Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (8): 697-708.doi: 10.17521/cjpe.2019.0131

• Research Articles • Previous Articles     Next Articles

Responses of foliar anatomical traits to soil conditions in 11 tree species on coastal saline-alkali sites of Shandong, China

CHEN Xu1,LIU Hong-Kai1,ZHAO Chun-Zhou2,WANG Qiang3,WANG Yan-Ping1,*()   

  1. 1Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Forestry College, Shandong Agricultural University, Tai’an, Shandong 271018, China;
    2Shouguang National Machinery Forest Farm, Shouguang, Shandong 262716, China
    3Shandong Forestry Foreign Investment and Project Management Office, Jinan 250014, China
  • Received:2019-05-30 Revised:2019-08-04 Online:2020-01-03 Published:2019-08-20
  • Contact: WANG Yan-Ping ORCID:0000-0003-1892-1409


Aims As an important link between plants and atmospheric environment, foliar organs have strong responses to stress. Understanding the adaptive mechanisms of plants to environments based on leaf traits is of great significance for establishment of plant communities in saline-alkali land.
Methods Eleven tree species used for afforestation were studied under three soil conditions in the coastal saline-‌alkali land of Shandong Province. The foliar anatomical traits were measured, and the responses of these traits to saline-alkali soil environment were determined to reveal the relationships between foliar functional traits and soil conditions.
Important findings (1) The leaves of the 11 tree species studied were thicker on the saline-alkali sites than on other sites, with 3-5 layers of well-developed palisade tissue closely arranged on the paraxial surface of the leaf mesophyll. The thickness ratio of palisade tissue to spongy tissue (PT/ST) was generally high but with large variations among the tree species. (2) The foliar anatomical traits differed among the three sites in different tree species. (3) Both correlation analysis and redundancy analysis (RDA) showed that the foliar anatomical traits were closely related to soil conditions; PT/ST was highly significantly correlated with soil indexes, positively with soil pH and soil conductivity at 25 ℃, and negatively with soil nitrate nitrogen content. Leaf characteristics and vein characteristics could explain 84% of the variations in leaf functional characteristics with environments. Overall, the foliar anatomical traits were closely related to soil conditions in saline-alkali land. The analysis of foliar anatomical traits could be used to study the adaptation of tree species to saline-alkali land, and as basis for tree species selection for vegetation restoration and community establishment.

Key words: coastal saline-alkali land, foliar, vein, anatomical traits, palisade tissue, spongy tissue, soil physiochemical properties

Table 1

The 11 tree species for afforestation of different sites on the coastal saline-alkali land of Shandong Province"


Life form
叶型 Simple/
Compound leaf
立地1: 重度盐碱
Site 1: Severe saline alkali
白榆 Ulmus pumila ULPU 榆科 Ulmaceae D A S
白蜡2 Fraxinus chinensis 2 FRCH2 木犀科 Oleaceae D A C
立地2: 中度盐碱
Site 2: Moderate saline alkali
皂角 Gleditsia sinensis GLSI 豆科 Leguminosae D A C
臭椿 Ailanthus altissima AIAL 苦木科 Simaroubaceae D A C
白蜡1 Fraxinus chinensis 1 FRCH1 木犀科 Oleaceae D A C
Sophora japonica SOJA 蝶形花科 Papilionaceae D A C
欧美杨I-107 Populus × euramericana ‘I-107’ POEU 杨柳科 Salicaceae D A S
旱柳 Salix matsudana SAMA 杨柳科 Salicaceae D A S
三球悬铃木 Platanus orientalis PLOR 悬铃木科 Platanaceae D A S
立地3: 轻度盐碱
Site 3: Mild saline alkali
枣树 Ziziphus jujuba ZIJU 鼠李科 Rhamnaceae D A S
桃树 Amygdalus persica AMPE 蔷薇科 Rosaceae D A S
白梨 Pyrus bretschneideri PYBR 蔷薇科 Rosaceae D A S

Fig. 1

Schematic diagram for vein sampling of different leaf types. A, Simple leaf. B, Compound leaf."

