Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (4): 352-364.doi: 10.17521/cjpe.2018.0326

• Research Articles • Previous Articles     Next Articles

Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China

YANG Wen-Gao1,ZI Hong-Biao1,CHEN Ke-Yu1,ADE Lu-Ji1,HU Lei1,WANG Xin1,WANG Gen-Xu2,WANG Chang-Ting1,*()   

  1. 1 Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu 610041, China
    2 Key Laboratory of Mountain Surface Processes and Ecological Regulation of Chinese Academy of Sciences, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
  • Received:2018-12-31 Revised:2019-04-02 Online:2019-08-29 Published:2019-04-20
  • Contact: WANG Chang-Ting E-mail:wangct6@163.com
  • Supported by:
    Supported by the Natural National Science Foundation of China(31870407);Supported by the Natural National Science Foundation of China(31370542);the Key R&D Projects in Sichuan Province(2018SZ0333);the Fundamental Research Funds for the Central Universities(2018NZD13)

Abstract:

AimsAs a dominant understory layer, shrubs is important in the material turnover and nutrient circulation of forested ecosystems. It is essential to explore stoichiometric characteristics of carbon (C), nitrogen (N) and phosphorus (P) of the shrubs and their driving factors, including microenvironments and soil nutrients.
MethodsThe leaves, branches, roots of the shrubs and the soils they rooted were sampled from seven dominant forest types of Qinghai, China, and the tissue contents of C, N and P were examined. One-way ANOVA was used to explored the difference of the shrubs and the soils among the forest types using, respectively. Redundancy analysis (RDA) was used to analyze the effects of soils and environmental factors on the stoichiometric characteristics of C, N and P of shrubs.
Important findings Our results showed that there were no significant differences in the P content and C:P of the leaves, branches and roots among all the seven dominant forest types, while the N content and N:P of shrubs in the Populus davidiana, Sabina chinensis and Picea asperata forests were significantly higher than those in Betula platyphylla, Populus tomentosa, Betula albosinensis and Picea wilsonii forests, while the C:N ratios were the other way around. The shrubs in Sabina chinensis forest were limited by the soil P content, but that in the other six forest types was limited by the soil N content. The contents of soil organic C (SOC) and soil total N (TN) were significantly different among the seven forest types, while the soil total P (TP) was not. Correlation analysis showed that the N content, the C:N and N:P of understory shrub tissues (leaves, branches and roots) were significantly correlated with soil TN content, soil C:N and N:P, while tissue P contents and the C:P ratios were correlated with soil TP contents. Redundancy analysis (RDA) showed that the stoichiometric characteristics of C, N and P the understory shrub layer were synthetically affected by soils and environmental factors, of which the soil C:N, altitude, mean annual temperature and mean annual precipitation were the main influence factors.

Key words: ecological stoichiometry, forest ecosystem, forest type, shrub layer, environmental factor, Qinghai

Fig. 1

Map of the sampling forests in Qinghai."

Fig. 2

The C, N and P contents of shrubs of the different forest types in Qinghai (mean ± SE). Different uppercase letters indicate significant differences of the C, N and P contents in the same organs of shrubs under different forest types (p < 0.05), and different lowercase letters indicate significant differences of the C, N and P contents in different organs of shrubs under the same forest type (p < 0.05)."

Fig. 3

The C:N, C:P and N:P ratios in shrubs of different forest types in Qinghai (mean ± SE). Different uppercase letters indicate significant differences of the C:N、C:P、N:P in the same organs of shrubs under different forest types (p < 0.05), and different lowercase letters indicate significant differences of the C:N、C:P、N:P in different organs of shrubs under the same forest type (p < 0.05)."

