Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (2): 139-151.doi: 10.17521/cjpe.2018.0201

• Research Articles • Previous Articles     Next Articles

Correlation between endogenous hormone and the adaptability of Chinese fir with high phosphorus-use efficiency to low phosphorus stress

ZOU Xian-Hua1,2,HU Ya-Nan1,WEI Dan1,CHEN Si-Tong1,WU Peng-Fei1,2,MA Xiang-Qing1,2,*()   

  1. 1 Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    2 Chinese Fir Engineering Technology Research Center of State Forestry Administration, Fuzhou 350002, China
  • Received:2018-08-16 Accepted:2018-12-04 Online:2019-06-04 Published:2019-02-20
  • Contact: MA Xiang-Qing E-mail:lxymxq@126.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(31600502);Supported by the National Natural Science Foundation of China(U1405211)

Abstract: <i>Aims</i>

Hormones are important signals for plants adaption to environmental stresses. To understand the mechanism of plants adaptation to nutrient deficiency from the perspective of hormone regulation is of great significance for breeding the genotypes with high phosphorus (P)-use efficiency.

<i>Methods</i>

This study investigated the correlation between hormone content and the adaptability of Chinese fir (Cunninghamia lanceolata) to low P stress by examining the changes of hormone content, root morphology, root dry matter and root P distribution patterns in the passive tolerance (M1) and active activation (M4) genotypes under low P stress at different treatment periods.

<i>Important findings</i>

No correlation was found between the foliar hormone contents and the adaptive characteristics of M1 and M4 under low P stress, although the root hormone content was significantly correlated with the growth index of roots. Low P stresses increased root IAA contents in M1 and M4 after 27 h of treatments and increased continuously with the prolongation of time. The IAA contents were positively correlated with surface area, volume and length of roots in both M1 and M4 (p < 0.05), suggesting that the increase of IAA induced root growth in both genotypes. Specifically, we observed an obvious phenomenon of IAA transportation from leaves to roots in M4, along with stronger root growth of M4 compared with that of M1. Meanwhile, low P stress increased the root-shoot ratio of M4, suggesting that root growth prompted more dry matter distribution to roots. Similarly, the ABA and GA3 contents in both M1 and M4 roots also increased as P availability decreased, but they showed a trend toward decrease over time and a negative correlation with root growth. The ZT contents in the root lower under low P treatment, yet there was no significant correlation between its contents and the low P adaptive characteristics of M1 and M4. Our results indicated that the contents of root IAA, ABA, and GA3 in Chinese fir clones with high P-use efficiency were closely related to the morphological changes of the roots. These comprehensive regulations of different organs is an essential survival strategy for plants to adapt to low P stress.

Key words: low phosphorus stress, endogenous hormone, high phosphorus-use efficiency, Chinese fir, root morphology, root shoot ratio, nutrient distribution

Fig. 1

Equipment design of hydroponics culture."

Fig. 2

Endogenous hormone contents of Cunninghamia lanceolata M1 at different sampling periods (mean ± SD). A, IAA content. B, ABA content. C, GA3 content. D, ZT content. L-P and H-P represent the low and high phosphorus treatments, respectively. Different lower- and upper-case letters indicate significant differences (p < 0.05) in each variables across different treatment periods under L-P and H-P conditions, respectively."

Fig. 3

Endogenous hormone content of Cunninghamia lanceolata M4 at different sampling periods (mean ± SD). A, IAA content. B, ABA content. C, GA3 content. D, ZT content. L-P and H-P represent the low and high phosphorus treatments, respectively. Different lower- and upper-case letters indicate significant differences (p < 0.05) in each variables across different treatment periods under L-P and H-P conditions, respectively."

Fig. 4

Root morphological changes of different Cunninghamia lanceolata with different high phosphorus-use efficiency at different sampling periods (mean ± SD). A, Root length increments of M1. B, Root length increments of M4. C, Root surface area increments of M1. D, Root surface area increments of M4. E, Root volume increments of M1. F, Root volume increments of M4. G, Averaged root diameter of M1. H, Averaged root diameter of M4. L-P and H-P represent the low and high P treatments, respectively. Different lower- and upper-case letters indicate significant differences (p < 0.05) in each variables across different treatment periods under L-P and H-P conditions, respectively."

