Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (1): 1-21.doi: 10.17521/cjpe.2019.0296

• Review •     Next Articles

Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands

ZHANG Chan1,AN Yu-Meng1,Yun JÄSCHKE2,WANG Lin-Lin3,ZHOU Zhi-Li3,WANG Li-Ping3,YANG Yong-Ping3,*(),DUAN Yuan-Wen3,*()   

  1. 1College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
    2Senckenberg Natural History Museum, G?rlitz, 02826, Germany
  • Received:2019-11-03 Revised:2020-01-01 Online:2020-02-24 Published:2020-01-20
  • Contact: YANG Yong-Ping,DUAN Yuan-Wen ORCID:0000-0002-9195-5878
  • Supported by:
    Strategic Priority Research Program of Chinese Academy of Sciences(XDA20040000);Strategic Priority Research Program of Chinese Academy of Sciences(XDA20050000);National Natural Science Foundation of China(31500193);National Natural Science Foundation of China(31700368)


The Qinghai-Xizang Plateau and its adjacent highlands host a rich plant diversity, and understanding on how plant species reproduce successfully in those high mountain regions would be of great help for us to discover the evolution and adaptability of plants to the typical alpine environments. Here, we reviewed the progresses of plant reproductive ecology in the Qinghai-Xizang Plateau and its adjacent highlands, with emphases on resource allocation, reproductive mode, evolution of floral traits, etc. We also summarized the impacts of global climate changes on plant reproduction, and the applications of new technologies and methods in this research field to explore the potential mechanisms of plant evolution and adaptation. In the stressful environments of high mountain areas, with the increase of altitude, the reproductive allocation usually shows a trend of increase, and the proportion of resources invested in male function also increases. However, the specific pattern of resource allocation strongly depends on the mating system, individual size, life history, genetic variation and resource availability. In the context of resource and pollination limitation, plants will weight different reproductive modes. Clonal reproduction and self-pollination are conductive to reproductive assurance in populations with pollinator scarcity, while sexual reproduction and cross-pollination can improve seed quality and genetic diversity of offspring, which could benefit population survival in the potential climate flunctations. Therefore, the combinations of different reproductive modes and the generalized pollination networks may be the good choices to adapt to the stressful environments of highlands. The evolution of floral traits might be mainly driven by the selective pressure of local pollinators, but more and more attentions have been paid to the effects of exotic pollinators, herbivores, nectar robbers and abiotic environments such as temperature, precipitation and ultraviolet radiation on floral traits. In recent years, the Qinghai-Xizang Plateau has become one of research hotspots because of its fragility and sensitivity to climate change. Global climate change, characterized by global warming and increased nitrogen deposition, is directly or indirectly affecting the reproductive characteristics of plant species in the region. Climate change may cause shifts of phenology and distribution area of plants and pollinators, which leads to temporal decoupling and spatial mismatch between them. Plants can respond to climate change by adjusting floral traits (floral display, corolla structure, quantity and quality of reward), which may result in changes of type, amount and foraging behaviors of pollinators and affect reproductive success of plants at last. The applications of new technologies and methods could advance our knowledge on plant reproductive ecology. 3D printed flowers could control floral traits precisely and could be employed in examining the effects of subtle changes of floral traits on pollinator behaviors, which would be useful in understanding pollinator mediated selection on floral traits in combination with the uses of commercial pollinators. Importantly, with the development of high-throughput sequencing, the underlying mechanisms of important topics in plant reproductive ecology could be discovered more easily than before, especially in the field of floral evolution. As a conclusion, key issues that need additional attention in the current research as well as the fields worthy of further study are highlighted.

Key words: Qinghai-Xizang Plateau, reproductive allocation, sexual allocation, clonal reproduction, sexual reproduction, floral evolution

Fig. 1

Regression of reproductive allocation on elevation of 24 plant species in the Qinghai-Xizang Plateau and adjacent highlands. A, Annual and biennial species. B, Perennial species."

Fig. 2

Proportion of flower color in plant communities of different regions. A, 107 plant species in subtropical (a.s.l. 900-2 000 m) and subalpine (a.s.l. 3 000-4 100 m) regions in the Himalayas of Nepal (Shrestha et al., 2014). B, 932 plant species in Hengduan Mountains, Southwestern China (average a.s.l. > 4 300 m)(Peng et al., 2014). C, 823 plant species in Hengduan Mountains, Southwestern China (average a.s.l. > 4 300 m)(Peng et al., 2012)."

[1] Ackerly DD, Jasieński M (1990). Size-dependent variation of gender in high density stands of the monoecious annual, Ambrosia artemisiifolia(Asteraceae). Oecologia, 82, 474-477.
[2] An ZS, Kutzbach JE, Prell WL, Porter SC (2001). Evolution of Asian monsoons and phased uplift of the Himalaya-‌Tibetan Plateau since Late Miocene times. Nature, 411, 62-66.
[3] Baker HG, Baker I (1983). Floral nectar constituents in relation to pollinator type. In: Jones CE, Little RJ eds. Handbook of Experimental Pollination Biology. Van Nostrand Reinhold, New York. 117-141.
[4] Bazzaz FA, Ackerly DD, Reekie EG (2000). Reproductive allocation in plants. In: Fenner M ed. Seeds: The Ecology of Regeneration in Plant Communities. CABI Publishing, Oxford. 1-29.
[5] Belser C, Istace B, Denis E, Dubarry M, Baurens FC, Falentin C, Genete M, Berrabah W, Chèvre AM, Delourme R, Deniot G, Denoeud F, Duffé P, Engelen S, Lemainque A, Manzanares-Dauleux M, Martin G, Morice J, Noel B, Vekemans X, D’Hont A, Rousseau-Gueutin M, Barbe V, Cruaud C, Wincker P, Aury JM (2018). Chromosome-‌scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants, 4, 879-887.
[6] Bengtsson BO, Ceplitis A (2000). The balance between sexual and asexual reproduction in plants living in variable environments. Journal of Evolutionary Biology, 13, 415-422.
doi: 10.1046/j.1420-9101.2000.00187.x
[7] Bonser SP, Aarssen LW (2009). Interpreting reproductive allometry: Individual strategies of allocation explain size- dependent reproduction in plant populations. Perspectives in Plant Ecology, Evolution and Systematics, 11, 31-40.
doi: 10.1016/j.ppees.2008.10.003
[8] Burkle L (2008). Bottom-up Effects of Nutrient Enrichment on Plants, Pollinators, and Their Interactions. PhD dissertation, Dartmouth College, New Hampshire.
[9] Campos EO, Bradshaw Jr HD, Daniel TL (2015). Shape matters: Corolla curvature improves nectar discovery in the hawkmoth Manduca sexta. Functional Ecology, 29, 462-468.