Table 1

Soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP) content and stoichiometry characteristics in different forest types in Qinghai (mean ± SE)"

林分类型
Forest type
SOC含量
SOC content (mg·g-1)
TN含量
TN content (mg·g-1)
TP含量
TP content (mg·g-1)
C:N C:P N:P
白桦林 Betula platyphylla forest 91.43 ± 33.66bc 3.85 ± 1.43ab 0.84 ± 0.12a 24.39 ± 4.24ab 109.57 ± 39.04b 4.58 ± 1.56bc
毛白杨林 Populus tomentosa forest 72.80 ± 14.33bc 2.95 ± 0.52b 0.75 ± 0.08a 24.77 ± 2.83ab 99.34 ± 25.78b 3.99 ± 0.82c
红桦林 Betula albosinensis forest 133.81 ± 12.03a 4.90 ± 0.77ab 0.83 ± 0.02a 27.53±2.20a 161.04 ± 12.45a 5.89 ± 0.82abc
青扦林 Picea wilsonii forest 99.11 ± 24.60ab 3.49 ± 0.67ab 0.85 ± 0.18a 28.39 ± 4.14a 118.21 ± 25.62ab 4.23 ± 0.95bc
山杨林 Populus davidiana forest 59.21 ± 22.57c 3.60 ± 0.94ab 0.71 ± 0.16a 16.6 ± 5.09c 82.02 ± 18.60b 5.29 ± 1.94abc
圆柏林 Sabina chinensis forest 88.97 ± 49.70bc 5.86 ± 2.92a 0.72 ± 0.81a 15.70 ± 5.63c 120.54 ± 59.85ab 7.67 ± 3.53a
云杉林 Picea asperata forest 100.20 ± 37.05ab 5.85 ± 2.80a 0.87 ± 0.18a 19.50 ± 7.88bc 121.75 ± 44.38ab 6.97 ± 3.06ab
平均值 Average 95.11 ± 37.63 5.17 ± 2.60 0.82 ± 0.16 20.55 ± 7.35 117.72 ± 44.32 6.35 ± 2.98

Table 2

Correlation among the shrubs and soil C, N and P stoichiometric characteristics in different forest types in Qinghai"

器官 Organ 项目 Item 土壤 Soil
SOC TN TP C:N C:P N:P
叶 Leaf C 0.159* 0.166* 0.160* -0.078 0.100 0.106
N 0.063 0.614** 0.224** -0.759** -0.028 0.561**
P 0.005 0.214** 0.427** -0.261** -0.185* 0.022
C:N -0.054 -0.524** -0.134 0.662** 0.001 -0.514**
C:P -0.023 -0.116 -0.354** 0.106 0.139 0.048
N:P 0.067 0.496** -0.100 -0.617** 0.122 0.596**
枝干 Branch C 0.048 0.012 0.032 -0.019 0.063 0.011
N -0.083 0.457** 0.087 -0.742** -0.137 0.444**
P -0.162* -0.005 0.230** -0.175* -0.277** -0.120
C:N 0.026 -0.514** -0.068 0.757** 0.072 -0.516**
C:P 0.122 0.012 -0.190* 0.105 0.227** 0.110
N:P 0.018 0.328** -0.113 -0.453** 0.063 0.397**
根 Root C 0.239** 0.120 -0.084 0.142 0.301** 0.175*
N -0.084 0.340** -0.076 -0.575** -0.052 0.413**
P -0.132 -0.024 0.188* -0.107 -0.209** -0.106
C:N 0.058 -0.349** 0.008 0.573** 0.053 -0.396**
C:P 0.135 0.116 -0.176* -0.016 0.202** 0.189*
N:P -0.002 0.286** -0.207** -0.422** 0.077 0.397**

Fig. 4

Two-dimensional sequence diagram of redundancy analysis between the C, N and P contents and their ratios in leaves (A), branches (B) and roots (C) of shrubs with environmental factors in different forest types in Qinghai. MAP, mean annual precipitation; MAT, mean annual air temperature; SC, soil carbon content; SN, soil nitrogen content; SP, soil phosphorus content; SCN, soil C:N; SCP, soil C:P; SNP, soil N:P; LC, leaf carbon content; LN, leaf nitrogen content; LP, leaf phosphorus content; BC, branch carbon content; BN, branch nitrogen content; BP, branch phosphorus content; RC, root carbon content; RN, root nitrogen content; RP, root phosphorus content."