Fig. 5

Root/shoot ratio of different Cunninghamia lanceolata with different high P-use efficiency at different sampling periods (mean ± SD). A, Root/shoot ratio of M1. B, Root/shoot ratio of M4. L-P and H-P represent the low and high P treatments, respectively. Different lower- and upper-case letters indicate significant differences (p < 0.05) across different treatment periods under L-P and H-P conditions, respectively."

Fig. 6

Phosphorous distribution patterns of Cunninghamia lanceolata with different high P-use efficiency at different sampling periods (mean ± SD). A, Phosphorous distribution patterns in the aerial part and roots of M1. B, Phosphorous distribution patterns in the aerial part and roots of M4. L-P and H-P represent the low and high P treatments, respectively. Different lower- and upper- case letters indicate significant differences (p < 0.05) across different treatment periods under L-P and H-P conditions, respectively."

Table 1

Correlation between endogenous hormones and growth characteristics of Chinese fir clones with high phosphorus-use efficiency under different phosphorus levels"

家系
Clone
部位
Organ
供磷处理
Phosphorus
supply level
内源激素
Endogenous hormone
根体积
Root
volume
根平均直径
Average root diameter
根表面积
Root surface area
根长
Root
length
根冠比
Root/shoot
ratio
地上部磷养分含量
P content in the
aerial parts
根磷养分含量
P content in
the roots
M1 叶片
Leaves
L-P ABA -0.159 -0.161 -0.186 -0.306 0.289 0.313 0.103
IAA -0.075 0.100 0.046 0.136 -0.190 -0.072 0.046
GA3 0.525 -0.674 0.550 0.221 -0.655 0.518 -0.018
ZT -0.644 0.443 -0.663 -0.495 0.382 -0.170 0.604
H-P ABA -0.019 0.372 -0.103 -0.473 0.157 -0.540 0.352
IAA 0.250 -0.548 0.364 0.435 -0.186 0.546 0.006
GA3 0.313 -0.571 0.365 0.131 0.045 0.545 0.517
ZT -0.391 0.701 -0.423 -0.210 0.589 -0.208 0.237
根系
Roots
L-P ABA -0.958** 0.442 -0.921** -0.863* 0.077 -0.073 0.682
IAA 0.891** -0.777* 0.880** 0.627 -0.245 0.381 -0.675
GA3 -0.794* 0.558 -0.797* -0.715 -0.316 -0.317 0.660
ZT -0.554 0.276 -0.564 -0.482 -0.415 -0.346 0.693
H-P ABA -0.612 0.416 -0.604 -0.695 0.538 -0.690 0.302
IAA 0.672 -0.456 0.619 0.128 -0.599 -0.180 -0.230
GA3 -0.370 0.427 -0.360 -0.409 0.029 -0.402 -0.035
ZT -0.383 0.364 -0.360 -0.374 -0.010 -0.359 -0.110
M4 叶片
Leaves
L-P ABA -0.106 0.430 -0.205 -0.170 -0.258 -0.167 -0.602
IAA -0.045 -0.239 0.006 -0.205 -0.027 -0.099 0.572
GA3 -0.130 0.302 -0.186 0.066 0.120 -0.068 -0.341
ZT -0.344 0.563 -0.432 -0.376 -0.071 -0.281 -0.336
H-P ABA -0.146 0.494 -0.138 -0.106 0.107 -0.123 -0.310
IAA 0.338 -0.394 0.393 0.453 -0.278 0.012 0.219
GA3 -0.524 0.584 -0.466 -0.331 0.440 0.336 0.065
ZT 0.054 -0.361 0.078 0.103 0.230 -0.038 -0.357
根系
Roots
L-P ABA -0.079 0.368 -0.114 -0.120 -0.170 -0.248 -0.625
IAA 0.772* -0.876** 0.963** 0.810* -0.647 0.481 -0.906**
GA3 -0.380 0.248 -0.357 -0.429 0.081 -0.542 0.223
ZT -0.434 0.286 -0.402 -0.473 0.157 -0.533 0.282
H-P ABA 0.450 0.003 0.425 0.184 -0.242 -0.606 -0.474
IAA 0.692 -0.475 0.735 0.689 -0.512 -0.313 -0.694
GA3 -0.291 0.138 -0.356 -0.285 0.280 -0.506 0.086
ZT -0.497 0.111 -0.481 -0.266 0.362 0.126 0.644