Fig. 2

Cross-section schematic photos of the anatomical structure of leaves on the saline-alkali land (Ailanthus altissima). A, Anatomical structure of leaves. B, Anatomical structure of veins. Ca, cambium; LE, lower epidermis; MVD, main vascular diameter; Ph, phloem; PT, palisade tissue; ST, sponge tissue; UE, upper epidermis; X, xylem."

Table 2

Physiochemical properties of the forest sites for the 11 tree species on the coastal saline-alkali land of Shandong Province (mean ± SE)"

Tree species
pH 电导率
conductivity (μs·cm-1)
Ammonium nitrogen content (mg·kg-1)
Nitrate nitrogen content (mg·kg-1)
Available phosphorus content (mg·kg-1)
立地1: 重度盐碱
Site 1: Severe saline-alkali
ULPU 8.530 ± 0.024a 1 079.213 ± 5.468a 16.445 ± 0.563b 15.121 ± 2.274d 2.821 ± 0.588d
FRCH2 8.416 ± 0.008ab 891.560 ± 1.240b 14.312 ± 2.176b 12.314 ± 2.300d 3.080 ± 0.903d
立地2: 中度盐碱
Site 2: Moderate saline-alkali

GLSI 8.318 ± 0.018b 462.107 ± 2.981ef 16.019 ± 0.958b 20.833 ± 4.088cd 1.055 ± 0.408d
AIAL 8.262 ± 0.024bc 467.480 ± 21.513ef 17.102 ± 0.585ab 26.875 ± 1.522abcd 1.392 ± 0.323d
FRCH1 8.384 ± 0.029ab 426.147 ± 5.373fg 8.277 ± 0.053c 18.472 ± 3.017d 1.160 ± 0.352d
SOJA 8.339 ± 0.064b 413.747 ± 4.195g 19.815 ± 2.244ab 18.142 ± 1.287d 1.787 ± 0.310d
POEU 8.119 ± 0.035cd 447.640 ± 11.251efg 16.652 ± 1.018b 17.927 ± 4.372d 1.946 ± 0.360d
SAMA 8.028 ± 0.133d 476.987 ± 32.966de 19.002 ± 1.703ab 25.899 ± 12.187bcd 1.414 ± 0.205d
PLOR 8.123 ± 0.073cd 439.787 ± 16.580efg 17.741 ± 0.522ab 27.589 ± 5.318abcd 0.997 ± 0.249d
立地3: 轻度盐碱
Site 3: Mild saline-alkali
ZIJU 8.018 ± 0.086d 511.293 ± 4.195cd 16.886 ± 2.191ab 38.628 ± 2.160ab 33.517 ± 2.265b
AMPE 8.020 ± 0.018d 534.440 ± 1.432c 6.704 ± 1.078c 41.849 ± 3.668a 13.716 ± 0.301c
PYBR 7.998 ± 0.071d 460.453 ± 2.981ef 22.404 ± 3.787ab 35.951 ± 4.004abc 38.846 ± 2.215a

Fig. 3

Cluster analysis of tree species based on soil physiochemical properties on the coastal saline-alkali land of Shandong Province."

Table 3

Foliar anatomical characteristics of tree species on different sites on the coastal saline-alkali land of Shandong Province (mean ± SE)"

Table 4

Foliar anatomical traits of trees on different sites on the coastal saline-alkali land of Shandong Province (mean ± SE)"

Table 5

Correlations between physiochemical properties of forest sites and foliar anatomical characteristics on the coastal saline-alkali land of Shandong Province "

MV diameter
X thickness
Leaf thickness
PT thickness
ST thickness
土壤pH Soil pH -0.355 -0.446 0.052 0.154 -0.288 0.667*
Soil EC25℃
-0.002 -0.166 0.330 0.362 -0.114 0.782**
铵态氮含量 NH4-N content 0.531 0.597* 0.318 0.157 0.427 -0.282
硝态氮含量 NO3-N content 0.357 0.428 -0.094 -0.195 0.202 -0.592*
速效磷含量 AP content 0.373 0.462 0.469 0.297 0.561 -0.226

