55, 47-61.
doi: 10.1051/forest:19980104
[10] Daudet FA, Le Roux X, Sinoquet H, Adam B ( 1999). Wind speed and leaf boundary layer conductance variation within tree crown: Consequences on leaf-to-atmosphere coupling and tree functions. Agricultural and Forest Meteorology, 97, 171-185.
doi: 10.1016/S0168-1923(99)00079-9
[11] Dixon M, Grace J ( 1984). Effect of wind on the transpiration of young trees. Annals of Botany, 53, 811-819.
doi: 10.1093/oxfordjournals.aob.a086751
[12] Dye P, Olbrich B ( 1993). Estimating transpiration from 6-year-old Eucalyptus grandis trees: Development of a canopy conductance model and comparison with independent sap flux measurements. Plant, Cell & Environment, 16, 45-53.
[13] Ewers B, Gower S, Bond-lamberty B, Wang C ( 2005). Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests. Plant, Cell & Environment, 28, 660-678.
doi: 10.1111/j.1365-3040.2005.01312.x
[14] Ewers BE, Mackay DS, Samanta S ( 2007). Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species. Tree Physiology, 27, 11-24.
doi: 10.1093/treephys/27.1.11 pmid: 17169902
[15] Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE ( 2010). Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. Forest Ecology and Management, 259, 1761-1770.
[16] Granier A ( 1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
doi: 10.1093/treephys/3.4.309 pmid: 14975915
[17] Granier A, Biron P, Bréda N, Pontailler J, Saugier B ( 1996). Transpiration of trees and forest stands: Short and long-term monitoring using sap flow methods. Global Change Biology, 2, 265-274.
doi: 10.1111/gcb.1996.2.issue-3
[18] Granier A, Loustau D ( 1994). Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agricultural and Forest Meteorology, 71, 61-81.
doi: 10.1016/0168-1923(94)90100-7
[19] Granier A , Loustau, D, Bréda, N ( 2000). A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Annals of Forest Science, 57, 755-765.
doi: 10.1051/forest:2000158
[20] Gutiérrez M, Meinzer F, Grantz D ( 1994). Regulation of transpiration in coffee hedgerows: Covariation of environmental variables and apparent responses of stomata to wind and humidity. Plant, Cell & Environment, 17, 1305-1313.
doi: 10.1111/j.1365-3040.1994.tb00532.x
[21] Herbst M ( 1995). Stomatal behaviour in a beech canopy: An analysis of Bowen ratio measurements compared with porometer data. Plant, Cell & Environment, 18, 1010-1018.
doi: 10.1111/j.1365-3040.1995.tb00611.x
[22] Hutley LB, O’grady AP, Eamus D ( 2001). Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia. Oecologia, 126, 434-443.
doi: 10.1007/s004420000539 pmid: 28547459
[23] Jarvis P ( 1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London B, 273, 593-610.
doi: 10.1098/rstb.1976.0035
[24] Jarvis P, McNaughton K ( 1986). Stomatal control of transpiration: Scaling up from leaf to region. Advances in Ecological Research, 15, 1-49.
doi: 10.1016/S0065-2504(08)60119-1
[25] Jones H ( 1992). Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology. Cambridge University Press, Cambridge, UK.
[26] Katsoulas N, Baille A, Kittas C ( 2007). Leaf boundary layer conductance in ventilated greenhouses: An experimental approach. Agricultural and Forest Meteorology, 144, 180-192.
doi: 10.1016/j.agrformet.2007.03.003
[27] Kelliher F, Leuning R, Schulze E ( 1993). Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia, 95, 153-163.
doi: 10.1007/BF00323485 pmid: 28312937
[28] Kim D, Oren R, Oishi AC, Hsieh CI, Phillips N, Novick KA, Stoy PC ( 2014). Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agricultural and Forest Meteorology, 187, 62-71.
doi: 10.1016/j.agrformet.2013.11.013
[29] Kim D, Oren R, Oishi AC, Hsieh CI, Phillips N, Novick KA, Stoy PC ( 2014). Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agricultural and Forest Meteorology, 187, 62-71.
doi: 10.1016/j.agrformet.2013.11.013
[30] Kim HS, Oren R, Hinckley TM ( 2008). Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation. Tree Physiology, 28, 559-577.
doi: 10.1093/treephys/28.4.559 pmid: 18244943
[31] Komatsu H ( 2003). Values of the decoupling factor observed on forest canopies. Journal of Japan Society of Hydrology and Water Resources, 16, 423-438.
doi: 10.3178/jjshwr.16.423
[32] Komatsu H, Onozawa Y, Kume T, Tsuruta K, Shinohara Y, Otsuki K ( 2012). Canopy conductance for a Moso bamboo ( Phyllostachys pubescens) forest in western Japan. Agricultural and Forest Meteorology, 156, 111-120.