Table 3

Explained variance of environmental factors and significant test of shrubs in different forest types in Qinghai"

器官
Organ
环境因子
Environmental factors
环境因子解释量(%)
Environmental factors explained variance
p F
叶片 Leaf SCN 44.2 0.002 132.5
Altitude 8.0 0.002 32.68
MAP 7.2 0.002 24.68
MAT 2.5 0.002 10.94
SNP 1.5 0.006 6.62
SN 1.0 0.016 4.45
SC 0.9 0.014 3.96
SCP 0.7 0.052 3.22
SP 0.5 0.128 2.29
Slope 0.3 0.302 1.273
Canopy 0.0 0.876 0.16
枝干 Branch SCN 38.1 0.002 99.01
Altitude 6.1 0.002 17.47
MAP 3.9 0.002 12.09
MAT 2.1 0.002 6.68
SC 1.5 0.006 4.85
SNP 1.2 0.018 4.03
Canopy 0.7 0.104 2.25
Slope 0.6 0.124 2.04
SCP 0.4 0.288 1.19
SP 0.3 0.434 0.84
SN 0.1 0.638 0.37
根 Root SCN 19.2 0.002 39.26
MAT 5.2 0.002 12.31
Altitude 4.2 0.002 8.98
MAP 3.2 0.002 7.21
SCP 3.1 0.002 7.16
Canopy 1.3 0.046 3.14
Slope 1.2 0.034 3.14
SP 0.6 0.252 1.41
SN 0.3 0.446 0.88
SC 0.3 0.400 0.85
SNP 0.2 0.538 0.63
[1] Bi JH, Su BL, Yu DP, Wu J, Cao LL, Dai LM, Zhou L ( 2017). Ecological stoichiometry of different forest types in mountainous region of eastern Liaoning Province. Chinese Journal of Ecology, 36, 117-123.
[ 毕建华, 苏宝玲, 于大炮, 吴健, 曹琳琳, 代力民, 周莉 ( 2017). 辽东山区不同森林类型生态化学计量特征. 生态学杂志, 36, 117-123.]
[2] Chen H, Zhu Q, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH ( 2013a). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19, 2940-2955.
[3] Chen XP, Guo BQ, Zhong QL, Wang MT, Li M, Yang FC, Cheng DL ( 2018). Response of fine root carbon, nitrogen, and phosphorus stoichiometry to soil nutrients in Pinus taiwanensis along an elevation gradient in the Wuyi Mountains. Acta Ecologica Sinica, 38, 234-281.
[ 陈晓萍, 郭炳桥, 钟全林, 王满堂, 李曼, 杨福春, 程栋梁 ( 2018). 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应. 生态学报, 38, 234-281.]
[4] Chen YH, Han WX, Tang LY, Tang ZY, Fang JY ( 2013b). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 36, 178-184.
[5] Cleveland CC, Liptzin D ( 2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biochemistry, 85, 235-252.
[6] Compilation Group of Technical Specifications for Ecosystem Carbon Sequestration Project ( 2015). Technical Specifications for Observation and Investigation of Ecosystem Carbon Sequestration. Science Press, Beijing.
[ 生态系统固碳项目技术规范编写组 ( 2015). 生态系统固碳观测与调查技术规范. 科学出版社, 北京.]
[7] Cui NJ, Chen XH, Liu Y, Zhang J, Yang WQ ( 2014). Shrub and herb diversity at different ages of Pinus massoniana plantation. Acta Ecologica Sinica, 34, 4313-4323.
[ 崔宁洁, 陈小红, 刘洋, 张健, 杨万勤 ( 2014). 不同林龄马尾松人工林林下灌木和草本多样性. 生态学报, 34, 4313-4323.]
[8] Dong X ( 2009). Evaluation of forest resources in Qinghai Province. Journal of Anhui Agricultural Sciences, 37, 5727-5728.
[ 董旭 ( 2009). 青海省森林资源评价. 安徽农业科学, 37, 5727-5728.]
[9] Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H ( 2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
[10] Elser JJ, Dobberfuhl DR, Mackay NA ( 1996). Organism size, life history, and N:P stoichiometry. Bioscience, 46, 674-684.
[11] Elser JJ, Fagan WF, Denno RF ( 2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