[10] Castro S, Silveira P, Navarro L (2008). Effect of pollination on floral longevity and costs of delaying fertilization in the out-crossing Polygala vayredae Costa (Polygalaceae). Annals of Botany, 102, 1043-1048.
doi: 10.1093/aob/mcn184
[11] Ceulemans T, Hulsmans E, Vanden EW, Honnay O (2017). Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L. PLOS ONE, 12, e0175160. DOI: 10.1371/journal.pone.0175160.
[12] Chao Q, Gao ZF, Zhang D, Zhao BG, Dong FQ, Fu CX, Liu LJ, Wang BC (2019). The developmental dynamics of the populus stem transcriptome. Plant Biotechnology Journal, 17, 206-219.
[13] Charlesworth D, Charlesworth B (1981). Allocation of resources to male and female functions in hermaphrodites. Biological Journal of the Linnean Society, 15, 57-74.
doi: 10.1111/j.1095-8312.1981.tb00748.x
[14] Charnov E (1982). The Theory of Sex Allocation. Princeton University Press, Princeton.
[15] Chen ZF, Gao JY (2011). Study on size-dependent sex allocation in Hedychium coccineum(Zingiberaceae). Journal of Yunnan University (Natural Sciences), 33, 594-603.
[ 陈智发, 高江云 (2011). 红姜花Hedychium coccineum依赖个体大小的性分配研究. 云南大学学报(自然科学版), 33, 594-603.]
[16] Cruden RW, Lyon DL (1985). Patterns of biomass allocation to male and female functions in plants with different mating systems. Oecologia, 66, 299-306.
doi: 10.1007/BF00379868
[17] Ding BQ, Mou FJ, Sun W, Chen SL, Peng FE, Bradshaw Jr HD, Yuan YW (2017). A dominant-negative actin mutation alters corolla tube width and pollinator visitation in Mimulus lewisii. New Phytologist, 213, 1936-1944.
doi: 10.1111/nph.2017.213.issue-4
[18] Dorji T, Totland Ø, Moe SR, Hopping KA, Pan JB, Klein JA (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19, 459-472.
[19] Duan YW, Dafni A, Hou QZ, He YP, Liu JQ (2010). Delayed selfing in an alpine biennial Gentianopsis paludosa(Gentianaceae) in the Qinghai-Tibetan Plateau. Journal of Integrative Plant Biology, 52, 593-599.
[20] Duan YW, He YP, Liu JQ (2005). Reproductive ecology of the Qinghai-Tibet Plateau endemic Gentiana straminea(Gentianaceae), a hermaphrodite perennial characterized by herkogamy and dichogamy. Acta Oecologica, 27, 225-232.
[21] Duan YW, Liu JQ (2007). Pollinator shift and reproductive performance of the Qinghai-Tibetan Plateau endemic and endangered Swertia przewalskii(Gentianaceae). Biodiversity and Conservation, 16, 1839-1850.
[22] Duan YW, Zhang TF, Liu JQ (2007). Pollination biology of Anisodus tanguticus(Solanaceae). Biodiversity Science, 15, 584-591.
[ 段元文, 张挺峰, 刘建全 (2007). 山莨菪(茄科)的传粉生物学. 生物多样性, 15, 584-591.]
[23] Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
[24] Emmett BA (2007). Nitrogen saturation of terrestrial ecosystems: Some recent findings and their implications for our conceptual framework. Water, Air and Soil Pollution, 7, 99-109.
[25] Fabbro T, Körner C (2004). Altitudinal differences in flower traits and reproductive allocation. Flora, 199, 70-81.
[26] Fan BL, Meng JL, Zhao ZG, Du GZ (2008). Influence of altitude on reproductive traits and resource allocation of species of Ranunculaceae at east Qinghai Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 28, 805-811.
[ 樊宝丽, 孟金柳, 赵志刚, 杜国祯 (2008). 海拔对青藏高原东部毛茛科植物繁殖特征和资源分配的影响. 西北植物学报, 28, 805-811.]
[27] Fan DM, Yang YP (2009). Altitudinal variations in flower and bulbil production of an alpine perennial, Polygonum viviparum L.(Polygonaceae). Plant Biology, 11, 493-497.
[28] Fan DM, Yang YP (2009). Reproductive performance in two populations of Polygonum viviparum(Polygonaceae) under different habitats. Acta Botanica Yunnanica, 31, 153-157.
[ 范邓妹, 杨永平 (2009). 不同生境下珠芽蓼(蓼科)的繁殖策略比较. 云南植物研究, 31, 153-157.]
[29] Fang Q, Huang SQ (2012). Progress in pollination networks: Network structure and dynamics. Biodiversity Science, 20, 300-307.
doi: 10.3724/SP.J.1003.2012.08026
[ 方强, 黄双全 (2012). 传粉网络的研究进展: 网络的结构和动态. 生物多样性, 20, 300-307.]
doi: 10.3724/SP.J.1003.2012.08026
[30] Fang Q, Huang SQ (2012). Relative stability of core groups in pollination networks in a biodiversity hotspot over four years. PLOS ONE, 7, e32663. DOI: 10.1371/journal.pone.0032663.
[31] Fang Q, Huang SQ (2013). A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology, 94, 1176-1185.
doi: 10.1890/12-1634.1
[32] Fang Q, Huang SQ (2016a). Plant-pollinator interactions in a biodiverse meadow are rather stable and tight for 3 consecutive years. Integrative Zoology, 11, 199-206.
doi: 10.1111/inz2.2016.11.issue-3
[33] Fang Q, Huang SQ (2016b). A paradoxical mismatch between interspecific pollinator moves and heterospecific pollen receipt in a natural community. Ecology, 97, 1970-1978.
doi: 10.1002/ecy.1433
[34] Fitter AH, Fitter RSR (2002). Rapid changes in flowering time in British plants. Science, 296, 1689-1691.
[35] Gardener MC, Gillman MP (2001). The effects of soil fertilizer on amino acids in the floral nectar of corncockle, Agrostemma githago(Caryophyllaceae). Oikos, 92, 101-106.
[36] Gebler M, Schoot Uiterkamp AJM, Visser C (2014). A global sustainability perspective on 3D printing technologies. Energy Policy, 74, 158-167.
doi: 10.1016/j.enpol.2014.08.033
[37] Gijbels P, Ceulemans T, van den Ende W, Honnay O (2015). Experimental fertilization increases amino acid content in floral nectar, fruit set and degree of selfing in the orchid Gymnadenia conopsea. Oecologia, 179, 785-795.
doi: 10.1007/s00442-015-3381-8
[38] Gijbels P, van den Ende W, Honnay O (2014). Landscape scale variation in nectar amino acid and sugar composition in a Lepidoptera pollinated orchid species and its relation with fruit set. Journal of Ecology, 102, 136-144.
[39] Gong YB, Huang SQ (2009). Floral symmetry: Pollinator-‌mediated stabilizing selection on flower size in bilateral species. Proceedings of the Royal Society B, 276, 4013-4020.