[1] Alexova R, Millar AH ( 2013). Proteomics of phosphate use and deprivation in plants. Proteomics, 13, 609-623.
doi: 10.1002/pmic.v13.3-4
[2] Brenner C, Deplus R, Didelot C, Loriot A, Viré E, Smet CD, Gutierrez A, Danovi D, Bernard D, Boon T ( 2005). Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO Journal, 24, 336-346.
doi: 10.1038/sj.emboj.7600509
[3] Chen BL, Luo J, Jiang PA ( 2016). Effects of different phosphorus concentration on endogenous hormones of cotton. Southwest China Journal of Agricultural Sciences, 29, 1839-1843.
[ 陈波浪, 罗佳, 蒋平安 ( 2016). 不同磷水平对棉花内源激素的影响. 西南农业学报, 29, 1839-1843.]
[4] Chen J, Zhang YZ, Zhang Q, Shen YO, Gao SB, Tang HT, He WZ, Tan J, Zhang B, Pan GT ( 2013). Dynamic change of endogenous hormones in different maize genotypes under low-phosphorus stress. Journal of Maize Sciences, 21(5), 6-12.
[ 陈洁, 张永中, 张谦, 沈亚欧, 高世斌, 唐海涛, 何文铸, 谭君, 张彪, 潘光堂 ( 2013). 低磷胁迫下不同基因型玉米内源激素的动态变化. 玉米科学, 21(5), 6-12.]
[5] Chen ZY, Wu PF, Zou XH, Wang P, Ma J, Ma XQ ( 2016). Relationship between growth and endogenous hormones of Chinese fir seedlings under low phosphorus stress. Scientia Silvae Sinicae, 52(2), 57-66.
doi: 10.11707/j.1001-7488.20160207
[ 陈智裕, 吴鹏飞, 邹显花, 汪攀, 马静, 马祥庆 ( 2016). 低磷胁迫下杉木幼苗生长特性与内源激素的关系. 林业科学, 52(2), 57-66.]
doi: 10.11707/j.1001-7488.20160207
[6] Chiou T, Lin S ( 2011). Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology, 62, 185-206.
doi: 10.1146/annurev-arplant-042110-103849
[7] Ciereszko I, Kleczkowski LA ( 2002). Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: Hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal. Biochimica et Biophysica Acta (BBA)—Gene Structure and Expression, 1579, 43-49.
[8] Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG ( 2009). Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Molecular Plant, 2, 43-58.
[9] Dong J, Mou P ( 2012). Root nutrient foraging of morphological plasticity and physiological mechanism in Callistephus chinensis. Chinese Journal of Plant Ecology, 36, 1172-1183.
[ 董佳, 牟溥 ( 2012). 翠菊根系养分捕获形态塑性及其生理机制. 植物生态学报, 36, 1172-1183.]
[10] Franco-Zorrilla JM, Martin AC, Solano R, Rubio V, Leyva A, Paz-Ares J ( 2002). Mutations at CRE1 impair cytokinin-‌induced repression of phosphate starvation responses in Arabidopsis. Plant Journal, 32, 353-360.
[11] Fu YP, Yang Y, Xue JB ( 2005). Influence under low P-deficient stress on endogenous hormone and root activities of dark sun-cured tobacco. Chinese Agricultural Science Bulletin , 21, 227-229.
[ 符云鹏, 杨燕, 薛剑波 ( 2005). 低磷胁迫对晒红烟内源激素和根系活力的影响. 中国农学通报, 21, 227-229.]
[12] Fukaki H, Tasaka M ( 2009). Hormone interactions during lateral root formation. Plant Molecular Biology, 69, 437-449.
doi: 10.1007/s11103-008-9417-2
[13] Giehl RFH, Gruber BD, von Wiren N ( 2014). Its time to make changes: Modulation of root system architecture by nutrient signals. Journal of Experimental Botany, 65, 769-778.
doi: 10.1093/jxb/ert421
[14] Huang RH, Yang HL, Huang W, Lu YM, Chen K ( 2015). Effects of Funneliformis mosseae on endogenous hormones and photosynthesis of Sorghum haipense under Cs stress. Chinese Journal of Applied Ecology, 26, 2146-2150.
