Chin J Plan Ecolo ›› 2011, Vol. 35 ›› Issue (7): 751-758.doi: 10.3724/SP.J.1258.2011.00751

• Research Articles • Previous Articles     Next Articles

Effect of accumulated temperature on seed germination—a case study of 12 Compositae species on the eastern Qinghai-Tibet Plateau of China

LIU Wen, LIU Kun, ZHANG Chun-Hui, and DU Guo-Zhen   

  1. Key Laboratory of Arid and Grassland Ecology of Ministry of Education, Lanzhou University, Lanzhou 730000, China
  • Received:2010-10-26 Revised:2011-05-16 Online:2011-08-18 Published:2011-07-01
  • Contact: DU Guo-Zhen E-mail:guozdu@lzu.edu.cn

Abstract:

Aim Temperature is an important environmental factor influencing seed germination. Our objective was to research the seed germination response of 12 Compositae species from the eastern Qinghai-Tibet Plateau of China to different temperatures using the accumulated temperature model.
Methods All 12 species belong to four genera of Compositae. Seeds of each species were germinated at five constant temperatures (5, 10, 15, 20 and 25 °C), and germination was recorded once per day. We combined the logistic function and the accumulated temperature equation and used non-linear regression to estimate the base temperature and accumulated temperature for seed germination of each species.
Important findings The average base temperature and accumulated temperature of the 12 species were 0 °C and 94.5 °C·d, respectively. The base temperature was lower and the accumulated temperature was higher than reported by previous researchers. These are the result of long-term adaptation to the temperature environment of the Qinghai-Tibet Plateau. There was a significant negative correlation between base temperature and accumulated temperature (p = 0.04). Therefore, species with lower base temperature would avoid the risk of seeds germinating earlier in an environment with changeable temperature. A significant positive correlation existed between seed mass and accumulated temperature (p = 0.01). Under relatively constant base temperature, small-seeded species germinated faster than large-seeded ones, giving them priority of germination in early succession.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xiling Dai;Jianguo Cao;Quanxi Wang* . Formation and Development of Sporoderm of Ceratopteris thalictroides (L.) Brongn. (Parkeriaceae)[J]. Chin Bull Bot, 2008, 25(01): 72 -79 .
[2] Liu De-li. Heat-Shock Proteins of Plants and their Functions[J]. Chin Bull Bot, 1996, 13(01): 14 -19 .
[3] Chengqiang Ding, Dan Ma, Shaohua Wang, Yanfeng Ding. Optimization Process and Method of 2-D Electrophoresis for Rice Proteomics[J]. Chin Bull Bot, 2011, 46(1): 67 -73 .
[4] Xing Xue-rong Lu Chun-sheng Guo Da-li. Effect of Oraganic Acid to Nitrate Reductase and Nitrite Reductase Activity in the Vegetables[J]. Chin Bull Bot, 1995, 12(专辑2): 156 -162 .
[5] SONG Ke-Min. Phosphorus Nutrition of Plants: Phosphate Transport Systems and their Regulation[J]. Chin Bull Bot, 1999, 16(03): 251 -256 .
[6] CHEN Fa-Ju;YANG Ying-Gen;ZHAO De-Xiu;GUI Yao-Lin and GUO Zhong-Chen. Advances in Studies of Species Habitats Distribution and Chemical Composition of Snow Lotuses(Saussurea) in China[J]. Chin Bull Bot, 1999, 16(05): 561 -566 .
[7] YANG Hong-QiangJIE Yu-lingLI Jun. The Stresses Messenger from Roots and Its Production and Transport in Plant[J]. Chin Bull Bot, 2002, 19(01): 56 -62 .
[8] Hui Li, Guangcan Zhang, Huicheng Xie, Jingwei Xu, Chuanrong Li, Juwen Sun. The Effect of Phenol Concentration on Photosynthetic Physiological Parameters of Salix babylonica[J]. Chin Bull Bot, 2016, 51(1): 31 -39 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 97 -98 .
[10] LIU Xiao-Mei, FANG Jian, ZHANG Jing, LIN Wu-Ying, FAN Ting-Lu, FENG Hu-Yuan. EFFECTS OF LONG-TERM FERTILIZATION ON VERTICAL DISTRIBUTION OF MICROORGANISMS IN WHEAT FIELD SOIL[J]. Chin J Plan Ecolo, 2009, 33(2): 397 -404 .