Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (12): 1154-1167.doi: 10.17521/cjpe.2018.0214

• Research Articles • Previous Articles     Next Articles

Leaf C, N, and P concentrations and their stoichiometry in peatland plants of Da Hinggan Ling, China

LI Rui1,HU Chao-Chen1,XU Shi-Qi1,WU Di1,DONG Yu-Ping1,SUN Xin-Chao1,MAO Rong2,3,WANG Xian-Wei2,*(),LIU Xue-Yan1,*()   

  1. 1 Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
    2 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    3 College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
  • Received:2018-08-27 Revised:2018-12-03 Online:2019-04-04 Published:2018-12-20
  • Contact: WANG Xian-Wei,LIU Xue-Yan ORCID: 0000-0003-1097-151, LI Rui ORCID: 0000-0002-1793-7997 E-mail:wangxianwei@iga.ac.cn;liuxueyan@tju.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(41471056);Supported by the National Natural Science Foundation of China(41522301);Supported by the National Natural Science Foundation of China(41730855);the National Key R & D Program of China(2016YFA0600802)

Abstract:

Aims Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations and their stoichiometry can provide a basis for plant nutrient status and element limitation. Our objective was to explore variations of leaf C:N:P stoichiometry in plants of different growth forms.

Methods We analyzed leaf C, N, and P concentrations in three graminoids (Eriophorum vaginatum, Carex globularis, Deyeuxia angustifolia), five deciduous shrubs (Betula fruticosa, Salix myrtilloides, Salix rosmarinifolia, Vaccinium vitis-idaea, Vaccinium uliginosum), and three evergreen shrubs (Ledum palustre, Chamaedaphne calyculata, Rhododendron capitatum) across 18 peatland sites in the Da Hinggan Ling, northeastern China.

Important findings (1) Leaf C, N, and P concentrations were higher, and the leaf C:N, C:P, and N:P values were lower, in deciduous and evergreen shrubs than in graminoids, indicating that plants of different growth forms had different nutrient utilization strategies. Shrubs had higher C, N and P storage and lower N and P use efficiency than graminoids. (2) Leaf N:P values in Deyeuxia angustifolia and R. capitatum were less than 10, and their leaf N concentrations were lower than the global mean leaf N concentration, indicating that those species were limited by N more than other plants. (3) The sampling sites explained 12.8%-40.8% of the variations in leaf C, N, and P stoichiometry, and plant species explained 9.3%-25.5%. (4) Graminoids had greater inter-site coefficient of variance (CV) values in leaf C, N, and P variables than deciduous and evergreen shrubs, indicating greater sensitive to site factors. (4) The inter-species CV values in leaf N were greater in graminoids than in deciduous and evergreen shrubs, and the inter-species CV values in leaf P were greater in deciduous shrubs than in graminoids and evergreen shrubs, indicating greater physiological differentiation in N and P use strategies in graminoids and deciduous shrubs than in evergreen shrubs.

Key words: Da Hinggan Ling, northern peatland, plant nutrition, stoichiometry

Fig. 1

Locations of the peatlands investigated in the Da Hinggan Ling."

Table 1

Information on climate and plant species studied in the peatland sites in the Da Hinggan Ling"

地点 Site 年平均气温MAT (℃) 年降水量 MAP (mm) 海拔 Elevation (m) 调查植物种(重复数) Plant species studied (replicates)
阿里河 Alihe -5.57 481 490 A(2), C(3), D(3), E(3)
阿木尔 Amuer -4.48 459 533 A(3), C(2), D(3), E(2), G(3), H(1), I(3)
大林河 Dalinhe -4.20 443 466 A(3), D(3), E(3), G(3), I(3), J(3)
富克山 Fukeshan -4.21 444 468 A(3), D(3), E(2), G(1), H(1), I(3), K(1)
根河 Genhe -5.22 464 839 A(3), C(3), D(3), E(4), I(2), K(3)
呼源 Huyuan -4.48 501 665 A(3), B(1), D(3), E(1), G(2), I(3), K(2)
呼中 Huzhong -4.06 479 534 A(3), D(3), G(3), I(3), J(1)
金河 Jinhe -5.41 477 862 A(3), C(2), D(3), G(1)
林海 Linhai -5.51 520 571 A(3), C(3), D(3), F(2), G(3), I(1), K(3)
满归 Mangui -4.78 464 620 A(3), D(3), E(2), G(3), J(3), K(3)
南瓮河 Nanwenghe -2.71 498 485 A(3), B(3), C(3), D(3), E(3), F(3), G(3)
盘古 Pangu -3.62 477 406 A(3), D(3), E(3), G(1), H(2), I(3), J(3)
十二站 Shi’erzhan -2.40 495 394 A(3), C(2), D(3), E(3), G(2), J(1)
塔河 Tahe -3.56 487 440 A(3), C(2), D(3), E(3), F(1)
图强 Tuqiang -4.29 452 477 A(3), D(3), E(1), F(2), G(1), I(3), J(2), K(2)
新林 Xinlin -3.63 498 526 A(3), D(3), E(3), G(3), I(3), J(3), K(2)
伊图里河 Ih Tol Gol -5.13 475 822 A(3), C(2), D(3), G(2)
壮林 Zhuanglin -4.48 459 528 A(3), D(3), G(3), I(3), J(2), K(1)