[12] Gao Q, Yang XC, Yi CY, Liu Q ( 2014). Estimation of biomass allocation and carbon density in alpine dwarf shrubs in Garzê Zangzu Autonomous Prefecture of Sichuan Province, China. Chinese Journal of Plant Ecology, 38, 355-365.
[ 高巧, 阳小成, 尹春英, 刘庆 ( 2014). 四川省甘孜藏族自治州高寒矮灌丛生物量分配及其碳密度的估算. 植物生态学报, 38, 355-365.]
[13] Guo H, Mazer SJ, Du G ( 2010). Geographic variation in primary sex allocation per flower within and among 12 species of Pedicularis(Orobanchaceae): Proportional male investment increases with elevation. American Journal of Botany, 97, 1334-1341.
[14] Güsewell S ( 2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266.
[15] Han WX, Fang JY, Guo DL, Zhang Y ( 2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
[16] He HL, Yang XC, Li DD, Yin CY, Li YX, Zhou GY, Zhang L, Liu Q ( 2017). Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the Eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 41, 126-135.
[ 贺合亮, 阳小成, 李丹丹, 尹春英, 黎云祥, 周国英, 张林, 刘庆 ( 2017). 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征. 植物生态学报, 41, 126-135.]
[17] He JS, Han XG ( 2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6.
[ 贺金生, 韩兴国 ( 2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
[18] Hu L, Wang CT, Wang GX, Liu W, Ade LJ ( 2015). Carbon sequestration of forest ecosystem vegetation in Qinghai Province. Southwest China Journal of Agricultural Sciences, 28, 826-832.
[ 胡雷, 王长庭, 王根绪, 刘伟, 阿的鲁骥 ( 2015). 青海省森林生态系统植被固碳现状研究. 西南农业学报, 28, 826-832.]
[19] Huang XB, Liu WD, Su JR, Li SF, Lang XD ( 2016). Stoichiometry of leaf C, N and P across 152 woody species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province. Chinese Journal of Ecology, 35, 567-575.
[ 黄小波, 刘万德, 苏建荣, 李帅锋, 郎学东 ( 2016). 云南普洱季风常绿阔叶林152种木本植物叶片C、N、P化学计量特征. 生态学杂志, 35, 567-575.]
[20] Iversen CM, Mccormack ML, Powell AS, Blackwood CB, Freschet GT, Jens K, Catherine R, Stover DB, Cyrille V ( 2017). A global fine-root ecology database to address below-ground challenges in plant ecology. New Phytologist, 215, 15-26.
[21] Jia JD, Wu YQ, Zhang DS, Kang MY, Shi PJ ( 2004). Environmental changes and spatial distribution of ecological conservation in Qinghai Province. Resources Science, 26, 9-16.
[ 贾敬敦, 伍永秋, 张登山, 康慕谊, 史培军 ( 2004). 青海生态环境变化与生态建设的空间布局. 资源科学, 26, 9-16.]
[22] Jiang PP, Cao Y, Chen YM ( 2016). C, N, P stoichiometric characteristics of tree, shrub, herb leaves and litter in forest community of Shaanxi Province, China. Chinese Journal of Applied Ecology, 27, 365-372.
[ 姜沛沛, 曹扬, 陈云明 ( 2016). 陕西省森林群落乔灌草叶片和凋落物C、N、P生态化学计量特征. 应用生态学报, 27, 365-372.]
[23] Kang YX, Yue JW, Lei RD, Liang ZS, Chen YJ ( 2008). Dominant species niche of Quercus liaotungensis communities in Huanglong Mt. of Shaanxi. Acta Botanica Boreali- Occidentalia Sinica, 28, 574-581.
[ 康永祥, 岳军伟, 雷瑞德, 梁宗锁, 陈永剑 ( 2008). 陕北黄龙山辽东栎群落优势种群生态位研究. 西北植物学报, 28, 574-581.]
[24] Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF ( 2005). Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 14, 585-598.