[ 黄仁华, 杨会玲, 黄炜, 陆云梅, 陈珂 ( 2015). 核素铯胁迫下接种摩西球囊霉对宿根高粱内源激素和光合的影响. 应用生态学报, 26, 2146-2150.]
[15] Jiang C, Gao X, Liao L, Harberd NP, Fu X ( 2007). Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology, 145, 1460-1470.
[16] Johnston AE, Poulton PR, Fixen PE, Curtin D ( 2014). Phosphorus: Its efficient use in agriculture. Advances in Agronomy, 123, 177-228.
doi: 10.1016/B978-0-12-420225-2.00005-4
[17] Lai F, Thacker J, Li Y, Doerner P ( 2007). Cell division activity determines the magnitude of phosphate starvation responses in Arabidopsis. Pant Journal, 50, 545-556.
[18] Li JH, Chong K ( 2006). Current research advances on polar auxin transport in plant. Chinese Bulletin of Botany , 23, 466-477.
[ 李俊华, 种康 ( 2006). 植物生长素极性运输调控机理的研究进展. 植物学通报, 23, 466-477.]
[19] Li K, Xu CK, Yang A, Zhang J ( 2010). Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics, 7, 1501-1512.
[20] Li YK (1989). Methods of Conventional Analysis of Soil Agricultural Chemistry. Science Press, Beijing.
[ 李酉开 (1989). 土壤农业化学常规分析方法. 科学出版社, 北京.]
[21] Liu H, Wang SG ( 2003). Influences of P deficiency stress on endogenous hormones in Barley. Journal of Southwest Agricultural University, 25, 48-51.
[ 刘辉, 王三根 ( 2003). 低磷胁迫对大麦内源激素的影响. 西南农业大学学报, 25, 48-51.]
[22] Liu HC, Kuang YH, Chen RY ( 2003). Changes of IAA contents in different Asparagus Bean cultivars under phosphorus- deficient stress. Plant Physiology Communications, 39, 125-127.
[ 刘厚诚, 邝炎华, 陈日远 ( 2003). 缺磷胁迫下不同长豇豆品种幼苗中IAA含量的变化. 植物生理学报, 39, 125-127.]
[23] Martin AC, Del Pozo JC, Iglesias J, Rubio V, Solano R, de La Pena A, Leyva A, Paz-Ares J ( 2000). Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. The Plant Journal, 24, 559-567.
[24] Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N ( 2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 102, 11934-11939.
[25] Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM ( 2011). SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiology, 155, 1000-1012.
doi: 10.1104/pp.110.165191
[26] Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible W ( 2007). Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell & Environment, 30, 85-112.
[27] Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P ( 2005). A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiology, 138, 2061-2074.
[28] Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra- Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L ( 2008). Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell, 20, 3258-3272.
[29] Postma JA, Lynch JP ( 2011). Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Annals of Botany, 107, 829-841.
doi: 10.1093/aob/mcq199
[30] Radin JW, Parker LL, Guinn G ( 1982). Water relations of cotton plants under nitrogen deficiency: V. Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid. Plant Physiology, 70, 1066-1070.
doi: 10.1104/pp.70.4.1066
[31] Rubio V, Bustos R, Irigoyen ML, Cardona-Lopez X, Rojas- Triana M, Paz-Ares J ( 2009). Plant hormones and nutrient signaling. Plant Molecular Biology, 69, 361-373.