Table 2

The correlations among leaf C, N, and P variables in peatland plants of Da Hinggan Ling"

C (%) N (%) P (%) C:N C:P
C (%) 1
N (%) 0.294** 1
P (%) 0.069 0.287** 1
C:N -0.002 -0.886** -0.258** 1
C:P 0.005 -0.292** -0.854** 0.318** 1
N:P -0.007 0.238** -0.750** -0.242** 0.812**

Fig. 2

Leaf C, N, and P concentrations (A, B, C) and their stoichiometric ratios (D, E, F) in peatland plants of the Da Hinggan Ling. The black and short horizontal lines are the average values for leaf C, N, and P variables for each species. Boxes in dark grey, grey, and light grey mark graminoids, deciduous shrub, and evergreen shrub plants, respectively. The box encompasses the 25th to 75th percentiles; lines in boxes mark the mean values, and whiskers are the standard deviation value. Different capital letters above boxes and lowercase letters below boxes mark significant differences among growth forms and species (p < 0.05). Bf, Betula fruticosa; Cc, Chamaedaphne calyculata; Cg, Carex globularis; Da, Deyeuxia angustifolia; Ev, Eriophorum vaginatum; Lp, Ledum palustre; Rc, Rhododendron capitatum; Sm, Salix myrtilloides; Sr, Salix rosmarinifolia; Vu, Vaccinium uliginosum; Vv, Vaccinium vitis-idaea."

Table 3

Summary of General Linear Model (GLM) statistics, showing the effects of sampling site (D) and plant species (S) on leaf C, N, and P concentrations and stoichiometry in peatland plants of Da Hinggan Ling"

变异
来源 Source
C N P C:N C:P N:P
MS SS (%) F MS SS (%) F MS SS (%) F MS SS (%) F MS SS (%) F MS SS (%) F
D 84.3 38.7 24.016* 1.7 40.8 29.415* 0.04 25.8 13.031* 378.2 38.3 23.732* 74 004.0 23.9 9.548* 67.2 12.8 5.883*
S 17.9 14.0 5.094* 0.2 9.7 4.131* 0.01 16.9 5.022* 53.4 9.3 3.353* 29 120.8 16.0 3.757* 78.5 25.5 6.872*
D × S 5.5 20.6 1.580* 0.1 26.4 2.349* 0.01 26.2 1.699* 31.3 25.7 1.967* 8 315.6 21.0 1.073 18.4 27.5 1.614*

Fig. 3

Inter-site coefficient of variation (KCV) in leaf C, N, and P concentrations (A, B, C) and their stoichiometric ratios (D, E, F) in peatland plants of Da Hinggan Ling. Lines in black, grey, and light grey mark the mean KCV values of graminoids, deciduous shrubs and evergreen shrubs, respectively. The number below each species indicates the number of occurring locations. Bf, Betula fruticosa; Cc, Chamaedaphne calyculata; Cg, Carex globularis; Da, Deyeuxia angustifolia; Ev, Eriophorum vaginatum; Lp, Ledum palustre; Rc, Rhododendron capitatum; Sm, Salix myrtilloides; Sr, Salix rosmarinifolia; Vu, Vaccinium uliginosum; Vv, Vaccinium vitis-idaea."

Fig. 4

Inter-species coefficient of variation (ZCV) in leaf C, N, and P concentrations (A, B, C) and their stoichiometric ratios (D, E, F) in peatland plants of Da Hinggan Ling. Lines in black, grey, and light grey mark mean ZCV values for graminoids, decidous shrubs and evergreen shrubs, respectively. The numbers after site names indicate the number of species for graminoids, decidous and evergreen shrubs, respectively."