[33] Kumagai T, Saitoh TM, Sato Y, Morooka T, Manfroi OJ, Kuraji K, Suzuki M ( 2004). Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo: Dry spell effects. Journal of Hydrology, 287, 237-251.
doi: 10.1016/j.jhydrol.2003.10.002
[34] Kumagai T, Tateishi M, Shimizu T, Otsuki K ( 2008). Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agricultural and Forest Meteorology, 148, 1444-1455.
doi: 10.1016/j.agrformet.2008.04.010
[35] Law BE, Goldstein AH, Anthoni PM, Unsworth MH, Panek JA, Bauer MR, Fracheboud JM, Hultman N ( 2001). Carbon dioxide and water vapor exchange by young and old ponderosa pine ecosystems during a dry summer. Tree Physiology, 21, 299-308.
doi: 10.1093/treephys/21.5.299 pmid: 11262921
[36] Little C, Lara A, McPhee J, Urrutia R ( 2009). Revealing the impact of forest exotic plantations on water yield in large scale watersheds in South-Central Chile. Journal of Hydrology, 374, 162-170.
doi: 10.1016/j.jhydrol.2009.06.011
[37] Lu P, Yunusa IAM, Walker RR, Müller WJ ( 2003). Regulation of canopy conductance and transpiration and their modelling in irrigated grapevines. Functional Plant Biology, 30, 689-698.
doi: 10.1071/FP02181
[38] Magnani F, Leonardi S, Tognetti R, Grace J, Borghetti M ( 1998). Modelling the surface conductance of a broad-leaf canopy: Effects of partial decoupling from the atmosphere. Plant, Cell & Environment, 21, 867-879.
doi: 10.1046/j.1365-3040.1998.00328.x
[39] Martin T, Brown KJ, Cermak J, Ceulemans R, Kucera J, Meinzer FC, Rombold JS, Sprugel DG, Hinckley TM ( 1997). Crown conductance and tree and stand transpiration in a second-growth Abies amabilis forest. Canadian Journal of Forest Research, 27, 2457-2464.
[40] Maruyama A, Kuwagata T ( 2008). Diurnal and seasonal variation in bulk stomatal conductance of the rice canopy and its dependence on developmental stage. Agricultural and Forest Meteorology, 148, 1161-1173.
doi: 10.1016/j.agrformet.2008.03.001
[41] McNaughton K, Jarvis PG ( 1983). Predicting effects of vegetation changes on transpiration and evaporation. In: Kozlowski TT ed. Water Deficits and Plant Growth. Academic Press, New York. 1-47.
[42] Mei TT, Zhao P, Wang Q, Cai XA, Yu MH, Zhu LW, Zou LL, Zeng XP ( 2010). Effects of tree diameter at breast height and soil moisture on transpiration of Schima superba based on sap flow pattern and normalization. Chinese Journal of Applied Ecology, 21, 2457-2464.
[ 梅婷婷, 赵平, 王权, 蔡锡安, 余孟好, 朱丽薇, 邹绿柳, 曾小平 ( 2010). 基于液流格型特征值和标准化方法分析胸径和土壤水分对荷木液流的影响. 应用生态学报, 21, 2457-2464.]
[43] Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Jackson P ( 1997). Control of transpiration from the upper canopy of a tropical forest: The role of stomatal, boundary layer and hydraulic architecture components.. Plant, Cell & Environment, 20, 1242-1252.
[44] Mielke MS, Oliva MA, de Barros NF, Penchel RM, Martinez CA, de Almeida AC ( 1999). Stomatal control of transpiration in the canopy of a clonal Eucalyptus grandis plantation. Trees, 13, 152-160.
doi: 10.1007/PL00009746
[45] Monteith JL, Unsworth MH ( 2007). Principles of Environmental Physics. Academic Press, New York.
[46] Motzer T, Munz N, Küppers M, Schmitt D, Anhuf D ( 2005). Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes. Tree Physiology, 25, 1283-1293.
doi: 10.1093/treephys/25.10.1283 pmid: 16076777
[47] Nicolás E, Barradas VL, Ortu?o MF, Navarro A, Torrecillas A, Alarcón JJ ( 2008). Environmental and stomatal control of transpiration, canopy conductance and decoupling coefficient in young lemon trees under shading net. Environmental and Experimental Botany, 63, 200-206.
doi: 10.1016/j.envexpbot.2007.11.007
[48] Oren R, Ewers BE, Todd P, Phillips N, Katul G ( 1998). Water balance delineates the soil layer in which moisture affects canopy conductance. Ecological Applications, 8, 990-1002.