[40] Gong YB, Huang SQ (2011). Temporal stability of pollinator preference in an alpine plant community and its implications for the evolution of floral traits. Oecologia, 166, 671-680.
[41] Guo H, Mazer SJ, Du GZ (2010). Geographic variation in primary sex allocation per flower within and among 12 species of Pedicularis(Orobanchaceae): Proportional male investment increases with elevation. American Journal of Botany, 97, 1334-1341.
doi: 10.3732/ajb.0900301
[42] Guo W, Wang LL, Sun S, Yang YP, Duan YW (2014). Sexual interference in two Chamerion species with contrasting modes of movement herkogamy. Journal of Systematics and Evolution, 52, 355-362.
doi: 10.1111/jse.12056
[43] Hansen DM, van der Niet T, Johnson SD (2012). Floral signposts: Testing the significance of visual “nectar guides” for pollinator behaviour and plant fitness. Proceedings of the Royal Society B, 279, 634-639.
[44] Hao N, Su X, Wu Q, Chang LB, Zhang SH, Sun K (2016). Size-dependent of Qinghai-Tibetan Plateau Viola tuberifera(Violaceae) bulbs allocation. Guihaia, 36, 674-678.
[ 郝楠, 苏雪, 吴琼, 常立博, 张世虎, 孙坤 (2016). 青藏高原东缘块茎堇菜鳞茎分配的个体大小依赖性. 广西植物, 36, 674-678.]
[45] He JD, Xue JY, Gao J, Wang JN, Wu Y (2017). Adaptations of the floral characteristics and biomass allocation patterns of Gentiana hexaphylla to the altitudinal gradient of the eastern Qinghai-Tibet Plateau. Journal of Mountain Science, 14, 1563-1576.
doi: 10.1007/s11629-017-4424-x
[46] He YP, Duan YW, Fei SM, Liu JQ, Yang HL (2008). Resource allocation of Primula nutans population in the alpine wetland of the east Qinghai-Tibetan Plateau, China. Chinese Journal of Applied and Environmental Biology, 14, 180-186.
[ 何亚平, 段元文, 费世民, 刘建全, 杨慧玲 (2008). 青藏高原天山报春高寒湿地种群的花期资源分配. 应用与环境生物学报, 14, 180-186.]
[47] He YP, Duan YW, Liu JQ, Smith WK (2006). Floral closure in response to temperature and pollination in Gentiana straminea Maxim.(Gentianaceae), an alpine perennial in the Qinghai-Tibetan Plateau. Plant Systematics and Evolution, 256, 17-33.
[48] Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009). How does climate warming affect plant-pollinator interactions? Ecology Letters, 12, 184-195.
[49] Honnay O, Bossuyt B (2005). Prolonged clonal growth: Escape route or route to extinction? Oikos, 108, 427-432.
[50] Hoover SER, Ladley JJ, Shchepetkina AA, Tisch M, Gieseg SP, Tylianakis JM (2012). Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutuallism. Ecology Letters, 15, 227-234.
[51] Hou QZ, Wen J, Li HC, Ren YL, Sha JH, Zhao DG (2017). Reproductive allocation of three Gentianaceae species. Pratacultural Science, 34, 1017-1023.
[ 侯勤正, 文静, 李昊聪, 任昱兰, 沙建华, 赵东光 (2017). 3种龙胆科植物的资源分配对策. 草业科学, 34, 1017-1023.]
[52] Hou QZ, Ye GJ, Ma XB, Su X, Zhang SH, Sun K (2016). Size-dependent reproductive allocation of Gentianopsis paludosa in different habitats of the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 36, 2686-2694.
[ 侯勤正, 叶广继, 马小兵, 苏雪, 张世虎, 孙坤 (2016). 青藏高原不同生境下湿生扁蕾个体大小依赖的繁殖分配. 生态学报, 36, 2686-2694.]
[53] Huai HY, Wei WH, Zhang YL, Yang CX (2005). Characteristics of clonal growth and reproduction of Lagotis brachystachya at different altitudes. Chinese Journal of Applied and Environmental Biology, 11, 18-22.
[ 淮虎银, 魏万红, 张镱锂, 杨传旭 (2005). 不同海拔高度短穗兔耳草克隆生长及克隆繁殖特征. 应用与环境生物学报, 11, 18-22.]
[54] Huang JH, Huang JH, Liu CR, Zhang JL, Lu XH, Ma KP (2016). Diversity hotspots and conservation gaps for the Chinese endemic seed flora. Biological Conservation, 198, 104-112.
[55] Huang SQ (2007). Studies on plant-pollinator interaction and its significances. Biodiversity Science, 15, 569-575.
[ 黄双全 (2007). 植物与传粉者相互作用的研究及其意义. 生物多样性, 15, 569-575.]
[56] Huang SQ (2014). Most effective pollinator principle of floral evolution: Evidence and query. Chinese Bulletin of Life Sciences, 26, 118-124.
[ 黄双全 (2014). 花部特征演化的最有效传粉者原则: 证据与疑问. 生命科学, 26, 118-124.]
[57] Huang SQ, Lu Y, Chen YZ, Luo YB, Delph LF (2009). Parthenogenesis maintains male sterility in a gynodioecious orchid. The American Naturalist, 174, 578-584.
[58] Huang SQ, Takahashi Y, Dafni A (2002). Why does the flower stalk of Pulsatilla cernua(Ranunculaceae) bend during anthesis? American Journal of Botany, 89, 1599-1603.
[59] Igic B, Lande R, Kohn JR (2008). Loss of self-incompatibility and its evolutionary consequences. International Journal of Plant Sciences, 169, 93-104.
[60] Inouye DW (1983). The ecology of nectar robbing. In: Barbara B, Thomas E, Barbara B eds. The Biology of Nectaries. Columbia University Press, New York. 153-173.
[61] Intergovernmental Panel on Climate Change (IPCC) (2016). IPCC Database. Aug 24, 2018.
[62] Iwasa Y, Cohen D (1989). Optimal growth schedule of a perennial plant. The American Naturalist, 133, 480-505.
doi: 10.1086/284931
[63] Jiang P, Rausher M (2018). Two genetic changes in Cis-‌regulatory elements caused evolution of petal spot position in Carkia. Nature Plants, 4, 14-22.
[64] Körner C (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin.
[65] Koski MH, Ashman TL (2015). Floral pigmentation patterns provide an example of Gloger’s rule in plants. Nature Plants, 1, 14007. DOI: 10.1038/nplants.‌2014.7.
[66] Kozłowski J (1992). Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends in Ecology and Evolution, 7, 15-19.