[25] Koerselman W ( 1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
[26] Li DF, Yu SL, Wang GX, Fang WW (2015). Environmental heterogeneity and mechanism of stoichiometry properties of vegetative organs in dominant shrub communities across the Loess Plateau. Chinese Journal of Plant Ecology, 39, 453-465.
[ 李单凤, 于顺利, 王国勋, 方伟伟 ( 2015). 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制. 植物生态学报, 39, 453-465.]
[27] Li DW, Wang ZQ, Tian HX, He WX, Geng ZC ( 2017). Carbon, nitrogen and phosphorus contents in soils on Taibai Mountain and their ecological stoichiometry relative to elevation. Acta Pedologica Sinica, 54, 160-170.
[ 李丹维, 王紫泉, 田海霞, 和文祥, 耿增超 ( 2017). 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征. 土壤学报, 54, 160-170.]
[28] Li HL, Gong L, Zhu ML, Liu ZY, Xie LN, Hong Y ( 2015). Stoichiometric characteristics of soil in an oasis on northern edge of Tarim Basin, China. Acta Pedologica Sinica, 52, 1345-1355.
[ 李红林, 贡璐, 朱美玲, 刘曾媛, 解丽娜, 洪毅 ( 2015). 塔里木盆地北缘绿洲土壤化学计量特征. 土壤学报, 52, 1345-1355.]
[29] Li JX, Xu WT, Xiong GM, Wang Y, Zhang CM, Lu ZJ, Li YL, Xie ZQ (2017). Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China. Chinese Journal of Plant Ecology, 41, 31-42.
[ 李家湘, 徐文婷, 熊高明, 王杨, 赵常明, 卢志军, 李跃林, 谢宗强 ( 2017). 中国南方灌丛优势木本植物叶的氮、磷含量及其影响因素. 植物生态学报, 41, 31-42.]
[30] Li QH, Jiang ZP, Zhang JB, Zhao YM (2006). The progress and perspective of research on the ecological characteristics and benefits of shrub. Journal of Arid Land Resources and Environment, 20, 159-164.
[ 李清河, 江泽平, 张景波, 赵英铭 ( 2006). 灌木的生态特性与生态效能的研究与进展. 干旱区资源与环境, 20, 159-164.]
[31] Li T, Deng Q, Yuan ZY, Jiao F ( 2015). Latitudinal changes in plant stoichiometric and soil C, N, P stoichiometry in Loess Plateau. Environmental Science, 36, 2988-2996.
[ 李婷, 邓强, 袁志友, 焦峰 ( 2015). 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征. 环境科学, 36, 2988-2996.]
[32] Li XX, Du TY, Wei YW, Zhou YB ( 2018). Characteristics of ecological stoichiometry in broad-leaved and Korean pine mixed forest and its response to latitude gradient in Northeast China. Acta Ecologica Sinica, 38, 3952-3960.
[ 李喜霞, 杜天雨, 魏亚伟, 周永斌 ( 2018). 阔叶红松林生态化学计量学特征及其对纬度梯度的响应. 生态学报, 38, 3952-3960.]
[33] Liu Y, Gong YB, Li Y, Zhu DW, Liu H, Shuai W ( 2018). Soil stoichiometric characteristics of alpine shrub meadow at different elevations, Western Sichuan. Journal of Sichuan Agricultural University, 36, 167-174.
[ 刘颖, 宫渊波, 李瑶, 朱德雯, 刘韩, 帅伟 ( 2018). 川西高寒灌丛草地不同海拔梯度土壤化学计量特征. 四川农业大学学报, 36, 167-174.]
[34] Lu H, Liu K, Wu JH ( 2013). Change of carbon storage in forest vegetation and current situation analysis of Qinghai Province in recent 20 years. Resources and Environment in the Yangtze Basin, 22, 1333-1338.
[ 卢航, 刘康, 吴金鸿 ( 2013). 青海省近20年森林植被碳储量变化及其现状分析. 长江流域资源与环境, 22, 1333-1338.]
[35] Lu TP, Zhang WX, Niu J, Lin YJ, Wu MJ ( 2017). Study on spatial variability and driving factors of stoichiometry of nitrogen and phosphorus in soils of typical natural zones of China. Acta Pedologica Sinica, 54, 682-692.