doi: 10.1007/s11103-008-9380-y
[32] Sakakibara H ( 2006). Cytokinins: Activity, biosynthesis, and translocation. Annual Review of Plant Biology, 57, 431-449.
doi: 10.1146/annurev.arplant.57.032905.105231
[33] Shao LM, Hao B (1986). Plant Hormones. People’s Education Press, Beijing.
[ 邵莉楣, 郝斌 (1986). 植物激素. 人民教育出版社, 北京.]
[34] Shen Y, Zhang Y, Lin H, Gao S, Pan G ( 2012). Effect of low phosphorus stress on endogenous hormone levels of different maize genotypes in seedling stage. Journal of Biological Sciences, 12, 208-314.
[35] Sheng WT, Fan SH (2005). Long-term Productivity of Chinese fir Plantations. Science Press, Beijing.
[ 盛炜彤, 范少辉 (2005). 杉木人工林长期生产力保持机制研究. 科学出版社, 北京.]
[36] Shi CJ, Liu Y, Jing T ( 2006). Review on stress-resistance of phytohormone. World Forestry Research, 19(5), 21-26.
[ 师晨娟, 刘勇, 荆涛 ( 2006). 植物激素抗逆性研究进展. 世界林业研究, 19(5), 21-26.]
[37] Shi T, Zhao D, Li D, Wang N, Meng J, Xu F, Shi L ( 2012). Brassica napus root mutants insensitive to exogenous cytokinin show phosphorus efficiency. Plant and Soil, 358, 57-70.
[38] Sun HG, Zhang FS ( 2000). Growth response of wheat roots to phosphorus deficiency. Acta Botanice Sinica , 42, 913-919.
[ 孙海国, 张福锁 ( 2000). 小麦根系生长对缺磷胁迫的反应. 植物学报, 42, 913-919.]
[39] Vitousek PM, Porder S, Houlton BZ, Chadwick OA ( 2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecologigal Applications, 20, 5-15.
doi: 10.1890/08-0127.1
[40] Wei XW, Gou C, Xu MZ, Xu HW, Zhou XF ( 2013). Study on the improvement of HPLC method for analyzing endogenous hormone in Maize. Journal of Maize Sciences, 21, 144-148.
[ 未晓巍, 勾畅, 徐民泽, 徐洪伟, 周晓馥 ( 2013). 高效液相色谱法测定玉米内源激素方法的改进研究. 玉米科学, 21, 144-148.]
[41] Wu P, Ma LG, Hou XL, Wang MY, Wu YR, Liu FY, Deng XW ( 2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology, 132, 1260-1271.
[42] Wu PF, Ma XQ ( 2009). Research advances in the mechanisms of high nutrient use efficiency in plants. Acta Ecologica Sinica , 29, 427-437.
[ 吴鹏飞, 马祥庆 ( 2009). 植物养分高效利用机制研究进展. 生态学报, 29, 427-437.]
[43] Wu PF, Ma XQ, Tigabu MT, Wang CW, Liu AQ, Oden PC ( 2011). Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorus efficiency under low phosphorus stress. Canadian Journal of Forest Research, 41, 228-234.
doi: 10.1139/X10-198
[44] Wu PF, Wang GY, El-Kassaby YA, Wang P, Zou XH, Ma XQ ( 2016). Solubilization of aluminum-bound phosphorus by root cell walls: Evidence from Chinese fir, Cunninghamia lanceolata(Lamb.) Hook. Canadian Journal of Forest Research, 47, 419-423.
[45] Wu PF, Wang GY, Farooq TH, Li Q, Zou XH, Ma XQ ( 2017). Low phosphorus and competition affect Chinese fir cutting growth and root organic acid content: Does neighboring root activity aggravate P nutrient deficiency? Journal of Soils and Sediments, 17, 2775-2785.
doi: 10.1007/s11368-017-1852-8
[46] Wu PF, Zang GZ, Ma XQ ( 2006). Advances in the mechanism of chemical communication of plants under stress. Subtropical Agriculture Research , 2, 271-277.
[ 吴鹏飞, 臧国长, 马祥庆 ( 2006). 逆境中植物化学通讯机制的研究进展. 亚热带农业研究, 2, 271-277.]