[67] Lang DD, Tang M, Zhou X (2018). Qualitative and quantitative molecular construction of plant-pollinator network: Application and prospective. Biodiversity Science, 26, 445-456.
doi: 10.17520/biods.2018058
[ 郎丹丹, 唐敏, 周欣 (2018). 传粉网络构建的定性定量分子研究: 应用与展望. 生物多样性, 26, 445-456.]
doi: 10.17520/biods.2018058
[68] Leonard AS, Papaj DR (2011). “X” marks the spot: The possible benefits of nectar guides to bees and plants. Functional Ecology, 25, 1293-1301.
doi: 10.1111/j.1365-2435.2011.01885.x
[69] Li B, Liu ZJ, Zhao ZG, Hu C, Ren HM, Wu GQ (2013). Influence of altitude on reproductive traits and reproductive allocation of different colours in Anemone obtusiloba populations. Acta Prataculturae Sinica, 22(1), 10-19.
doi: 10.11686/cyxb20130102
[ 李冰, 刘左军, 赵志刚, 胡春, 任红梅, 伍国强 (2013). 海拔对钝裂银莲花不同花色居群间繁殖特征及繁殖分配的影响. 草业学报, 22(1), 10-19.]
doi: 10.11686/cyxb20130102
[70] Li JJ, Yang C, Liu XL, Shao XQ (2019). Inconsistent stoichiometry response of grasses and forbs to nitrogen and water additions in an alpine meadow of the Qinghai-Tibet Plateau. Agriculture, Ecosystems & Environment, 279, 178-186.
[71] Liang Y (2009). Reproductive Allocation Strategies of Gentiana in the Eastern of Qinghai-Tibet Plateau. Master degree dissertation, Northwest Normal University, Lanzhou.
[ 梁艳 (2009). 青藏高原东缘龙胆属植物繁殖分配对策研究. 硕士学位论文, 西北师范大学, 兰州.]
[72] Liang Y, Zhang XC, Chen XL (2008). Individual size and resource allocation in perennial Gentiana. Acta Botanica Boreali-Occidentalia Sinica, 28, 2400-2407.
[ 梁艳, 张小翠, 陈学林 (2008). 多年生龙胆属植物个体大小与花期资源分配研究. 西北植物学报, 28, 2400-2407.]
[73] Liu ZJ, Du GZ, Chen JK (2003). Relationship between habitats and resource allocation of inflorescence structure in Ligularia virgaurea. Acta Phytoecologia Sinica, 27, 344-351.
[ 刘左军, 杜国祯, 陈家宽 (2003). 黄帚橐吾花序结构的资源配置与环境的关系. 植物生态学报, 27, 344-351.]
[74] Lü CQ, Tian HQ (2007). Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research Atmospheres, 112, D22S05. DOI: 10.1029/2006JD007990.
[75] Lu HL, Shao QQ, Liu JY, Wang JB, Chen ZQ (2007). Temporo-‌spatial distribution of summer precipitation over Qinghai-‌Tibet Plateau during the last 44 years. Acta Geographica Sinica, 62, 946-958.
[ 卢鹤立, 邵全琴, 刘纪远, 王军邦, 陈卓奇 (2007). 近44年来青藏高原夏季降水的时空分布特征. 地理学报, 62, 946-958.]
[76] Lu NN, Zhao ZG (2014). Flower symmetry and flower size variability: An examination of Berg’s hypotheses in an alpine meadow. Chinese Journal of Plant Ecology, 38, 460-467.
doi: 10.3724/SP.J.1258.2014.00042
[ 路宁娜, 赵志刚 (2014). 花对称性与植物花大小的变异性: 在高寒草甸植物群落检验Berg的假说. 植物生态学报, 38, 460-467.]
doi: 10.3724/SP.J.1258.2014.00042
[77] Luo D, Zhou Q, Wu YG, Chai XT, Liu WX, Wang YR, Yang QC, Wang ZY, Liu ZP (2019). Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biology, 19, 32. DOI: 10.1186/s12870-019-1630-4.
doi: 10.1186/s12870-019-1630-4
[78] Ma RJ, Du GZ, Lu BR, Chen JK, Sun K, Hara T, Li B (2006). Reproductive modes of three Ligularia weeds (Asteraceae) in grasslands in Qinghai-Tibet Plateau and their implications for grassland management. Ecological Research, 21, 246-254.
doi: 10.1007/s11284-005-0114-1
[79] Ma YX, Wang YF, Li YY, Wang WY, Kou J (2017). Correlation between reproductive allocation and elevation of Saussurea graminea in eastern margin of the Tibetan Plateau. Bulletin of Botanical Research, 37, 23-30.
[ 马诣欣, 王一峰, 李怡颖, 王文越, 寇靖 (2017). 青藏高原东缘禾叶风毛菊的繁殖分配与海拔的相关性. 植物研究, 37, 23-30.]
[80] Malerba R, Nattero J (2012). Pollinator response to flower color polymorphism and floral display in a plant with a single-‌locus floral color polymorphism: Consequences for plant reproduction. Ecological Research, 27, 377-385.
doi: 10.1007/s11284-011-0908-2
[81] Memmott J (1999). The structure of a plant-pollinator food web. Ecology Letters, 2, 276-280.
doi: 10.1046/j.1461-0248.1999.00087.x
[82] Meng JL (2010). Reproductive Strategies of Three Common Species of Ranunculaceae at Alpine Meadow in Qinghai Tibetan Plateau. PhD dissertation, Lanzhou University, Lanzhou.
[ 孟金柳 (2010). 青藏高原高寒草甸3种常见毛茛科植物繁殖对策的研究. 博士学位论文, 兰州大学, 兰州.]
[83] Meng LH, Wang ZK, Liu CY, Zhu WL (2011). Reproductive allocation of an alpine perennial, Polygonum macrophyllum. Acta Botanica Boreali-Occidentalia Sinica, 31, 1157-1163.
[ 孟丽华, 王政昆, 刘春燕, 朱万龙 (2011). 高山植物圆穗蓼的繁殖资源分配. 西北植物学报, 31, 1157-1163.]
[84] Mu JP, Peng YH, Xi XQ, Wu XW, Griffin JN, Niklas KJ, Sun SC (2014). Domesticated honey bees evolutionarily reduce flower nectar volume in a Tibetan lotus. Ecology, 95, 3161-3172.
doi: 10.1890/13-2055.1
[85] Mu JP, Peng YH, Xi XQ, Wu XW, Li GY, Niklas KJ, Sun SC (2015). Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae. Annals of Botany, 116, 899-906.
doi: 10.1093/aob/mcv042
[86] Mu JP, Zeng YL, Wu QG, Niklas KJ, Niu KC (2016). Traditional grazing regimes promote biodiversity and increase nectar production in Tibetan alpine meadows. Agriculture, Ecosystems & Environment, 233, 336-342.