Fig. 4

Redundancy analysis (RDA) based on foliar anatomical characteristics and soil physiochemical properties correlation. Arrows indicate the foliar anatomical characteristics of tree species and soil physiochemical properties of sites, and the solid triangles designate the 11 tree species. AP, soil available phosphorus content; EC, soil electrical conductivity (25 ℃); LT, leaf thickness; MVD, main vascular diameter; NH4-N, soil ammonium nitrogen content; NO3-N, soil nitrate nitrogen content; pH, soil pH; PT/ST, palisade tissue/sponge tissue; PTT, palisade tissue thickness; STT, sponge tissue thickness; UET, upper epidermis thickness; XT, xylem diameter. See table 1 for species abbreviation."

[1] Bao SD (2000). Soil Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing.
[ 鲍士旦 (2000). 土壤农化分析. 第三版. 中国农业出版社, 北京.]
[2] Bjorkman AD, Elmendorf SC, Beamish AL, Vellend M, Henry GHR (2015). Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Global Change Biology, 21, 4651-4661.
[3] Bu WS, Zang RG, Ding Y, Zhang JY, Ruan YZ (2013). Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China. Biodiversity Science, 21, 278-287.
[ 卜文圣, 臧润国, 丁易, 张俊艳, 阮云泽 (2013). 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化. 生物多样性, 21, 278-287.]
[4] Caringella MA, Bongers FJ, Sack L (2015). Leaf hydraulic conductance varies with vein anatomy across a rabidopsis thaliana wild-type and leaf vein mutants. Plant, Cell & Environment, 38, 2735-2746.
[5] Coble AP, Fogel ML, Parker GG (2017). Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance. Tree Physiology, 37, 1415-1425.
[6] Ding CX, Li YQ, Dong Z, Yin RB, Wang YM, Shen YK (2013). Effects of different land use modes on physical and chemical properties of saline-alkali soil in Yellow River Delta. Science of Soil and Water Conservation, 11(2), 84-89.
[ 丁晨曦, 李永强, 董智, 尹若波, 王雅楣, 沈运扩 (2013). 不同土地利用方式对黄河三角洲盐碱地土壤理化性质的影响. 中国水土保持科学, 11(2), 84-89.]
[7] Dong HY, Zhu ZL, Li XH, Yang LP, Zhang Z (2017). Analysis on distribution, utilization status and governance effect of saline-alkali soil in Shandong Province. Shandong Agricultural Sciences, 49(5), 134-139.
[ 董红云, 朱振林, 李新华, 杨丽萍, 张正 (2017). 山东省盐碱地分布、改良利用现状与治理成效潜力分析. 山东农业科学, 49(5), 134-139.]
[8] Dong ZY, Yao YF, Zhao JR, Jia ZC (2000). Anatomical observations on the plotosynthatic branch of Haloxylon ammodendrom(C. A. Mey) Bunge and it is the character of drought and salt resistance. Journal of Arid Land Resources and Environment, 14(suppl.), 78-83.
[ 董占元, 姚云峰, 赵金仁, 贾志成 (2000). 梭梭(Haloxylon ammodend rom (C. A. Mey) Bunge)光合枝细胞组织学观察及其抗逆性特征. 干旱区资源与环境, 14(增刊), 78-83.]
[9] Dörken VM, Lepetit B (2018). Morpho-anatomical and physiological differences between sun and shade leaves in Abies alba Mill.(Pinaceae, Coniferales): A combined approach. Plant, Cell & Environment, 41, 1683-1697.
[10] Duan YY, Song LJ, Niu SQ, Huang T, Yang GH, Hao WF (2017). Variation in leaf functional traits of different-aged Robinia pseudoacacia communities and relationships with soil nutrients. Chinese Journal of Applied Ecology, 28, 28-36.