[47] Xiong GS, Li JY, Wang YH ( 2009). Advances in the regulation and crosstalks of phytohomones. Chinese Science Bulletin, 54, 2718-2733.
[ 熊国胜, 李家洋, 王永红 ( 2009). 植物激素调控研究进展. 科学通报, 54, 2718-2733.]
[48] Yamagishi M, Zhou K, Osaki M, Miller SS, Vance CP ( 2011). Real-time RT-PCR profiling of transcription factors including 34 MYBs and signaling components in white lupin reveals their P status dependent and organ-specific expression. Plant and Soil, 342, 481-493.
doi: 10.1007/s11104-010-0711-9
[49] Yang CC, Huang QJ, Su XH ( 2013). Correlation between endogenous IAA, ABA contents and height growth of black poplar at the seedling stage. Scientia Silvae Sinicae , 49(8), 35-42.
doi: 10.11707/j.1001-7488.20130806
[ 杨成超, 黄秦军, 苏晓华 ( 2013). 内源激素IAA和ABA含量与黑杨苗期高生长关系. 林业科学, 49(8), 35-42.]
doi: 10.11707/j.1001-7488.20130806
[50] Yuan Y, Huang LQ, Lü DM, Mao Y, Fu GF ( 2008). Effect of low pH on endogenous hormones and root development in Chinese medicine Atractylodes lancea(Thunb.) DC. Chinese Pharmaceutical Journal, 43, 101-104.
[ 袁媛, 黄璐琦, 吕冬梅, 毛莹, 付桂芳 ( 2008). 低pH对苍术根组织内源激素水平和生长发育的影响. 中国药学杂志, 43, 101-104.]
[51] Zou XH, Wei D, Wu PF, Zhang Y, Hu YN, Chen ST, Ma XQ ( 2018). Strategies of organic acid production and exudation in response to low-phosphorus stress in Chinese fir genotypes differing in phosphorus-use efficiencies. Trees, 32, 897-912.
doi: 10.1007/s00468-018-1683-2
[52] Zou XH, Wu PF, Chen NL, Wang P, Ma XQ ( 2015). Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil. Canadian Journal of Forest Research, 45, 402-410.
doi: 10.1139/cjfr-2014-0384
[53] Zou XH, Wu PF, Jia YY, Ma J, Ma XQ ( 2016). Periodical response of Chinese fir root to the phosphorus concentrations in patches and heterogeneous distribution in different growing stages. Journal of Plant Nutrition and Fertilizer, 22, 1056-1063.
[ 邹显花, 吴鹏飞, 贾亚运, 马静, 马祥庆 ( 2016). 杉木根系对不同磷斑块浓度与异质分布的阶段性响应. 植物营养与肥料学报, 22, 1056-1063.]
[1] Zeng Yinwei, Cao Yuman, Sha Xuyang, Li Shuxia, Yang Peizhi, Hu Tianming, Liu Jinlong. An Observation Method of Nodule and Root Morphology without Damage in Real-time [J]. Chin Bull Bot, 2018, 53(5): 661-670.
[2] Wei Du, Jian Ding, Chengjiang Ruan. Dynamic Changes of Hormones Contents in Different Fruit Developmental Stages of Sea Buckthorn [J]. Chin Bull Bot, 2018, 53(2): 219-226.
[3] CHEN Si-Tong, ZOU Xian-Hua, CAI Yi-Bing, WEI Dan, LI Tao, WU Peng-Fei, MA Xiang-Qing. Phosphorus distribution inside Chinese fir seedlings under different P supplies based on 32P tracer [J]. Chin J Plant Ecol, 2018, 42(11): 1103-1112.
[4] Guan-Tao CHEN, Yong PENG, Jun ZHENG, Shun LI, Tian-Chi PENG, Xi-Rong QIU, Li-Hua TU. Effects of short-term nitrogen addition on fine root biomass, lifespan and morphology of Castanopsis platyacantha in a subtropical secondary evergreen broad-leaved forest [J]. Chin J Plan Ecolo, 2017, 41(10): 1041-1050.
[5] Zhi-Yu CHEN, Qi LI, Xian-Hua ZOU, Xiang-Qing MA, Peng-Fei WU. Effect of neighboring competition on photosynthetic characteristics and biomass allocation of Chinese fir seedlings under low phosphorus stress [J]. Chin J Plan Ecolo, 2016, 40(2): 177-.