[87] Muñoz AA, Celedon-Neghme C, Cavieres LA, Arroyo MTK (2005). Bottom-up effects of nutrient availability on flower production, pollinator visitation, and seed output in a high-Andean shrub. Oecologia, 143, 126-135.
doi: 10.1007/s00442-004-1780-3
[88] Munson SM, Long AL (2017). Climate drives shifts in grass reproductive phenology across the western USA. New Phytologist, 213, 1945-1955.
doi: 10.1111/nph.2017.213.issue-4
[89] Nazir R, Reshi Z, Wafai BA (2008). Reproductive ecology of medicinally important Kashmir Himalayan species of Digitalis L. Plant Species Biology, 23, 59-70.
doi: 10.1111/psb.2008.23.issue-2
[90] Niu CJ, Lou AR, Sun RY, Li QF (2015). Fundamentals of Ecology. 3rd edn. Higher Education Press, Beijing.
[ 牛翠娟, 娄安如, 孙儒泳, 李庆芬 (2015). 基础生态学. 第三版. 高等教育出版社, 北京.]
[91] Niu Y, Gong QB, Peng DL, Sun H, Li ZM (2017). Function of male and hermaphroditic flowers and size-dependent gender diphasy of Lloydia oxycarpa(Liliaceae) from Hengduan Mountains. Plant Diversity, 39, 187-193.
doi: 10.1016/j.pld.2017.06.001
[92] Peng DL, Ou XK, Xu B, Zhang ZQ, Niu Y, Li ZM, Sun H (2014). Plant sexual systems correlated with morphological traits: Reflecting reproductive strategies of alpine plants. Journal of Systematics and Evolution, 52, 368-377.
doi: 10.1111/jse.v52.3
[93] Peng DL, Zhang ZQ, Niu Y, Yang Y, Song B, Sun H, Li ZM (2012). Advances in the studies of reproductive strategies of alpine plants. Biodiversity Science, 20, 286-299.
doi: 10.3724/SP.J.1003.2012.14039
[ 彭德力, 张志强, 牛洋, 杨扬, 宋波, 孙航, 李志敏 (2012). 高山植物繁殖策略的研究进展. 生物多样性, 20, 286-299.]
doi: 10.3724/SP.J.1003.2012.14039
[94] Peng DL, Zhang ZQ, Xu B, Li ZM, Sun H (2012). Patterns of flower morphology and sexual systems in the subnival belt of the Hengduan Mountains, SW China. Alpine Botany, 122(2), 65-73.
[95] Piao SL, Fang JY, Chen AP (2003). Seasonal dynamics of terristrial net primary production in response to climate change in China. Acta Botanica Sinica, 45, 269-275.
[96] Policha T, Davis A, Barnadas M, Dentinger BTM, Raguso RA, Roy BA (2016). Disentangling visual and olfactory signals in mushroom-mimicking Dracula orchids using realistic three-dimensional printed flowers. New Phytologist, 210, 1058-1071.
doi: 10.1111/nph.13855
[97] Potts JG (2015). Effects of floral symmetry on pollination in Bidens aristosa. The Southwest Naturalist, 60, 370-373.
doi: 10.1894/0038-4909-60.4.370
[98] Qi GH (2018). Effect of Exotic Introduced Plants Azadirachta indica and Moringa Oleifera on Pollination Network of Dry-hot Valley in Honghe Area. PhD dissertation, Chinese Academy of Forestry, Beijing.
[ 起国海 (2018). 外来引种植物印楝和辣木对红河干热河谷传粉网络的影响. 博士学位论文, 中国林业科学研究院, 北京.]
[99] Qiu YX, Fu CX, Comes HP (2011). Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molecular Phylogenetics and Evolution, 59, 225-244.
[100] Qu B (2017). Variation of Floral Traits and Reproductive Adaptation along Elevational Gradient of Clematis tangutica. Master degree dissertation, Northwest Normal University, Lanzhou.
[ 屈博 (2017). 甘青铁线莲花部特征的海拔变异及其繁殖适应. 硕士学位论文, 西北师范大学, 兰州.]
[101] Scaven VL, Rafferty NE (2013). Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Current Zoology, 59, 418-426.
doi: 10.1093/czoolo/59.3.418
[102] Settele J, Bishop J, Potts SG (2016). Climate change impacts on pollination. Nature Plants, 2, 16092. DOI: 10.1038/‌nplants.‌2016.92.
doi: 10.1038/nplants.2016.92
[103] Shrestha M, Dyer AG, Bhattarai P, Burd M (2014). Flower colour and phylogeny along an altitudinal gradient in the Himalayas of Nepal. Journal of Ecology, 102, 126-135.
[104] Skogen KA, Holsinger KE, Cardon ZG (2011). Nitrogen deposition, competition and the decline of a regionally threatened legume, Desmodium cuspidatum. Oecologia, 165, 261-269.
doi: 10.1007/s00442-010-1818-7
[105] Smith JG, Sconiers W, Spasojevic MJ, Ashton IW, Suding KN (2012). Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen. Arctic, Antarctic, and Alpine Research, 44, 135-142.
[106] Soares RGS, Ferreira PA, Lopes LE (2017). Can plant-pollinator network metrics indicate environmental quality? Ecological Indicators, 78, 361-370.
[107] Song SY, Chen Y, Liu L, See YHB, Mao CZ, Gan YB, Yu H (2018). OsFTIP7 determines auxin-mediated anther dehiscence in rice. Nature Plants, 4, 495-504.
[108] Sun F, Zhong ZC (1997). Reproductive allocation in Gordonia acuminata in subtropical evergreen broad-leaved forest and analysis of its adaptation using gray rational degree. Acta Phytoecologia Sinica, 21, 44-52.
[ 孙凡, 钟章成 (1997). 四川大头茶繁殖分配及其环境适应性的关联度研究. 植物生态学报, 21, 44-52.]
[109] Sun H (2013). Wild plant germplasm’s collection, investigation and preservation on the special environment from Qinghai-‌Tibet Plateau. Plant Diversity and Resources, 35, 217-220.
[ 孙航 (2013). 青藏高原特殊生境下野生植物种质资源的调查与保存. 植物分类与资源学报, 35, 217-220.]
[110] Sun H, Niu Y, Chen YS, Song B, Liu CQ, Peng DL, Chen JG, Yang Y (2014). Survival and reproduction of plant species in the Qinghai-Tibet Plateau. Journal of Systematics and Evolution, 52, 378-396.
[111] Sun JF, Gong YB, Renner SS, Huang SQ (2008). Multifunctional bracts in the dove tree Davidia involucrata(Nyssaceae: Cornales): Rain protection and pollinator attraction. The American Naturalist, 171, 119-124.
doi: 10.1086/523953
[112] Takebayashi N, Morrell PL (2001). Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. American Journal of Botany, 88, 1143-1150.
[113] Torabinejad J, Caldwell MM, Flint SD, Durham S (1998). Susceptibility of pollen to UV-B radiation: An assay of 34 taxa. American Journal of Botany, 85, 360-369.
[114] Totland Ø (2004). No evidence for a role of pollinator discrimination in causing selection on flower size through female reproduction. Oikos, 106, 558-564.