[ 段媛媛, 宋丽娟, 牛素旗, 黄婷, 杨改河, 郝文芳 (2017). 不同林龄刺槐叶功能性状差异及其与土壤养分的关系. 应用生态学报, 28, 28-36.]
[11] Fan H, Wu J, Liu W, Yuan Y, Hu L, Cai Q (2015). Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 392, 127-138.
[12] Flowers TJ, Colmer TD (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945-963.
[13] García-Palacios P, Maestre FT, Milla R (2013). Community-‌aggregated plant traits interact with soil nutrient heterogeneity to determine ecosystem functioning. Plant and Soil, 364, 119-129.
[14] Guo R, Zhou J, Liu Q, Gu FX (2018). Characterization of nutrient elements at different leaf positions in Phragmites australis in Songnen degraded grassland. Chinese Journal of Plant Ecology, 42, 734-740.
[ 郭瑞, 周际, 刘琪, 顾峰雪 (2018). 松嫩退化草地芦苇不同叶位叶片营养元素代谢特征. 植物生态学报, 42, 734-740.]
[15] Hanumantha RB, Nair RM, Nayyar H (2016). Salinity and high temperature tolerance in mungbean [Vigna radiata(L.) Wilczek] from a physiological perspective. Frontiers in Plant Science, 7, 957. DOI: 10.3389/fpls.2016.00957.
[16] Högberg P, Näsholm T, Franklin O, Högberg MN (2017). Tamm Review: On the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. Forest Ecology and Management, 403, 161-185.
[17] Jager MM, Richardson SJ, Bellingham PJ, Clearwater MJ, Laughlin DC (2015). Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology, 103, 374-385.
[18] Jiang W, Cui SM, Li HX, Zhang YT, Bai HM (2017). Effects of salt stress on microstructure of roots, stems and leaves of pepper seedlings. Vegetables, 36(3), 6-15.
[ 姜伟, 崔世茂, 李慧霞, 张轶婷, 白红梅 (2017). 盐胁迫对辣椒幼苗根、茎、叶显微结构的影响. 蔬菜, 36(3), 6-15.]
[19] Kröber W, Heklau H, Bruelheide H (2015). Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biology, 17, 373-383.
[20] Li D, Kang S, Zhao MY, Zhang Q, Ren HJ, Ren J, Zhou JM, Wang Z, Wu RJ, Niu JM (2016). Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Nei Mongol, China. Chinese Journal of Plant Ecology, 40, 991-1002.
[ 李丹, 康萨如拉, 赵梦颖, 张庆, 任海娟, 任婧, 周俊梅, 王珍, 吴仁吉, 牛建明 (2016). 内蒙古羊草草原不同退化阶段土壤养分与植物功能性状的关系. 植物生态学报, 40, 991-1002.]
[21] Li FL, Bao WK (2005). Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany, 22(suppl.), 118-127.
[ 李芳兰, 包维楷 (2005). 植物叶片形态解剖结构对环境变化的响应与适应. 植物学通报, 22(增刊), 118-127.]
[22] Li Z, Zhao YJ, Song HY, Zhang J, Tao JP, Liu JC (2018). Effects of karst soil thickness heterogeneity on the leaf anatomical structure and photosynthetic traits of two grasses under different water treatments. Acta Ecologica Sinica, 38, 721-732.
[ 李周, 赵雅洁, 宋海燕, 张静, 陶建平, 刘锦春 (2018). 不同水分处理下喀斯特土层厚度异质性对两种草本叶片解剖结构和光合特性的影响. 生态学报, 38, 721-732.]
[23] Liu C, He N, Zhang J, Li Y, Wang Q, Sack L, Yu G (2018). Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Functional Ecology, 32, 20-28.
[24] Liu JK, Xu LG, Huang ZX, Wu YH, Shi Y, Sun YG, Bai HJ, Wang DH, Gao K, Ma XH (2018). Effects of planting density and nitrogen fertilization amount on tissue structure of middle leaves in flue-cured tobacco. Chinese Tobacco Science, 39(1), 24-37.
[ 刘继坤, 徐立国, 黄择祥, 吴元华, 石屹, 孙延国, 白化军, 王大海, 高凯, 马兴华 (2018). 密度和施氮量互作对烤烟叶片组织结构的影响. 中国烟草科学, 39(1), 24-31.]