Table 4

Comparisons of leaf C, N, and P concentrations and their stoichiometry between plants of the Da Hinggan Ling peatlands and those in other studies"

研究区域
Study region
C (%) N (%) P (%) C:N C:P N:P 数据来源
Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Data source
泥炭地 Peatlands 42.2 2.9 275 1.9 0.4 276 0.18 0.07 263 23.6 6.2 275 269 110 262 11.6 4.6 263 本研究 This Study
森林 Forests 48.0 5.3 102 1.8 0.5 102 0.20 0.12 102 29.1 9.5 102 314 152 102 11.5 5.0 102 Ren et al., 2012
荒漠 Deserts 1.1 0.8 276 0.10 0.08 276 11.5 5.1 276 Zhang et al., 2014
草原 Grasslands 43.8 3.0 213 2.8 0.9 213 0.19 0.84 525 17.9 5.7 213 15.3 5.2 525 He et al., 2006, 2008
中国 China 2.0 0.8 554 0.15 0.10 745 16.3 9.3 547 Han et al., 2005
全球 Globe 46.2 7.2 76 2.0 0.9 1 251 0.18 0.11 923 23.8 17.3 62 301 237 43 13.8 9.5 894 Elser et al., 2000a; Reich & Oleksyn, 2004

Table 5

Plant mycorrhizal types, leaf shapes and plant height in the Da Hinggan Ling peatlands"

生活型
Growth form
植物种
Species
菌根类型
Mycorrhizal type
植株高度
Plant height (cm)
叶形
Leaf shape
参考文献
Reference
草本植物 Graminoids 白毛羊胡子草
Eriophorum vaginatum
无菌根 Non-mycorrhizae 40-80 线形 Linear leaf Hobbie & Hobbie, 2006; Wu & Hong, 2010
玉簪薹草 Carex globularis 无菌根 Non-mycorrhizae 30-60 线形 Linear leaf
小叶章 Deyeuxia angustifolia 丛枝菌根 Arbuscular mycorrhizae 30-100 线形 Linear leaf
落叶灌木 Deciduous shrubs 柴桦 Betula fruticosa 外生菌根 Ecto-mycorrhizae 50-150 卵形 Ovate leaf
越桔柳 Salix myrtilloides 外生菌根 Ecto-mycorrhizae 30-80 椭圆形 Oblong leaf
细叶沼柳 Salix rosmarinifolia 外生菌根 Ecto-mycorrhizae 50-100 披针形 Lanceolate leaf
笃斯越桔 Vaccinium uliginosum 杜鹃花科菌根 Ericoid mycorrhizae 50-80 倒卵形 Obovate leaf
越桔 Vaccinium vitis-idaea 杜鹃花科菌根 Ericoid mycorrhizae 10-30 倒卵形 Obovate leaf
常绿灌木 Evergreen shrubs 杜香 Ledum palustre 杜鹃花科菌根 Ericoid mycorrhizae 40-50 线形 Linear leaf
地桂 Chamaedaphne calyculata 杜鹃花科菌根 Ericoid mycorrhizae 30-150 椭圆形 Oblong leaf
头花杜鹃 Rhododendron capitatum 杜鹃花科菌根 Ericoid mycorrhizae 40-100 椭圆形 Oblong leaf

Fig. 5

Leaf N and P concentrations and N:P threshold in peatland plants of Da Hinggan Ling. Dash lines represent the N:P ratios of 10, 14, 16 and 20, respectively. Star-shaped symbol represents the global mean leaf N concentration (1.9%) and P concentration (0.12%) (Yan et al., 2017). Bf, Betula fruticosa; Cc, Chamaedaphne calyculata; Cg, Carex globularis; Da, Deyeuxia angustifolia; Ev, Eriophorum vaginatum; Lp, Ledum palustre; Rc, Rhododendron capitatum; Sm, Salix myrtilloides; Sr, Salix rosmarinifolia; Vu, Vaccinium uliginosum; Vv, Vaccinium vitis-idaea."

[1] Aerts R ( 1995). The advantages of being evergreen. Trends in Ecology & Evolution, 10, 402-407.
doi: 10.1016/S0169-5347(00)89156-9 pmid: 21237084
[2] Aerts R, Chapin III FS ( 2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67.
doi: 10.1016/S0065-2504(08)60016-1
[3] Aerts R, Wallen B, Malmer N ( 1992). Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. Journal of Ecology, 80, 131-140.
[4] ?gren GI ( 2004). The C:N:P stoichiometry of autotrophs—?Theory and observations. Ecology Letters, 7, 185-191.
doi: 10.1111/ele.2004.7.issue-3
[5] ?gren GI, Wetterstedt J?M, Billberger MFK ( 2012). Nutrient limitation on terrestrial plant growth—Modeling the interaction between nitrogen and phosphorus. New Phytologist, 194, 953-960.
doi: 10.1111/j.1469-8137.2012.04116.x pmid: 22458659
[6] Bai KD, Jiang DB, Wan XC ( 2013). Photosynthesis-nitrogen relationship in evergreen and deciduous tree species at different altitudes on Mao’er Mountain, Guangxi. Acta Ecologica Sinica, 33, 4930-4938.
doi: 10.5846/stxb201205200750
[ 白坤栋, 蒋得斌, 万贤崇 ( 2013). 广西猫儿山不同海拔常绿树种和落叶树种光合速率与氮的关系. 生态学报, 33, 4930-4938.]
doi: 10.5846/stxb201205200750
[7] Bradshaw C, Kautsky U, Kumblad L ( 2012). Ecological stoichiometry and multi-element transfer in a coastal ecosystem. Ecosystems, 15, 591-603.
doi: 10.1007/s10021-012-9531-5
[8] Bragazza L, Parisod J, Buttler A, Bardgett RD ( 2013). Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nature Climate Change, 3, 273-277.
doi: 10.1038/NCLIMATE1781
[9] Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hájek M, Grosvernier P, Hájek T, Hajkova P, Hansen I, Iacumin P, Gerdol R ( 2004). Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 163, 609-616.
doi: 10.2307/1514462
[10] Chapin III FS, Shaver GR, Kedrowski RA ( 1986). Environmental controls over carbon, nitrogen and phosphorus fractions in Eriophorum vaginatum in Alaskan tussock tundra. Journal of Ecology, 74, 167-195.
doi: 10.2307/2260357
[11] Chen HM, Song CC, Shi FX, Zhang XH, Mao R ( 2017). Effects of alder expansion on plant community composition and biomass in the peatland in the Da’xingan Mountain. Chinese Journal of Applied & Environmental Biology, 23, 778-784.
[ 陈慧敏, 宋长春, 石福习, 张新厚, 毛瑢 ( 2017). 辽东桤木扩张对大兴安岭泥炭地植物群落组成和生物量的影响. 应用与环境生物学报, 23, 778-784.]
[12] Du XM, Zhou ZQ, Zhang Y, Zhou L ( 2002). Discussion about rules of vegetation’s succession in north of Great Xingan mountains. Territory & Natural Resources Study, ( 2), 67-68.
doi: 10.3969/j.issn.1003-7853.2002.02.033
[ 杜晓明, 周志强, 张悦, 周琳 ( 2002). 大兴安岭北部植被演替规律探讨. 国土与自然资源研究, ( 2), 67-68.]
doi: 10.3969/j.issn.1003-7853.2002.02.033
[13] Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH ( 1996). Organism size, life history, and N:P stoichiometry. BioScience, 46, 674-684.
doi: 10.2307/1312897
[14] Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW ( 2000a ). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
doi: 10.1038/35046058
[15] Elser JJ, Stemer RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ ( 2000b ). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550.
doi: 10.1111/j.1461-0248.2000.00185.x
[16] Finger RA, Turetsky MR, Kielland K, Ruess RW, Mack MC, Euskirchen ES ( 2016). Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. Journal of Ecology, 104, 1542-1554.
doi: 10.1111/1365-2745.12639
[17] Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH ( 2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia, 172, 889-902.
doi: 10.1007/s00442-012-2522-6
[18] Guo DX, Wang SL, Lu GW, Dai JB, Li EY ( 1981). Division of permafrost regions in Daxiao Hinggan Ling northeast China. Journal of Glaciology & Geocryology, 3(3), 1-9.
[ 郭东信, 王绍令, 鲁国威, 戴竞波, 李恩英 ( 1981). 东北大小兴安岭多年冻土分区. 冰川冻土, 3(3), 1-9.]
[19] Güsewell S ( 2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266.
doi: 10.1111/j.1469-8137.2004.01192.x
[20] Güsewell S, Koerselman W ( 2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspective in Ecology, Evolution & Systematics, 5, 37-61.
doi: 10.1078/1433-8319-0000022
[21] Hall EK, Maixner F, Franklin O, Daims H, Richter A, Battin T ( 2010). Linking microbial and ecosystem ecology using ecological stoichiometry: A synthesis of conceptual and empirical approaches. Ecosystems, 14, 261-273.
[22] Han WX, Fang JY, Guo DL, Zhang Y ( 2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
doi: 10.1111/j.1469-8137.2005.01530.x pmid: 16219077
[23] Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH ( 2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
doi: 10.1111/j.1461-0248.2011.01641.x pmid: 21692962
[24] Han WX, Wu Y, Tang LY, Chen YH, Li LP, He JS, Fang JY ( 2009). Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery. Acta Scientiarum Naturalium Universitatis Pekinensis (Natural Science Edition), 45, 855-860.
[ 韩文轩, 吴漪, 汤璐瑛, 陈雅涵, 李利平, 贺金生, 方精云 ( 2009). 北京及周边地区植物叶的碳氮磷元素计量特征. 北京大学学报(自然科学版), 45, 855-860.]
[25] He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z ( 2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
doi: 10.1007/s00442-006-0425-0 pmid: 16639565
[26] He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY ( 2008). Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland Biomes. Oecologia, 155, 301-310.
doi: 10.1007/s00442-007-0912-y
[27] Hessen DO, ?gren GI, Anderson TR, Elser JJ, de Ruiter PC ( 2004). Carbon sequestration in ecosystems: The role of stoichiometry. Ecology, 85, 1179-1192.
doi: 10.1890/02-0251
[28] Hobbie JE, Hobbie EA ( 2006). δ 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra. Ecology, 87, 816-822.
doi: 10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2 pmid: 16676524
[29] Hu CC, Liu XY, Lei YB, Tan YH, Zhang P, Dong YP, Liu CQ ( 2016). Foliar nitrogen and phosphorus stoichiometry of alien invasive plants and co-occurring natives in Xishuangbanna. Chinese Journal of Plant Ecology, 40, 1145-1153.
doi: 10.17521/cjpe.2016.0052
[ 胡朝臣, 刘学炎, 类延宝, 谭运洪, 张鹏, 董玉平, 刘丛强 ( 2016). 西双版纳外来入侵植物及其共存种叶片氮、磷化学计量特征. 植物生态学报, 40, 1145-1153.]
doi: 10.17521/cjpe.2016.0052
[30] Hu CC, Lei YB, Tan YH, Sun XC, Xu H, Liu CQ, Liu XY ( 2018). Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China. Journal of Ecology , 107. DOI: 10.1111/1365-2745. 13008.
[31] Huang JJ, Wang XH ( 2003). Leaf nutrient and structural characteristics of 32 evergreen broad-leaved species. Journal of East China Normal University (Natural Science Edition), ( 1), 92-97.
doi: 10.3969/j.issn.1000-5641.2003.01.016
[ 黄建军, 王希华 ( 2003). 浙江天童32种常绿阔叶树叶片的营养及结构特征. 华东师范大学学报(自然科学版), ( 1), 92-97.]
doi: 10.3969/j.issn.1000-5641.2003.01.016
[32] Jonasson S ( 1989). Implications of leaf longevity, leaf nutrient re-absorption and translocation for the resource economy of five evergreen plant species. Oikos, 56, 121-131.
doi: 10.2307/3566095
[33] Kerkhoff AJ, Enquist BJ ( 2006). Ecosystem allometry: The scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 9, 419-427.
doi: 10.1111/j.1461-0248.2006.00888.x pmid: 16623727
[34] Kudo G ( 1995). Leaf traits and shoot performance of an evergreen shrub,Ledum palustre spp. decumbens, in accordance with latitudinal change. Canadian Journal of Botany, 73, 1451-1456.
doi: 10.1139/b95-157
[35] Koerselman W, Meuleman AF ( 1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
doi: 10.2307/2404783
[36] Liu XY, Koba K, Koyama LA, Hobbie SE, Weiss MS, Inagaki Y, Shaver GR, Giblin AE, Hobara S, Nadelhoffer KJ, Sommerkorn M, Rastetter EB, Kling GW, Laundre JA, Yano Y, Makabe A, Yano M, Liu CQ ( 2018). Nitrate is an important nitrogen source for arctic tundra plants. Proceedings of the National Academy of Sciences of the United States of America, 115, 3398-3403.
doi: 10.1073/pnas.1715382115
[37] Mao R, Zhang XH, Song CC, Wang XW, Finnegan PM ( 2018). Plant functional group controls litter decomposition rate and its temperature sensitivity: An incubation experiment on litters from a boreal peatland in northeast China. Science of the Total Environment, 626, 678-683.
doi: 10.1016/j.scitotenv.2018.01.162
[38] Michelsen A, Quarmby C, Sleep D, Jonasson S ( 1998). Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots . Oecologia, 115, 406-418.
doi: 10.1007/s004420050535
[39] Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE ( 2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19368-19373.
doi: 10.1073/pnas.1006463107
[40] Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L ( 2011). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
[41] Ren SJ, Yu GR, Jiang CM, Fang HJ, Sun XM ( 2012). Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the north-south transect of east China. Chinese Journal of Applied Ecology, 23, 581-586.
doi: 10.3724/SP.J.1258.2011.00119
[ 任书杰, 于贵瑞, 姜春明, 方华军, 孙晓敏 ( 2012). 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征. 应用生态学报, 23, 581-586.]
doi: 10.3724/SP.J.1258.2011.00119
[42] Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD ( 1999). Generality of leaf trait relationships: A test across six biomes. Ecology, 80, 1955-1969.
doi: 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2
[43] Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
doi: 10.1073/pnas.0403588101 pmid: 15213326
[44] Shaver GR, Bret-Harte MS, Jones MH, Johnstone J, Gough L, Laundre J, Chapin III FS ( 2001). Species composition interacts with fertilizer to control longterm change in tundra productivity. Ecology, 82, 3163-3181.
doi: 10.2307/2679842
[45] Small E ( 1972). Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Canadian Journal of Botany, 50, 2227-2233.
doi: 10.1139/b72-289
[46] Song CC, Wang XW, Miao YP, Wang JY, Mao R, Song YY ( 2014). Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing’an Mountains, China. Science of the Total Environment, 487, 604-610.
doi: 10.1016/j.scitotenv.2013.09.083 pmid: 24135025
[47] Sterner RW, Elser JJ ( 2002).Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.
[48] Tang ZY, Xu WT, Zhou GY, Bai YF, Li JX, Tang XL, Chen DM, Liu Q, Ma WH, Xiong GM, He HL, He NP, Guo YP, Guo Q, Zhu JL, Han WX, Hu HF, Fang JY, Xie ZQ ( 2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115, 4033-4038.
doi: 10.1073/pnas.1700295114 pmid: 29666316
[49] Thompson K, Parkinson JA, Band SR, Spencer RE ( 1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 136, 679-689.
doi: 10.1046/j.1469-8137.1997.00787.x
[50] Tian D, Yan ZB, Niklas KJ, Han WX, Kattge J, Reich PB, Luo YK, Chen YH, Tang ZY, Hu HF, Wright IJ, Schmid B, Fang JY ( 2017). Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 5, 728-739.
[51] Vitousek P ( 1982). Nutrient cycling and nutrient use efficiency. The American Naturalist, 119, 553-572.
doi: 10.1086/283931
[52] Wang M, Moore TR, Talbot J, Riley JL ( 2015). The stoichiometry of carbon and nutrients in peat formation. Global Biogeochemical Cycles, 29, 113-121.
doi: 10.1002/2014GB005000
[53] Wieder WR, Cleveland CC, Smith WK, Todd-Brown K ( 2015). Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8, 441-447.
doi: 10.1038/NGEO2413
[54] Wu ZY, Hong DY ( 2010). Flora of China. Science Press, Beijing.
[ 吴征镒, 洪德元 ( 2010). 中国植物志. 科学出版社, 北京.]
[55] Xu WD ( 1986). The relation between the zonal distribution of types vegetation and the climate in northeast China. Acta Phytoecologica et Geobotanica Sinica, 10, 254-263.
[ 徐文铎 ( 1986). 中国东北主要植被类型的分布与气候的关系. 植物生态学与地植物学学报, 10, 254-263.]
[56] Xu XL, Wanek W, Zhou CP, Richter A, Song MH, Cao GM, Ouyang H, Kuzyakov Y ( 2014). Nutrient limitation of alpine plants: Implications from leaf N:P stoichiometry and leaf δ 15N. Journal of Plant Nutrition and Soil Science, 177, 378-387.
doi: 10.1002/jpln.201200061
[57] Yan ZB, Tian D, Han WX, Tang ZY, Fang JY ( 2017). An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Annals of Botany, 120, 1-6.
doi: 10.1093/aob/mcx055 pmid: 28873948
[58] Yang X, Chi XL, Ji CJ, Liu HY, Ma WH, Mohhammat A, Shi ZY, Wang XP, Yu SL, Yue M, Tang ZY ( 2015). Variations of leaf N, P concentrations in shrubland biomes across northern China: Phylogeny, climate and soil. Biogeosciences, 12, 18973-18998.
doi: 10.5194/bg-13-4429-2016
[59] Yu LM, Wang CK, Wang XC ( 2011). Allocation of nonstructural carbohydrates for three temperate tree species in northeast China. Chinese Journal of Plant Ecology, 35, 1245-1255.
doi: 10.3724/SP.J.1258.2011.01245
[ 于丽敏, 王传宽, 王兴昌 ( 2011). 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 35, 1245-1255.]
doi: 10.3724/SP.J.1258.2011.01245
[60] Zeng J, Bu ZJ, Wang M, Ma JZ, Zhao HY, Li HK, Wang SZ ( 2013). Effects of nitrogen deposition on peatland: A review. Chinese Journal of Ecology, 32, 473-481.
doi: 10.3969/j.issn.1674-7844.2012.02.020
[ 曾竞, 卜兆君, 王猛, 马进泽, 赵红艳, 李鸿凯, 王升忠 ( 2013). 氮沉降对泥炭地影响的研究进展. 生态学杂志, 32, 473-481.]
doi: 10.3969/j.issn.1674-7844.2012.02.020
[61] Zhang HY, Wu HG, Yu Q, Wang ZW, Wei CZ, Long M, Kattge J, Smith M, Han XG ( 2013). Sampling date, leaf age and root size: Implications for the study of plant C:N:P stoichiometry. PLOS ONE, 8, e60360. DOI: 10.1371/ journal.pone.0060360?.
doi: 10.1371/journal.pone.0060360 pmid: 3614965
[62] Zhang LX, Bai YF, Han XG ( 2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica, 46, 259-270.
[63] Zhang JH, Zhao N, Liu CC, Yang H, Li ML, Yu GR, Wilcox K, Yu Q, He NP ( 2018). C:N:P stoichiometry in China’s forests: From organs to ecosystems. Functional Ecology, 32, 50-60.
doi: 10.1111/1365-2435.12979
[64] Zhang K, Chen YL, Gao YH, Hui R, He MZ ( 2014). Stoichiometry characteristics of leaf nitrogen and phosphorus of different plant functional groups in Alashan desert region. Journal of Desert Research, 34, 1261-1267.
doi: 10.7522/j.issn.1000-694X.2013.00431
[ 张珂, 陈永乐, 高艳红, 回嵘, 何明珠 ( 2014). 阿拉善荒漠典型植物功能群氮、磷化学计量特征. 中国沙漠, 34, 1261-1267.]
doi: 10.7522/j.issn.1000-694X.2013.00431
[65] Zhang SB, Zhang JK, Slik JWF, Gao KF ( 2011). Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Ecology & Biogeography, 21, 809-818.
doi: 10.1111/j.1466-8238.2011.00729.x
[66] Zhang WY, Fan JW, Zhong HP, Hu ZM, Song LL, Wang N ( 2010). The nitrogen: phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China. Acta Agrestia Sinica, 18, 503-509.
doi: 10.11733/j.issn.1007-0435.2010.04.005
[ 张文彦, 樊江文, 钟华平, 胡中民, 宋璐璐, 王宁 ( 2010). 中国典型草原优势植物功能群氮磷化学计量学特征研究. 草业学报, 18, 503-509.]
doi: 10.11733/j.issn.1007-0435.2010.04.005
[67] Zhao, XF, Yang JS, Yao RJ ( 2010). Characteristics of soil salinization in mudflat of north Jiangsu province based on canonical correspondence analysis. Acta Pedologica Sinica, 47, 422-428.
doi: 10.11766/trxb200812250306
[ 赵秀芳, 杨劲松, 姚荣江 ( 2010). 基于典范对应分析的苏北滩涂土壤春季盐渍化特征研究. 土壤学报, 47, 422-428.]
doi: 10.11766/trxb200812250306
[68] Zhou YL ( 1997). Vegetation Geography of Northeastern China. Science Press, Beijing.
[ 周以良 ( 1997). 中国东北植被地理. 科学出版社, 北京.]
[1] FENG Chan-Ying, ZHENG Cheng-Yang, TIAN Di. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(3): 185-196.
[2] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43(3): 258-272.
[3] TANG Dan-Dan, WU Yi, LIU Wen-Yao, HU Tao, HUANG Jun-Biao, ZHANG Ting-Ting. Ecological stoichiometry of two common hemiparasite plants and their relationship with host trees in Ailao Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2019, 43(3): 245-257.
[4] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[5] WU Xiu-Zhi, YAN Xin, WANG Bo, LIU Ren-Tao, AN Hui. Effects of desertification on the C:N:P stoichiometry of soil, microbes, and extracellular enzymes in a desert grassland [J]. Chin J Plant Ecol, 2018, 42(10): 1022-1032.
[6] Hong-Yan ZHOU, Qin WU, Ming-Yue CHEN, Wei KUANG, Ling-Ling CHANG, Qi-Wu HU. C, N and P stoichiometry in different organs of Vitex rotundifolia in a Poyang Lake desertification hill [J]. Chin J Plan Ecolo, 2017, 41(4): 461-470.