[6] ZHOU Hong-Hua,LI Wei-Hong. Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratica [J]. Chin J Plan Ecolo, 2015, 39(1): 81-91.
[7] PANG Li, ZHANG Yi, ZHOU Zhi-Chun, FENG Zhong-Ping, and CHU De-Yu. Effects of simulated nitrogen deposition on root exudates and phosphorus efficiency in Pinus massoniana families under low phosphorus stress [J]. Chin J Plan Ecolo, 2014, 38(1): 27-35.
[8] Xiaowan Yang, Guoqi Zheng, Juan Yang, Xing Xu, Di Lu, Le Yang. Changes in Endogenous Hormone Contents and Cell Wall Component, Degrading Enzyme Activity and Their Relation in Lycium barbarum [J]. Chin Bull Bot, 2014, 49(1): 30-40.
[9] ZHENG Ya-Ping, XIN Cai-Yun, WANG Cai-Bin, SUN Xiu-Shan, YANG Wei-Qiang, WAN Shu-Bo, ZHENG Yong-Mei, FENG Hao, CHEN Dian-Xu, SUN Xue-Wu, and WU Zheng-Feng. Effects of phosphorus fertilizer on root morphology, physiological characteristics and yield in peanut (Arachis hypogaea) [J]. Chin J Plan Ecolo, 2013, 37(8): 777-785.
[10] Zhizhong Yuan, Yang Cui, Shaokui Yan. Effect of leaf litter quantity and type on forest soil fauna and biological quality [J]. Biodiv Sci, 2013, 21(2): 206-213.
[11] MA Xiao-Dong, ZHU Cheng-Gang, and LI Wei-Hong. Response of root morphology and biomass of Tamarix ramosissima seedlings to different water irrigations [J]. Chin J Plan Ecolo, 2012, 36(10): 1024-1032.
[12] GU Dong-Xiang, TANG Liang, XU Qi-Jun, LEI Xiao-Jun, CAO Wei-Xing, ZHU Yan. Root growth and distribution in rice cultivars as affected by nitrogen and water supply [J]. Chin J Plan Ecolo, 2011, 35(5): 558-566.
[13] Xiaoliang Zhao, Guoyong An, Pengcheng Wang, Ling Bai, Chunpeng Song. Isolation and Characterization of Arabidopsis rei1 Mutant [J]. Chin Bull Bot, 2011, 46(5): 498-505.
[14] CHEN Guang-Shui, YANG Yu-Sheng, GAO Ren, XIE Jin-Sheng, YANG Zhi-Jie, MAO Yan-Ling. CHANGES IN BELOWGROUND CARBON ALLOCATION IN A CHINESE FIR CHRONOSEQUENCE IN FUJIAN PROVINCE, CHINA [J]. Chin J Plan Ecolo, 2008, 32(6): 1285-1293.
[15] Hui Yang;Lizhe An;Zhiye Wang;Jianping Zhou;Xunling Wang. Effects of Enhanced UV-B Radiation on Pollen Activities of 2 Tomato Cultivars in Terms of Endogenous Hormone,Polyamine and Proline Levels in Stamens [J]. Chin Bull Bot, 2007, 24(02): 161-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] TIAN Bao-Lin WANG Shi-Jun LI Cheng-Sen CHEN Gui-Ren. An Approach on the Origin Center, Evolution Center and the Mechanics of Evolution and Extinction of the Late Palaeozoic Cathaysian Flora[J]. Chin Bull Bot, 2000, 17(专辑): 21 -33 .
[6] ZHANG Yan FANG Li LI Tian-Fei YAO Zhao-BingJIANG Jin-Hui. Effect of Calcium on the Heat Tolerance and Active Oxygen Metabolism of Tobacco Leaves[J]. Chin Bull Bot, 2002, 19(06): 721 -726 .
[7] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[8] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[9] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .
[10] ZHANG Da-Yong, JIANG Xin-Hua. An Ecological Perspective on Crop Prduction[J]. Chin J Plan Ecolo, 2000, 24(3): 383 -384 .