[25] Liu MX, Ma JZ (2013). Feature variations of plant functional traits and environmental factor in south- and north-facing slope. Research of Soil and Water Conservation, 20(1), 102-106.
[ 刘旻霞, 马建祖 (2013). 阴阳坡植物功能性状与环境因子的变化特征. 水土保持研究, 20(1), 102-106.]
[26] Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, van Bodegom PM, Cornwell WK, Ellsworth D, Niinemets Ü, Ordonez A, Reich PB, Santiago LS (2015). Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24, 706-717.
[27] Meng N, Wei SH (2018). Uniconazole spraying ameliorates salt injury to soybean seedlings by regulating anatomical structure in roots. Chinese Journal of Ecology, 37, 3605-3609.
[ 孟娜, 魏胜华 (2018). 喷施烯效唑调控大豆根部解剖结构缓解盐逆境伤害. 生态学杂志, 37, 3605-3609.]
[28] National Soil Survey Office of China (1998). Soils of China. Chinese Agriculture Press, Beijing.
[ 全国土壤普查办公室 (1998). 中国土壤. 中国农业出版社, 北京.]
[29] Nicotra AB, Cosgrove MJ, Cowling A, Schlichting CD, Jones CS (2008). Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species. Oecologia, 154, 625-635.
[30] Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137-149.
[31] Paz RC, Reinoso H, Espasandin FD, González Antivilo FA, Sansberro PA, Rocco RA, Ruiz OA, Menéndez AB (2014). Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots. Plant Biology, 16, 1042-1049.
[32] Peng CZ, Chang LL, Yang Q, Tong Z, Wang D, Tan YH, Sun Y, Yi XP, Ding GH, Xiao JH, Zhang Y, Wang XC (2019). Comparative physiological and proteomic analyses of the chloroplasts in halophyte Sesuvium portulacastrum under differential salt conditions. Journal of Plant Physiology, 232, 141-150.
[33] Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto. Journal of Ecology, 102, 275-301.
[34] Ren YY, Zhu YL, Zhang JT, Zhai XQ (2018). Effects of salinity on chlorophyll fluorescence characteristics and leaf anatomical structure of Robinia pseudoacacia L. cutting seedlings. Chinese Agricultural Science Bulletin, 34(18), 29-35.
[ 任媛媛, 朱延林, 张江涛, 翟晓巧 (2018). 盐胁迫对刺槐幼苗叶绿素荧光及叶片解剖结构的影响. 中国农学通报, 34(18), 29-35.]
[35] Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000.
[36] Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 3, 837. DOI: 10.1038/ ncomms1835.
[37] Schellberg J, Pontes LS (2012). Plant functional traits and nutrient gradients on grassland. Grass and Forage Science, 67, 305-319.
[38] Su L, Song TQ, Du H, Zeng FP, Wang H, Peng WX, Zhang F, Zhang JY (2018). Biomass and morphological characteristics of fine roots and their affecting factors in different vegetation restoration stages in depressions between karst hills. Chinese Journal of Applied Ecology, 29, 783-789.
[ 苏樑, 宋同清, 杜虎, 曾馥平, 王华, 彭晚霞, 张芳, 张家涌 (2018). 喀斯特峰丛洼地不同植被恢复阶段细根生物量、形态特征及其影响因素. 应用生态学报, 29, 783-789.]
[39] Sun HT, Jiang S, Liu JM, Guo YJ, Shen GS, Gu S (2016). Structure and ecological adaptability of the leaves of three asteraceae species at different altitudes on the Qinghai-‌Tibet Plateau. Acta Ecologica Sinica, 36, 1559-1570.
[ 孙会婷, 江莎, 刘婧敏, 郭亚娇, 沈广爽, 古松 (2016). 青藏高原不同海拔3种菊科植物叶片结构变化及其生态适应性. 生态学报, 36, 1559-1570.]