[115] Trunschke J, Stöcklin J (2017). Plasticity of flower longevity in alpine plants is increased in populations from high elevation compared to low elevation populations. Alpine Botany, 127(1), 41-51.
doi: 10.1007/s00035-016-0176-4
[116] Tu YL, Wang LP, Wang XL, Wang LL, Duan YW (2019). Status of invasive plants on local pollination networks: A case study of Tagetes minuta in Tibet based on pollen grains from pollinators. Biodiversity Science, 27, 306-313.
doi: 10.17520/biods.2018269
[ 土艳丽, 王力平, 王喜龙, 王林林, 段元文 (2019). 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位. 生物多样性, 27, 306-313.]
doi: 10.17520/biods.2018269
[117] Wang LL, Zhang C, Yang ML, Zhang GP, Zhang ZQ, Yang YP, Duan YW (2017). Intensified wind pollination mediated by pollen dimorphism after range expansion in an ambophilous biennial Aconitum gymnandrum. Ecology and Evolution, 7, 541-549.
doi: 10.1002/ece3.2017.7.issue-2
[118] Wang LP, Wang LL, He ZR, Yang YP, Duan YW (2019). Application of 3D printing technology in plant reproductive ecology. Guihaia, 39, 279-284.
[ 王力平, 王林林, 和兆荣, 杨永平, 段元文 (2019). 3D打印技术在植物繁殖生态学中的应用进展与评述. 广西植物, 39, 279-284.]
[119] Wang Q (2013). Biological Effects of Experimental Warming on Pollination in Impatiens Oxyanthera (Balsaminaceae). PhD dissertation, University of Chinese Academy of Sciences, Beijing.
[ 王琼 (2013). 模拟增温对红雉凤仙花传粉的生物学效应. 博士学位论文, 中国科学院大学, 北京.]
[120] Wang Y, Hu LJ, Duan YW, Yang YP (2010). Altitudinal variations in reproductive allocation of Bergenia purpurascens(Saxifragaceae). Acta Botanica Yunnanica, 32, 270-280.
[ 王赟, 胡莉娟, 段元文, 杨永平 (2010). 岩白菜(虎耳草科)不同海拔居群的繁殖分配. 云南植物研究, 32, 270-280.]
[121] Wang Y, Lin JX, Ding XM, Zhang N, Mu CS (2014). Research advances of plant reproductive strategy response to global climate change. Northern Horticulture, 38(19), 194-198.
[ 王颖, 蔺吉祥, 丁雪梅, 张娜, 穆春生 (2014). 植物繁殖策略响应全球气候变化的研究进展. 北方园艺, 38(19), 194-198.]
[122] Wang Y, Luo J, Xu JC (2009). A comparative study on the pollination mechanism of Anisodus luridus and A. carniolicoides(Solanaceae). Acta Botanica Yunnanica, 31, 211-218.
[ 王赟, 罗建, 许建初 (2009). 铃铛子和赛莨菪(茄科)的传粉机制比较研究. 云南植物研究, 31, 211-218.]
[123] Wang YF, Wang WY, Kou J, Ma YX, Li YY (2017). Response of flowering resource allocation of Saussurea arenaria Maxim to elevation. Journal of Northwest Normmal University (Natural Science), 53(3), 83-87.
[ 王一峰, 王文越, 寇靖, 马诣欣, 李怡颖 (2017). 沙生风毛菊花期资源分配对海拔的响应. 西北师范大学学报(自然科学版), 53(3), 83-87.]
[124] Wang YX, Liu ZJ, Zhao ZG, Hou M, Zhang XR, Lü WL (2018). Responses of floral longevity to pollination environments in 11 species from two alpine meadows. Biodiversity Science, 26, 510-518.
[ 王玉贤, 刘左军, 赵志刚, 侯盟, 张小瑞, 吕婉灵 (2018). 青藏高原高寒草甸植物花寿命对传粉环境的响应. 生物多样性, 26, 510-518.]
[125] Webb CJ (1999). Empirical studies: Evolution and maintenance of dimorphic breeding systems. In: Geber MA, Dawson TE, Delph LF eds. Gender and Sexual Dimorphism in Flowering Plants. Springer, Berlin. 61-95.
[126] Weiner J, Campbell LG, Pino J, Echarte L (2009). The allometry of reproduction within plant populations. Journal of Ecology, 97, 1220-1233.
[127] Wu Y, Liu YR, Peng H, Yang Y, Liu GL, Cao GX, Zhang Q (2015). Pollination ecology of alpine herb Meconopsis integrifolia at different altitudes. Chinese Journal of Plant Ecology, 39, 1-13.
[ 吴云, 刘玉蓉, 彭瀚, 杨勇, 刘光立, 操国兴, 张强 (2015). 高山植物全缘叶绿绒蒿在不同海拔地区的传粉生态学研究. 植物生态学报, 39, 1-13.]
[128] Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
[129] Xiao YA, Zhang SS, Yan XH, Dong M (2015). New advances in effects of global warming on plant-pollinator networks. Acta Ecologica Sinica, 35, 3871-3880.
[ 肖宜安, 张斯斯, 闫小红, 董鸣 (2015). 全球气候变暖影响植物-传粉者网络的研究进展. 生态学报, 35, 3871-3880.]
[130] Xu B, Wang JN, Shi FS, Gao J, Wu N (2013). Adaptation of biomass allocation patterns of wild Fritillaria unibracteata to alpine environment in the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 37, 187-196.
[ 徐波, 王金牛, 石福孙, 高景, 吴宁 (2013). 青藏高原东缘野生暗紫贝母生物量分配格局对高山生态环境的适应. 植物生态学报, 37, 187-196.]
[131] Xu Y, Ding YH, Li DL (2003). Climatic change over Qinghai and Xizang in 21st century. Plateau Meteorology, 22, 451-457.
[ 徐影, 丁一汇, 李栋梁 (2003). 青藏地区未来百年气候变化. 高原气象, 22, 451-457.]
[132] Xue J, He J, Wang L, Gao J, Wu Y (2018). Plant traits and biomass allocation of Gentiana hexaphylla on different slope aspects at the eastern margin of Qinghai-Tibet Plateau. Applied Ecology and Environmental Research, 16, 1835-1853.
[133] Yang JQ, Fan YL, Jiang XF, Li QJ, Zhu XF (2018a). Correlation between the timing of autonomous selfing and floral traits: A comparative study from three selfing Gentianopsis species (Gentianaceae). Scientific Reports, 8, 3634. DOI: 10.1038/s41598-018-21930-9.
[134] Yang JY (2018). Interspecific Relationships in Alpine Meadow Plant Communities: Pollinator-mediated Interactions and the Effect of Grazing. Master degree dissertation, Lanzhou University, Lanzhou.
[ 杨洁羽 (2018). 高寒草甸植物群落种间关系: 传粉者介导的相互作用及放牧影响. 硕士学位论文, 兰州大学, 兰州.]