[ 卢同平, 张文翔, 牛洁, 林永静, 武梦娟 ( 2017). 典型自然带土壤氮磷化学计量空间分异特征及其驱动因素研究. 土壤学报, 54, 682-692.]
[36] Lu ZL, Gong XS ( 2009). Progress on the research of shrub biomass estimation. Forest Inventory and Planning, 34(4), 37-40.
[ 卢振龙, 龚孝生 ( 2009). 灌木生物量测定的研究进展. 林业调查规划, 34(4), 37-40.]
[37] McGroddy ME, Daufresne T, Hedin LO ( 2004). Scaling of C:N:P stoichiometry in forest worldwide: Implications of terrestrial Redfield-type ratios. Ecology, 85, 2390-2401.
[38] Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C ( 2008). Scale effects and human impact on the elevational species richness gradients. Nature, 453, 216-219.
[39] Pang SJ, Zhang P, Jia HY, Yang BG, Deng SK, Feng CL ( 2015). Research on soil ecological stoichiometry under different forest types in Northwest Guangxi. Chinese Agricultural Science Bulletin, 31, 17-23.
[ 庞圣江, 张培, 贾宏炎, 杨保国, 邓硕坤, 冯昌林 ( 2015). 桂西北不同森林类型土壤生态化学计量特征. 中国农学通报, 31, 17-23.]
[40] Qi DH, Wen ZM, Wang HX, Guo R, Yang SS ( 2016). Stoichiometry traits of carbon, nitrogen, and phosphorus in plants of different functional groups and their responses to micro-topographical variations in the hilly and gully region of the Loess Plateau, China. Acta Ecologica Sinica, 36, 6420-6430.
[ 戚德辉, 温仲明, 王红霞, 郭茹, 杨士梭 ( 2016). 黄土丘陵区不同功能群植物碳氮磷生态化学计量特征及其对微地形的响应. 生态学报, 36, 6420-6430.]
[41] Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
[42] Ren SJ, Yu GR, Jiang CM, Fang HJ, Sun XM ( 2012). Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the North-South Transect of East China. Chinese Journal of Applied Ecology, 23, 581-586.
[ 任书杰, 于贵瑞, 姜春明, 方华军, 孙晓敏 ( 2012). 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征. 应用生态学报, 23, 581-586.]
[43] Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to Biosphere. Princeton University Press, Princeton.
[44] Tang ZY, Xu WT, Zhou GS, Bai YF, Xie ZQ ( 2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115, 4033-4038.
[45] Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534.
[46] Tian HQ, Chen GS, Zhang C ( 2010). Pattern and variation of C:N:P ratios in Chinaʼs soils: A synthesis of observational data. Biogeochemistry, 98, 139-151.
[47] Wan WX, Wang XK, Li DY, Feng XQ, Zhang QQ, Yu XH ( 2014). Biomass allometric models for understory shrubs of warm temperate forest ecosystem. Acta Ecologica Sinica, 34, 6985-6992.
[ 万五星, 王效科, 李东义, 冯学全, 张千千, 于小红 ( 2014). 暖温带森林生态系统林下灌木生物量相对生长模型. 生态学报, 34, 6985-6992.]
[48] Wang GX, Li YS, Wu QB, Wang YB ( 2006). Relationship between permafrost and vegetation in the Qinghai-Tibet Plateau tundra and its impact on the alpine ecosystem. Science in China: Earth Science, 36, 743-754.
[ 王根绪, 李元首, 吴青柏, 王一博 ( 2006). 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响. 中国科学:地球科学, 36, 743-754.]
[49] Wang SB, Xu HF, Song TQ, Huang GQ, Peng WX, Du H ( 2014). Spatial heterogeneity of the main nutrients in Guangxi forest soils. Acta Ecologica Sinica, 34, 5292-5299.
[ 王淑彬, 徐慧芳, 宋同清, 黄国勤, 彭晚霞, 杜虎 ( 2014). 广西森林土壤主要养分的空间异质性. 生态学报, 34, 5292-5299.]