doi: 10.1890/1051-0761(1998)008[0990:WBDTSL]2.0.CO;2
[49] Oren R, Phillips N, Ewers BE, Pataki DE, Megonigal JP ( 1999 a). Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiology, 19, 337-347.
doi: 10.1093/treephys/19.6.337 pmid: 12651555
[50] Oren R, Sperry JS, Ewers BE, Pataki DE, Phillips N, Megonigal JP ( 2001). Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: Hydraulic and non-hydraulic effects. Oecologia, 126, 21-29.
doi: 10.1007/s004420000497 pmid: 28547434
[51] Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Sch?fer KVR ( 1999 b). Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant, Cell & Environment, 22, 1515-1526.
doi: 10.1046/j.1365-3040.1999.00513.x
[52] Sch?fer KV, Oren R, Tenhunen J ( 2000). The effect of tree height on crown level stomatal conductance. Plant, Cell & Environment, 23, 365-375.
doi: 10.1046/j.1365-3040.2000.00553.x
[53] Taylor PJ, Nuberg IK, Hatton TJ ( 2001). Enhanced transpiration in response to wind effects at the edge of a blue gum (Eucalyptus globulus) plantation. Tree Physiology, 21, 403-408.
doi: 10.1093/treephys/21.6.403 pmid: 11282580
[54] Wallace J, Roberts J, Sivakumar M ( 1990). The estimation of transpiration from sparse dryland millet using stomatal conductance and vegetation area indices. Agricultural and Forest Meteorology, 51, 35-49.
doi: 10.1016/0168-1923(90)90040-D
[55] Wei Z, Liu Y, Xu D, Cai J, Zhang B ( 2013). Application and comparison of winter wheat canopy resistance estimation models based on the scaling-up of leaf stomatal conductance. Chinese Science Bulletin, 58, 2909-2916.
doi: 10.1007/s11434-013-5858-3
[56] Whitley R, Medlyn B, Zeppel M, Macinnis-Ng C, Eamus D ( 2009). Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance. Journal of Hydrology, 373, 256-266.
doi: 10.1016/j.jhydrol.2009.04.036
[57] Wullschleger SD, Wilson KB, Hanson PJ ( 2000). Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agricultural and Forest Meteorology, 104, 157-168.
doi: 10.1016/S0168-1923(00)00152-0
[58] Zeppel M, Eamus D ( 2008). Coordination of leaf area, sapwood area and canopy conductance leads to species convergence of tree water use in a remnant evergreen woodland. Australian Journal of Botany, 56, 97-108.
doi: 10.1071/BT07091
[59] Zhao P, Rao XQ, Ma L, Cai XA, Zeng XP ( 2006). Responses of canopy stomatal conductance of Acacia mangium forest to environmental driving factors. Journal of Applied Ecology, 17, 1149-1156.
doi: 10.3321/j.issn:1000-0933.2006.12.018
[ 赵平, 饶兴权, 马玲, 蔡锡安, 曾小平 ( 2006). 马占相思林冠层气孔导度对环境驱动因子的响应. 应用生态学报, 17, 1149-1156.]
doi: 10.3321/j.issn:1000-0933.2006.12.018
[60] Zhu LW, Zhao P, Cai XA, Zeng XP, Ni GY, Zhang JY, Zou LL, Mei TT, Yu MH ( 2012). Effects of sap velocity on the daytime increase of stem CO2 efflux from stems of Schima superba trees. Trees, 26, 535-542.
doi: 10.1007/s00468-011-0615-1
[1] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364.
[2] Rijin Jiang,Linlin Zhang,Kaida Xu,Pengfei Li,Yi Xiao,Ziwei Fan. Characteristics and diversity of nekton functional groups in the coastal waters of south-central Zhejiang Province [J]. Biodiv Sci, 2019, 27(12): 1330-1338.
[3] CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plan Ecolo, 2018, 42(5): 585-594.
[4] CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plan Ecolo, 2018, 42(3): 265-276.
[5] Hongliang Wang, Siyi Guo, Pengtao Wang, Chunpeng Song. Research Progress in Stomatal Development Mechanism [J]. Chin Bull Bot, 2018, 53(2): 164-174.
[6] Guodong Yang, Xinyue Ji, Lin Chen, Yuqian Zhong, Feifei Zhai, Xiangui Yi, Xianrong Wang. Spatial distribution and environmental interpretation of wild Sinojackia xylocarpa communities based on self-organizing map (SOM) [J]. Biodiv Sci, 2018, 26(12): 1268-1276.
[7] Xiuqin Yin, Yan Tao, Haixia Wang, Chen Ma, Xinchang Kou, Huan Xu, Dong Cui. Forest soil fauna ecology in Northeast China: Review and prospect [J]. Biodiv Sci, 2018, 26(10): 1083-1090.