[135] Yang ML, Wang LL, Zhang GP, Meng LH, Yang YP, Duan YW (2018b). Equipped for migrations across high latitude regions? Reduced spur length and outcrossing rate in a biennial Halenia elliptica(Gentianaceae) with mixed mating system along a latitude gradient. Frontiers in Genetics, 9, 223. DOI: 10.3389/fgene.2018.00223.
[136] Yang Y, Körner C, Sun H (2008). The ecological significance of pubescence in Saussurea medusa, a high-elevation Himalayan “woolly plant”. Arctic, Antarctic, and Alpine Research, 40, 250-255.
[137] Yang Y, Sun H (2009). The bracts of Saussurea velutina(Asteraceae) protect inflorescences from fluctuating weather at high elevations of the Hengduan mountains, southwestern China. Arctic, Antarctic, and Alpine Research, 41, 515-521.
[138] Yu HB, Deane DC, Sui XH, Fang SQ, Chu CJ, Liu Y, He FL (2019). Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau. Global Ecology and Biogeography, 28, 131-144.
doi: 10.1111/geb.v28.2
[139] Yu HB, Zhang YL, Liu LS, Chen C, Qi W (2018). Floristic characteristics and diversity patterns of seed plants endemic to the Tibetan Plateau. Biodiversity Science, 26, 130-137.
[ 于海彬, 张镱锂, 刘林山, 陈朝, 祁威 (2018). 青藏高原特有种子植物区系特征及多样性分布格局. 生物多样性, 26, 130-137.]
[140] Yu Q, Jia DR, Tian B, Yang YP, Duan YW (2016). Changes of flowering phenology and flower size in rosaceous plants from a biodiversity hotspot in the past century. Scientific Reports, 6, 28302. DOI: 10.1038/srep28302.
[141] Yuan YW, Rebocho AB, Sagawa JM, Stanley LE, Bradshaw Jr HD (2016). Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species. Proceedings of the National Academy of Sciences of the United States of America, 113, 2448-2453.
[142] Zhang C, Vereecken NJ, Wang LL, Tian B, Dafni A, Yang YP, Duan YW (2017). Are nectar guide colour changes a reliable signal to pollinators that enhances reproductive success? Plant Ecology & Diversity, 10, 89-96.
[143] Zhang C, Wang LL, Yang YP, Duan YW (2015). Flower evolution of alpine forbs in the open top chambers (OTCs) from the Qinghai-Tibet Plateau. Scientific Reports, 5, 10254. DOI: 10.1038/srep10254.
[144] Zhang C, Yang YP, Duan YW (2014a). Pollen sensitivity to ultraviolet-B (UV-B) suggests floral structure evolution in alpine plants. Scientific Reports, 4, 4520. DOI: 10.1038/‌srep04520.
[145] Zhang C, Zhou GY, Yang YP, Duan YW (2014b). Better than nothing: Evolution of autonomous selfing under strong inbreeding depression in an alpine annual from the Qinghai- Tibet Plateau. Journal of Systematics and Evolution, 52, 363-367.
[146] Zhang DY (2004). Evolution of Plant Life History and Reproductive Ecology. Science Press, Beijing.
[ 张大勇 (2004). 植物生活史进化与繁殖生态学. 科学出版社, 北京.]
[147] Zhang DY, Jiang XH (2001). Mating system evolution, resource allocation, and genetic diversity in plants. Acta Phytoecologia Sinica, 25, 130-143.
[ 张大勇, 姜新华 (2001). 植物交配系统的进化、资源分配对策与遗传多样性. 植物生态学报, 25, 130-143.]
[148] Zhang FP, Cai XH, Wang H, Ren ZX, Larson-Rabin Z, Li DZ (2012). Dark purple nectar as a foraging signal in a bird-pollinated Himalayan plant. New Phytologist, 193, 188-195.
[149] Zhang FP, Yang QY, Zhang SB (2016). Dual effect of phenolic nectar on three floral visitors of Elsholtzia rugulosa(Lamiaceae) in SW China. PLOS ONE, 11, e0154381. DOI: 10.1371/journal.pone.0154381.
[150] Zhang GP (2017). The Research of Flower Traits Evolution in Apline Plant Based on Community Phylogeny. Master degree dissertation, Yunnan Normal University, Kunming.
[ 张国鹏 (2017). 基于群落系统发育探讨高山植物的花部特征演化. 硕士学位论文, 云南师范大学, 昆明.]
[151] Zhang LC, Wang XJ, Du GZ (2011a). Primary floral allocation per flower in 12 Pedicularis(Orobanchaceae) species: Significant effect of two distinct rewarding types for pollinators. Journal of Plant Research, 124, 655-661.
[152] Zhang N (2006). Effects of UV-B Radiation Photosynthesis Growth and Reproduction of Three Annuals in Alpine Meadow. PhD dissertation, Lanzhou University, Lanzhou.
[ 张娜 (2006). UV-B辐射对三种高寒草甸一年生植物光合作用、生长和繁殖的影响. 博士学位论文, 兰州大学, 兰州.]
[153] Zhang S, Ai HL, Yu WB, Wang H, Li DZ (2010). Flower heliotropism of Anemone rivularis(Ranunculaceae) in the Himalayas: Effects on floral temperature and reproductive fitness. Plant Ecology, 209, 301-312.
[154] Zhang YW, Wang Y, Guo YH (2006). The effects of nectar robbing on plant reproduction and evolution. Journal of Plant Ecology (Chinese Version), 30, 695-702.
[ 张彦文, 王勇, 郭友好 (2006). 盗蜜行为在植物繁殖生态学中的意义. 植物生态学报, 30, 695-702.]
[155] Zhang ZQ, Kress WJ, Xie WJ, Ren PY, Gao JY, Li QJ (2011b). Reproductive biology of two Himalayan alpine gingers (Roscoea spp., Zingiberaceae) in China: Pollination syndrome and compensatory floral mechanisms. Plant Biology, 13, 582-589.
[156] Zhang ZQ, Zhang YH, Sun H (2011c). The reproductive biology of Stellera chamaejasme(Thymelaeaceae): A self-‌incompatible weed with specialized flowers. Flora, 206, 567-574.
[157] Zhao BB, Niu KC, Du GZ (2009). The effect of grazing on above-ground biomass allocation of 27 plant species in an alpine meadow plant community in Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 29, 1596-1606.
[ 赵彬彬, 牛克昌, 杜国祯 (2009). 放牧对青藏高原东缘高寒草甸群落27种植物地上生物量分配的影响. 生态学报, 29, 1596-1606.]
[158] Zhao F, Yang YP (2008). Reproductive allocation in a dioecious perennial Oxyria sinensis(Polygonaceae) along altitudinal gradients. Journal of Systematics and Evolution, 46, 830-835.
[ 赵方, 杨永平 (2008). 中华山蓼不同海拔居群的繁殖分配研究. 植物分类学报, 46, 830-835.]
[159] Zhao YH (2016). Effects of Altitude and Species Phylogeny on Pollination Network in Himalaya-Hengduan Mountains. PhD dissertation, University of Chinese Academy of Sciences, Beijing.