[50] Yang HM, Wang DM ( 2011). Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors. Acta Prataculturae Sinica, 5, 247-264.
[51] Yang JJ, Zhang XR, Chen YN, Ma LS, An SS, Dang TH ( 2014). Ecological stoichiometric relationships between components of Robinia pseudoacacia forest in Loess Plateau. Acta Pedologica Sinica, 51, 133-142.
[ 杨佳佳, 张向茹, 陈亚南, 马露莎, 安韶山, 党廷辉 ( 2014). 黄土高原刺槐林不同组分生态化学计量关系研究. 土壤学报, 51, 133-142.]
[52] Yang K, Huang JH, Dong D, Ma WH, HE JS ( 2010). Canopy leaf N and P stoichiometry in grassland communities of Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 34, 17-22.
[ 杨阔, 黄建辉, 董丹, 马文红, 贺金生 ( 2010). 青藏高原草地植物群落冠层叶片氮磷化学计量学分析. 植物生态学报, 34, 17-22.]
[53] Zhang RY, Xu DH, Chen LY, Wang G ( 2014). Plant N status in the alpine grassland of the Qinghai-Tibet Plateau: Base on the N:P stoichiometry. Environmental Science, 35, 1131-1137.
[ 张仁懿, 徐当会, 陈凌云, 王刚 ( 2014). 基于N:P化学计量特征的高寒草甸植物养分状况研究. 环境科学, 35, 1131-1137.]
[54] Zhang SB ( 2005). On the Ecological Status of Qinghai Key Public Welfare Forests. The First National Forestry Academic Conference, Hangzhou. 383-387.
[ 张胜邦 ( 2005). 论青海国家重点公益林的生态地位. 首届全国林业学术大会, 杭州. 383-387.]
[55] Zheng SW, Tang M, Zou JH, Mu CL ( 2007). Summary of research on shrub biomass in China. Journal of Chengdu University (Natural Science Edition), 26, 189-192.
[ 郑绍伟, 唐敏, 邹俊辉, 慕长龙 ( 2007). 灌木群落及生物量研究综述. 成都大学学报(自然科学版), 26, 189-192.]
[56] Zi HB, Xiang ZY, Wang GX, Ade LJ, Wang CT ( 2017). Profile of soil microbial community under different stand types in Qinghai Province. Scientia Silvae Sinicae, 53(3), 21-32.
[ 字洪标, 向泽宇, 王根绪, 阿的鲁骥, 王长庭 ( 2017). 青海不同林分土壤微生物群落结构(PLFA). 林业科学, 53(3), 21-32.]
[57] Zuo W, He KN, Tian Y, Wang WL ( 2016). Surface litter stoichiometry for five forest types in alpine region, Qinghai, China. Chinese Journal of Ecology, 35, 2271-2278.
[ 左巍, 贺康宁, 田赟, 王玮璐 ( 2016). 青海高寒区不同林分类型凋落物养分状况及化学计量特征. 生态学杂志, 35, 2271-2278.]
[1] Shitong Wang,Yaozhan Xu,Teng Yang,Xinzeng Wei,Mingxi Jiang. Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 277-288.
[2] Xinghui Lu,Runguo Zang,Yi Ding,Jihong Huang,Yue Xu. Habitat characteristics and its effects on seedling abundance of Hopea hainanensis, a Wild Plant with Extremely Small Populations [J]. Biodiv Sci, 2020, 28(3): 289-295.
[3] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow [J]. Biodiv Sci, 2020, 28(2): 107-116.
[4] ZHANG Chan, AN Yu-Meng, Yun JÄSCHKE, WANG Lin-Lin, ZHOU Zhi-Li, WANG Li-Ping, YANG Yong-Ping, DUAN Yuan-Wen. Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands [J]. Chin J Plant Ecol, 2020, 44(1): 1-21.
[5] JIA Bing-Rui. Litter decomposition and its underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(8): 648-657.
[6] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436.
[7] TANG Dan-Dan, WU Yi, LIU Wen-Yao, HU Tao, HUANG Jun-Biao, ZHANG Ting-Ting. Ecological stoichiometry of two common hemiparasite plants and their relationship with host trees in Ailao Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2019, 43(3): 245-257.