[8] Danxiao Peng,Limin Lu,Zhiduan Chen. Regional tree of life and its application in floristic studies [J]. Biodiv Sci, 2017, 25(2): 156-162.
[9] Kai YUE, Wan-Qin YANG, Yan PENG, Chun-Ping HUANG, Chuan ZHANG, Fu-Zhong WU. Effects of streams on lignin degradation during foliar litter decomposition in an alpine forest [J]. Chin J Plan Ecolo, 2016, 40(9): 893-901.
[10] Xiao Guan, Leshan Du, Xiaomeng Zhai, Chunxin Zang, Lile Hu. Cones and Seeds Characteristics of Larix chinensis in Qinling Mountains and Their Relationship with Environmental factors [J]. Chin Bull Bot, 2016, 51(5): 650-658.
[11] Ye Liu,Yue Xu,Songlin Shi,Peihao Peng,Zehao Shen. Quantitative classification and environmental interpretations for the structural differentiation of the plant communities in the dry valley of Jinshajiang River [J]. Biodiv Sci, 2016, 24(4): 407-420.
[12] Wen-Qiang XU, Liao YANG, Xi CHEN, Ya-Qi GAO, Lei WANG. Carbon storage, spatial distribution and the influence factors in Tianshan forests [J]. Chin J Plan Ecolo, 2016, 40(4): 364-373.
[13] Zhishun Xiao, Cong Lin, Shuang Yang, Yan Liu, Yawen Fan. Community Structure of Phytoplankton and Its Relation with Environmental Factors in Xinhua Lake of China [J]. Chin Bull Bot, 2016, 51(3): 353-362.
[14] Heyu Yang, Haiyan Wei, Manjie Sang, Zhonghui Shang, Yajuan Mao, Xiaorui Wang, Fang Liu, Wei Gu. Phenotypic Plasticity of Schisandra sphenanthera Leaf and the Effect of Environmental Factors on Leaf Phenotype [J]. Chin Bull Bot, 2016, 51(3): 322-334.
[15] Hong Jiang, Yingying Bai, Yingfu Rao, Chong Chen, Yongli Cai. Fine Root Biomass and Morphological Characteristics in Three Different Artificial Forest Communities in Newly Reclaimed Saline Soil [J]. Chin Bull Bot, 2016, 51(3): 343-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hu Shi-yi. Lipoid Bodies in Plant Tissues[J]. Chin Bull Bot, 1994, 11(04): 49 -51 .
[2] CHENG Hong-Yan. Introduction of State Key Laboratory of Biomembrane and Membrane Biotechnology[J]. Chin Bull Bot, 1998, 15(04): 78 .
[3] Liu Dong-zhuo and Li Lan. The Karyotype Analysis of Solanum pseudocapsicum[J]. Chin Bull Bot, 1992, 9(03): 50 .
[4] WANG Bao-Shan;LI De-Quan;ZHAO Shi-Jie;MENG Qing-Wei and ZOU Qi. Effects of Iso-osmotic NaCl and KCl Stress on Growth and Gas Exchange of Sorghum Seedlings[J]. Chin Bull Bot, 1999, 16(04): 449 -453 .
[5] LI Yao-Dong WEI Yu-Ning XU Ben-Mei. Study on the ABA Content and SOD Activity in Ancient Lotus and Modern Lotus Seeds[J]. Chin Bull Bot, 2000, 17(05): 439 -442 .
[6] LI Zhong-Kui HU Hong-Jun LI Ye-Guang. Advances in Molecular Phylogenetic Relationship of Volvocales[J]. Chin Bull Bot, 2002, 19(04): 419 -424 .
[7] WANG Ting SU Ying-Juan ZHU Jian-Ming HUANG Chao LI Xue-Yan. PCR_RFLP Analysis of rbc L Genes in Taxaceae and Related Taxa[J]. Chin Bull Bot, 2001, 18(06): 714 -721 .
[8] . [J]. Chin Bull Bot, 1994, 11(专辑): 51 .
[9] Dong Shu-ting, Hu Chang-hao, Yue Shou-song, Wang Qun-ying, Gao Rong-qi, Pan Zi-long. The Characteristics of Canopy Photosynthesis of Summer Corn (Zea mays) and its Relation with Canopy Structure and Ecological Conditions[J]. Chin J Plan Ecolo, 1992, 16(4): 372 -378 .
[10] YANG Wei, YE Qi-Gang, LI Zuo-Zhou, HUANG Hong-Wen. GENETIC DIFFERENTIATION OF QUANTITATIVE TRAITS AND LOCAL ADAPTABILITY OF REMNANT POPULATIONS OF ISOETES SINENSIS AND IMPLICATIONS FOR CONSERVATION AND GENETIC REINFORCEMENT[J]. Chin J Plan Ecolo, 2008, 32(1): 143 -151 .