[ 赵延会 (2016). 喜马拉雅-横断山海拔和物种系统发育对传粉网络的影响. 博士学位论文, 中国科学院大学, 北京.]
[160] Zhao YH, Lázaro A, Ren ZX, Zhou W, Li HD, Tao ZB, Xu K, Wu ZK, Wolfe LM, Li DZ, Wang H (2019). The topological differences between visitation and pollen transport networks: A comparison in species rich communities of the Himalaya-Hengduan Mountains. Oikos, 128, 551-562.
[161] Zhao ZG, Du GZ (2003). Characteristics of the mating system and strategies for resource allocation in Ranunculaceae. Journal of Lanzhou University (Natural Sciences), 39, 70-74.
[ 赵志刚, 杜国祯 (2003). 毛茛科植物交配系统的特征与花期资源分配对策. 兰州大学学报(自然科学版), 39, 70-74.]
[162] Zhao ZG, Du GZ, Liu ZJ (2005). Sex allocation in hermaphroditic plants. Acta Ecologica Sinica, 25, 2725-2733.
[ 赵志刚, 杜国祯, 刘左军 (2005). 雌雄同花植物的性分配. 生态学报, 25, 2725-2733.]
[163] Zhao ZG, Du GZ, Ren QJ (2004). Size-dependent reproduction and sex allocation in five species of Ranunculaceae. Acta Phytoecologia Sinica, 28, 9-16.
[ 赵志刚, 杜国祯, 任青吉 (2004). 5种毛茛科植物个体大小依赖的繁殖分配和性分配. 植物生态学报, 28, 9-16.]
[164] Zhao ZG, Du GZ, Zhou XH, Wang MT, Ren QJ (2006). Variations with altitude in reproductive traits and resource allocation of three Tibetan species of Ranunculaceae. Australian Journal of Botany, 54, 691-700.
doi: 10.1071/BT05015
[165] Zhao ZG, Liu ZJ, Conner JK (2015). Plasticity of floral sex allocation within inflorescences of hermaphrodite Aconitum gymnandrum. Journal of Plant Ecology, 8, 130-135.
doi: 10.1093/jpe/rtv019
[166] Zhao ZG, Meng JL, Fan BL, Du GZ (2008). Size-dependent sex allocation in Aconitum gymnandrum(Ranunculaceae): Physiological basis and effects of maternal family and environment. Plant Biology, 10, 694-703.
[167] Zheng D, Chen WL (1981). A preliminary study on the vertical belts of vegetation of the eastern Himalayas. Bulletin of Botany, 23, 228-234.
[ 郑度, 陈伟烈 (1981). 东喜马拉雅植被垂直带的初步研究. 植物学报, 23, 228-234.]
[168] Zhou W, Wang H (2014). Pollen dispersal analysis using DNA markers. Biodiversity Science, 22, 97-108.
[ 周伟, 王红 (2014). 基于DNA分子标记的花粉流动态分析. 生物多样性, 22, 97-108.]
[169] Zhu JT (2016). Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow. Chinese Journal of Plant Ecology, 40, 1028-1036.
[ 朱军涛 (2016). 实验增温对藏北高寒草甸植物繁殖物候的影响. 植物生态学报, 40, 1028-1036.]
[1] CAI Qin, DING Jun-Xiang, ZHANG Zi-Liang, HU Jun, WANG Qi-Tong, YIN Ming-Zhen, LIU Qing, YIN Hua-Jun. Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2019, 43(12): 1048-1060.
[2] MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(1): 77-84.
[3] ZHANG Yun, YIN Ding-Cai, TIAN Kun, ZHANG Wei-Guo, HE Rong-Hua, HE Wen-Qing, SUN Jiang-Mei, LIU Zhen-Ya. Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China [J]. Chin J Plan Ecolo, 2018, 42(6): 629-639.
[4] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[5] GENG Xiao-Dong, Xu Ri, LIU Yong-Wen. Responses of ecosystem carbon exchange to multi-level water addition in an alpine meadow in Namtso of Qinghai-Xizang Plateau, China [J]. Chin J Plan Ecolo, 2018, 42(3): 397-405.
[6] SHI Guo-Xi, WANG Wen-Ying, JIANG Sheng-Jing, CHENG Gang, YAO Bu-Qing, FENG Hu-Yuan, ZHOU Hua-Kun. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity [J]. Chin J Plan Ecolo, 2018, 42(1): 126-132.
[7] GOU Xiao-Lin, ZHOU Qing-Ping, CHEN You-Jun, WEI Xiao-Xing, TU Wei-Guo. Characteristics of nutrients in two dominant plant species and rhizospheric soils in alpine desert of the Qinghai-Xizang Plateau under contrasting climates [J]. Chin J Plan Ecolo, 2018, 42(1): 133-142.
[8] CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19.
[9] WANG Jun, WANG Guan-Qin, LI Fei, PENG Yun-Feng, YANG Gui-Biao, YU Jian-Chun, ZHOU Guo-Ying, YANG Yuan-He. Effects of short-term experimental warming on soil microbes in a typical alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 116-125.
[10] Yang WANG, Lin-Lin MIAO, Dan YU, Chun-Hua LIU, Zhong WANG. Effects of environmental factors on gross caloric values of three life-forms aquatic plants on the Qinghai-Xizang Plateau, China [J]. Chin J Plan Ecolo, 2017, 41(2): 209-218.
[11] He-Liang HE, Xiao-Cheng YANG, Dan-Dan LI, Chun-Ying YIN, Yun-Xiang LI, Guo-Ying ZHOU, Lin ZHANG, Qing LIU. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau [J]. Chin J Plan Ecolo, 2017, 41(1): 126-135.
[12] Ping Xie. How did nucleus and sexual reproduction come into being? [J]. Biodiv Sci, 2016, 24(8): 966-976.
[13] Jian WANG, Gen-Xu WANG, Chang-Ting WANG, Fei RAN, Rui-Ying CHANG. Carbon storage and potentials of the broad-leaved forest in alpine region of the Qinghai- Xizang Plateau, China [J]. Chin J Plan Ecolo, 2016, 40(4): 374-384.
[14] Bei-Bei ZHANG, Fang LIU, Jin-Zhi DING, Kai FANG, Gui-Biao YANG, Li LIU, Yong-Liang CHEN, Fei LI, Yuan-He YANG. Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores [J]. Chin J Plan Ecolo, 2016, 40(2): 93-101.
[15] Jun-Tao ZHU. Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow [J]. Chin J Plan Ecolo, 2016, 40(10): 1028-1036.
Full text



[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[6] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[7] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[8] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .
[9] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .
[10] Cheng Changdu. Proposals on Some Problems to Develop the Agriculture, Forestry, Animal Husbandry and Fishery as well as Sideline Culture from the View-point of Ecological Balance[J]. Chin J Plan Ecolo, 1981, 5(1): 65 -71 .