[40] Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, Laliberté E (2017). Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science, 355, 173-176.
[41] Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485-496.
[42] Xin H, Zhang XF, Chu QG (1998). Comparative studies on the structures of leaves of maritime halophytes in Shandong. Acta Botanica Boreali-Occidentalia Sinica, 18, 584-589.
[ 辛华, 张秀芬, 初庆刚 (1998). 山东滨海盐生植物叶结构的比较研究. 西北植物学报, 18, 584-589.]
[43] Xu T, Zhao CZ, Han L, Feng W, Duan BB, Zheng HL (2017). Correlation between vein density and water use efficiency of Salix matsudana in Zhangye Wetland, China. Chinese Journal of Plant Ecology, 41, 761-769.
[ 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲 (2017). 张掖湿地旱柳叶脉密度与水分利用效率的关系. 植物生态学报, 41, 761-769.]
[44] Yan GY, Wang XC, Xing YJ, Han SJ, Wang QG (2016). Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China. Journal of Beijing Forestry University, 38(4), 36-43.
[ 闫国永, 王晓春, 邢亚娟, 韩士杰, 王庆贵 (2016). 兴安落叶松林细根解剖结构和化学组分对N沉降的响应. 北京林业大学学报, 38(4), 36-43.]
[45] Yu SH, Liu JT, Li ZX, Liu HT, Tan LM (2012). Mechanism of saline-alkali lands improvement of subsurface pipe drainage systems and agro-ecosystem response. Chinese Journal of Eco-Agriculture, 20, 1664-1672.
[ 于淑会, 刘金铜, 李志祥, 刘慧涛, 谭莉梅 (2012). 暗管排水排盐改良盐碱地机理与农田生态系统响应研究进展. 中国生态农业学报, 20, 1664-1672.]
[46] Zhang JE (2007). Commonly Used Experimental Research Methods and Techniques in Ecology. Chemical Industry Press, Beijing.
[ 章家恩 (2007). 生态学常用实验研究方法与技术. 化学工业出版社, 北京.]
[47] Zhang LY, Zhao GX (2006). Study on the effect of saline soil restoration material on physical and chemical properties of the coastal saline soil. Research of Soil and Water Conservation, 13(1), 32-34.
[ 张凌云, 赵庚星 (2006). 盐碱土壤修复材料对滨海盐渍土理化性质的影响研究. 水土保持研究, 13(1), 32-34.]
[48] Zhao KF (2002). Adaptation of plants to saline stress. Bulletin of Biology, 51(6), 7-10.
[ 赵可夫 (2002). 植物对盐渍逆境的适应. 生物学通报, 51(6), 7-10.]
[49] Zhong YM, Dong FY, Wang WJ, Wang JM, Li JW, Wu B, Jia XH (2017). Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats. Journal of Beijing Forestry University, 39(10), 53-61.
[ 钟悦鸣, 董芳宇, 王文娟, 王健铭, 李景文, 吴波, 贾晓红 (2017). 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报, 39(10), 53-61.]
[50] Zhu GL, Ma Y, Han L, Huo ZL, Wei XZ (2014). Current status of research on morphological structure, biological function and formation mechanism of plant crystals. Acta Ecologica Sinica, 34, 6429-6439.
[ 朱广龙, 马茵, 韩蕾, 霍张丽, 魏学智 (2014). 植物晶体的形态结构、生物功能及形成机制研究进展. 生态学报, 34, 6429-6439.]
[1] Miao Qingxia, Fang Yan, Chen Yinglong. Studies in the Responses of Wheat Root Traits to Drought Stress [J]. Chin Bull Bot, 2019, 54(5): 652-661.
[2] WU Qi-Qian, WANG Chuan-Kuan. Dynamics in foliar litter decomposition for Pinus koraiensis and Quercus mongolica in a snow-depth manipulation experiment [J]. Chin J Plan Ecolo, 2018, 42(2): 153-163.
[3] Ling HAN, Cheng-Zhang ZHAO, Wei FENG, Ting XU, Hui-Ling ZHENG, Bei-Bei DUAN. Trade-off relationship between vein density and vein diameter of Achnatherum splendens in response to habitat changes in Zhangye wetland [J]. Chin J Plan Ecolo, 2017, 41(8): 872-881.