[7] Ju-Ying HUANG, Hai-Long YU, Li-Li WANG, Kai-Bo MA, Yang-Mei KANG, Ya-Xian DU. Effects of different nitrogen:phosphorus levels on the growth and ecological stoichiometry of Glycyrrhiza uralensis [J]. Chin J Plan Ecolo, 2017, 41(3): 325-336.
[8] Xue-Mei WANG, Bang-Guo YAN, Guang ZHAO, Liang-Tao SHI, Gang-Cai LIU, Hai-Dong FANG. Effects of microorganism on carbon, nitrogen and phosphorus of Dodonaea viscosa and the soils from different elevations in Yuanmou, Yunnan, China [J]. Chin J Plan Ecolo, 2017, 41(3): 311-324.
[9] Yong-Xing CHANG, Zhen-Ju CHEN, Xian-Liang ZHANG, Xue-Ping BAI, Xue-Peng ZHAO, Jun-Xia LI, Xu LU. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming [J]. Chin J Plan Ecolo, 2017, 41(3): 279-289.
[10] YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China [J]. Chin J Plan Ecolo, 2017, 41(12): 1228-1238.
[11] Zhi-Ying NING, Yu-Lin LI, Hong-Ling YANG, Dian-Chao SUN, Jing-Dong BI. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land [J]. Chin J Plan Ecolo, 2017, 41(10): 1069-1080.
[12] Si-Meng SONG, Dan-Ju ZHANG, Jian ZHANG, Wan-Qin YANG, Yan ZHANG, Yang ZHOU, Xun LI. Edge effects of forest gap in Pinus massoniana plantations on the ecological stoichiometry of Cinnamomum longepaniculatum [J]. Chin J Plan Ecolo, 2017, 41(10): 1081-1090.
[13] Kai-Wen SU, Lu-Hong CHEN, Wei ZHENG, Yao PAN, Hua-Jun YIN, He-De GONG. Carbon, nitrogen and phosphorus stoichiometry of Myrica nana in Yunnan, China [J]. Chin J Plan Ecolo, 2017, 41(1): 136-146.
[14] He-Liang HE, Xiao-Cheng YANG, Dan-Dan LI, Chun-Ying YIN, Yun-Xiang LI, Guo-Ying ZHOU, Lin ZHANG, Qing LIU. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2017, 41(1): 126-135.
[15] Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Yang WANG, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China [J]. Chin J Plan Ecolo, 2017, 41(1): 31-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Ming-Li Huang, Xi-Ping Deng, Yu-Zong Zhao, Sheng-Lu Zhou, Shinobu Inanaga, Satoshi Yamada and Kiyoshi Tanaka. Water and Nutrient Use Efficiency in Diploid, Tetraploid and Hexaploid Wheats[J]. J Integr Plant Biol, 2007, 49(5): 706 -715 .
[2] Jie-Lin GE, Gao-Ming XIONG, Jia-Xiang LI, Wen-Ting XU, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Litter standing crop of shrubland ecosystems in southern China[J]. Chin J Plan Ecolo, 2017, 41(1): 5 -13 .
[3] Qi-Bin Zhang and Xuemei Shao. Tree Rings and Ecology: The 7th International Conference on Dendrochronology[J]. J Integr Plant Biol, 2007, 49(2): 129 -130 .
[4] Ruby Ghosh, Subir Bera, Ashalata D’Rozario, Manju Banerjee and Supriyo Chakraborty. Plant Remains from an Archaeological Site as Indicators of Vegetation and Agricultural Practice Between (3 320 ± 400) and (2 080 ± 80) yr BP in Gangetic West Bengal, India[J]. J Integr Plant Biol, 2006, 48(6): .
[5] Enzai Du, Zhang Zhou, Peng Li, Lai Jiang, Xueyang Hu, Jingyun Fang. Winter soil respiration during soil-freezing process in a boreal forest in Northeast China[J]. J Plant Ecol, 2013, 6(5): 349 -357 .
[6] Yili Guo,Dongxing Li,Bin Wang,Yunlin He,Wusheng Xiang,Yuliang Jiang,Xiankun Li. Composition and spatio-temporal dynamics of litter fall in a northern tropical karst seasonal rainforest in Nonggang, Guangxi, southern China[J]. Biodiv Sci, 2017, 25(3): 265 -274 .
[7] LONG Chun - Un LI Heng ZHOU Yi - Lan DAO Zhi - Ling Taku ABE. Ethnobotanical Studies in Gaoligong Mountains: II. The Dulong Ethnic Group[J]. Plant Diversity, 1999, 21(11): 1 -3 .
[8] Qin Wei-cheng Li Jian-zhong. The Application Effects of the Cold-resister CR-4 in Our Area's Rice Seedling Culture[J]. Chin Bull Bot, 1994, 11(特辑): 102 -104 .
[9] Wei Xiong, Tiantian Ye, Xuan Yao, Xiong Liu, Sheng Ma, Xi Chen, Ming-Luan Chen, Yu-Qi Feng, and Yan Wu. The dioxygenase GIM2 functions in seed germination by altering gibberellin production in Arabidopsis[J]. J Integr Plant Biol, 2018, 60(4): 276 -291 .
[10] Liu Chengyun. STUDlES OF POLLEN MORPHOLOGY IN THE BRETSCHNEIDERACEAE AND THE RELATlVE FAMILIES[J]. Plant Diversity, 1986, 8(04): 1 -3 .