[8] Tu Yanli,Wang Liping,Wang Xilong,Wang Linlin,Duan Yuanwen. Status of invasive plants on local pollination networks: A case study of Tagetes minuta in Tibet based on pollen grains from pollinators [J]. Biodiv Sci, 2019, 27(3): 306-313.
[9] FENG Chan-Ying, ZHENG Cheng-Yang, TIAN Di. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(3): 185-196.
[10] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43(3): 258-272.
[11] CAI Qin, DING Jun-Xiang, ZHANG Zi-Liang, HU Jun, WANG Qi-Tong, YIN Ming-Zhen, LIU Qing, YIN Hua-Jun. Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2019, 43(12): 1048-1060.
[12] TANG Li-Tao, LIU Dan, LUO Xue-Ping, HU Lei, WANG Chang-Ting. Forest soil phosphorus stocks and distribution patterns in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(12): 1091-1103.
[13] Rijin Jiang,Linlin Zhang,Kaida Xu,Pengfei Li,Yi Xiao,Ziwei Fan. Characteristics and diversity of nekton functional groups in the coastal waters of south-central Zhejiang Province [J]. Biodiv Sci, 2019, 27(12): 1330-1338.
[14] Jingqi Sun, Quan Chen, Hangyu Li, Yanfen Chang, Hede Gong, Liang Song, Huazheng Lu. Progress on the clonality of epiphytic ferns [J]. Biodiv Sci, 2019, 27(11): 1184-1195.
[15] YANG Ji-Hong, LI Ya-Nan, BU Hai-Yan, ZHANG Shi-Ting, QI Wei. Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(10): 863-876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yi Sun, Hui Li, Liangsheng Wang, Silan Dai. Rapid, Effective Method for Anthocyanin Analysis in Tobacco Corolla[J]. Chin Bull Bot, 2011, 46(2): 189 -196 .
[2] XU Pin-San LUAN Yu-Shi LIU Ji-WenNIIMI Yoshiji. Study on Production of Virus-free Bulblets by Adventitious Bud Culture in Lilium spp.[J]. Chin Bull Bot, 2003, 20(03): 313 -318 .
[3] Wang Tai;Tong Zhe and Zhao Yu-jing. Photoperiod-regulation of the Activity of Ascorbate Peroxidase in leaves of Photoperiod Sensitive Genic Male Sterile Rice[J]. Chin Bull Bot, 1993, 10(03): 36 -40 .
[4] . [J]. Chin Bull Bot, 1996, 13(专辑): 53 -54 .
[5] BAO Jin-song and XIA Ying-Wu. Recent Advances on Molecular Biology of Starch Biosynthesis in Rice (Oryza sativa L.)[J]. Chin Bull Bot, 1999, 16(04): 352 -358 .
[6] Li Mao-xue. The Problems of Chinese Translation and Nomenclature on Centromere and Kinetochore[J]. Chin Bull Bot, 1990, 7(02): 34 -36 .
[7] Shi Feng-jie Yin Yan-hai Wang Jing-ju. Studies on the Isolation of Variant of Asparagus Resistant to Hydroxy-proling and Tolerence to NaCl and PEG[J]. Chin Bull Bot, 1991, 8(增刊): 74 -77 .
[8] . [J]. Chin Bull Bot, 1999, 16(增刊): 30 -34 .
[9] XU Qin-Song SHI Guo-Xin DU Kai-He. Studies on Correlation between Peroxidation Damage by Free Radicals and Ultrastructural Changes of Mesophyll Cellsin Ottelia alismoides (L.) Pers Induced by Zn Pollution[J]. Chin Bull Bot, 2001, 18(05): 597 -604 .
[10] Huaxue Yan*;Jie Yu. Current Status of the Study of DNA Barcoding in Plants[J]. Chin Bull Bot, 2010, 45(01): 102 -108 .