[4] Ting XU, Cheng-Zhang ZHAO, Ling HAN, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Correlation between vein density and water use efficiency of Salix matsudana in Zhangye Wetland, China [J]. Chin J Plan Ecolo, 2017, 41(7): 761-769.
[5] Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China [J]. Chin J Plan Ecolo, 2017, 41(5): 529-538.
[6] Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland [J]. Chin J Plan Ecolo, 2016, 40(8): 788-797.
[7] Bei-Bei DUAN, Cheng-Zhang ZHAO, Ting XU, Hui-Ling ZHENG, Wei FENG, Ling HAN. Correlation analysis between vein density and stomatal traits of Robinia pseudoacacia in different aspects of Beishan Mountain in Lanzhou [J]. Chin J Plan Ecolo, 2016, 40(12): 1289-1297.
[8] Qiao-Shu-Yi WANG, Cheng-Yang ZHENG, Xin-Yang ZHANG, Fa-Xu ZENG, Juan XING. Impacts of nitrogen addition on foliar nitrogen and phosphorus stoichiometry in a subtropical evergreen broad-leaved forest in Mount Wuyi [J]. Chin J Plan Ecolo, 2016, 40(11): 1124-1135.
[9] GONG Rong,GAO Qiong. Research progress in the effects of leaf hydraulic characteristics on plant physiological functions [J]. Chin J Plan Ecolo, 2015, 39(3): 300-308.
[10] LI Han,WU Fu-Zhong,YANG Wan-Qin,XU Li-Ya,NI Xiang-Yin,HE Jie,HU Yi. Effects of forest gap on hemicellulose dynamics during foliar litter decomposition in an subalpine forest [J]. Chin J Plan Ecolo, 2015, 39(3): 229-238.
[11] Liqing Song, Chunmei Hu, Xilin Hou, Lei Shi, Li’an Liu, Jingcheng Yang, Chuangdao Jiang. Relationship Between Photosynthetic Characteristics and Leaf Vein Density in Sorghum bicolor and Perilla frutescens [J]. Chin Bull Bot, 2015, 50(1): 100-106.
[12] NI Xiang-Yin, YANG Wan-Qin, LI Han, XU Li-Ya, HE Jie, and WU Fu-Zhong. Effects of snowpack on early foliar litter humification during winter in a subalpine forest of western Sichuan [J]. Chin J Plan Ecolo, 2014, 38(6): 540-549.
[13] TANG Shi-Shan, YANG Wan-Qin, YIN Rui, XIONG Li, WANG Hai-Peng, Wang Bin, ZHANG Yan, PENG Yan-Jun, CHEN Qing-Song, and XU Zhen-Feng. Spatial characteristics in decomposition rate of foliar litter and controlling factors in Chinese forest ecosystems [J]. Chin J Plan Ecolo, 2014, 38(6): 529-539.
[14] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages [J]. Chin Bull Bot, 2014, 49(1): 78-86.
[15] LI Le, ZENG Hui, and GUO Da-Li. Leaf venation functional traits and their ecological significance [J]. Chin J Plan Ecolo, 2013, 37(7): 691-698.
Full text



[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] Yang Hong-yuan. Basic Principle and Method of Fluorescence Microscopy[J]. Chin Bull Bot, 1984, 2(06): 45 -48 .
[5] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[6] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[7] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[8] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[10] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .