Chin J Plan Ecolo ›› 2012, Vol. 36 ›› Issue (12): 1217-1225.doi: 10.3724/SP.J.1258.2012.01217

• Research Articles •     Next Articles

Changes of main phenophases of natural calendar and phenological seasons in Beijing for the last 30 years

ZHONG Shu-Ying, GE Quan-Sheng*, ZHENG Jing-Yun, DAI Jun-Hu, and WANG Huan-Jiong   

  1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2011-09-13 Revised:2012-10-16 Online:2012-11-28 Published:2012-12-01
  • Contact: GE Quan-Sheng E-mail:geqs@igsnrr.ac.cn

Abstract:

Aims Our objective is to reveal changes of main phenophases of natural calendar and phenological seasons and the reasons for this change. Therefore, we recompiled the natural calendar for 1981–2010 at the Summer Palace in Beijing and compared it to the natural calendar for 1963–1982.
Methods Based on the phenological data from Chinese Phenology Observation Network of Chinese Academy of Sciences and the meteorological data, we compiled a natural calendar (1981–2010) with phenophases of 19 plant speices, ice freeze-up and break-up dates for Kunming Lake. Correlation analysis and regression analysis were used to examine the relationships between change of phenological season and climatic drivers.
Important findings In comparison with the original natural calendar, the first dates of phenological spring and summer were advanced by two days and five days, respectively, while the first dates of autumn and winter were delayed by one day and four days, respectively. The lengths of summer and autumn were prolonged by six days and three days, while the lengths of spring and winter were shortened by three days and six days, respectively. The order of spring, autumn, winter phenophases changed with different degrees. The average, earliest, latest date of phenology showed advances mainly in spring and summer and delay in autumn and winter. Temperature change before the first date of spring, summer, winter and the sunshine duration before the first date of autumn are probably the main reason for the changes of phenological season in Beijing Summer Palace. Different responses of different species and phenophase result in change of phenophase order in seasons.

[1] Aarssen LW (1997). High productivity in grassland ecosystems: effected by species diversity or productive species? .Oikos, 80, 183-184.  CrossRef
[2] Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, Harpole WS, O’Halloran LR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, Chu CJ, Cleland EE, Collins SL, Cottingham KL, Crawley MJ, Damschen EI, Davies KF, DeCrappeo NM, Fay PA, Firn J, Frater P, Gasarch EI, Gruner DS, Hagenah N, Lambers JHR, Humphries H, Jin VL, Kay AD, Kirkman KP, Klein JA, Knops JMH, Pierre KJA, Lambrinos JG, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Mortensen B, Orrock JL, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Wang G, Wragg PD, Wright JP, Yang LH (2011). Productivity Is a poor predictor of plant species richness. Science, 333, 1750-1752.   CrossRef
[3] Cardinale BJ (2011). Biodiversity improves water quality through niche partitioning. Nuture, 42, 82-89.   CrossRef
[4] Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M (2006). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989-992.   CrossRef
[5] Cardinale BJ, Wrigh JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007). Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America, 104, 18123-18128.  CrossRef
[6] Chalcraft DR, Williams J, Smith MD, Willig MR (2004). Scale dependence in the species richness- productivity relationship: the role of species turnover. Ecology, 85, 2701-2708.   CrossRef
[7] Dai W (代巍), Zhang R (张荣), Du ZB (独占彪), Wang F(王璠) (2009). Soil fertility and species identity control community productivity in an experimental plant community in an area of subalpine meadow. Chinese Journal of Plant Ecology (植物生态学报), 33, 45-52.  CrossRef
[8] Fridley JD (2002). Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia, 132, 271-277.  CrossRef
[9] Fridley JD (2003). Diversity Effects on Production in Different Light and Fertility Environments: An Experiment with Communities of Annual Plants. Journal of Ecology, 91, 396-406.  CrossRef
[10] Gillman LN, Wright SD (2006). The influence of productivity on the species richness of plants: A critical assessment. Ecology, 87, 1234-1243.  CrossRef
[11] Grace JB (1999). The factors controlling species density in herbaceous plant communities: an assessment. Perspectives in Plant Ecology, Evolution and Systematics, 2, 1-28.  CrossRef
[12] Grace JB, Anderson TM, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007). Does species diversity limit productivity in natural grassland communities?. Ecology Letters, 10, 680-689.  CrossRef
[13] Grime JP (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344-347.   CrossRef
[14] Grime JP (1997). Biodiversity and ecosystem function: the debate deepens. Science, 277, 1260-1261.  CrossRef
[15] Grime JP (2001). Plant Strategies, Vegetation Processes and Ecosystem Properties. John Wiley & Sons, Ltd, Chichester.   CrossRef
[16] Gross KL, Willig MR, Gough L, Inouye R, Cox SB (2000). Patterns of species density and productivity at different spatial scales in herbaceous plant communities. Oikos, 89, 417-427.  CrossRef
[17] Hector A (2011). Diversity favours productivity. Nature, 472, 45-46.   CrossRef
[18] Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Spehn EM, Wacker L, Weilenmann M, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Dimitrakopoulos PG, Finn JA., Huss-Danell K, Jumpponen A, Leadley PW, Loreau M, Mulder CPH, Nesshoover C, Palmborg C, Read DJ, Siamantziouras ASD, Terry AC, Troumbis AY (2007). Biodiversity and ecosystem functioning: reconciling the results of experimental and observational studies. Functional Ecology, 21, 998-1002.  CrossRef
[19] Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, H?gberg P, Huss-Danell K, Joshi J, Jumpponen A, K?rner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze E-D, Siamantziouras A-S D, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999). Plant Diversity and Productivity Experiments in European Grasslands. Science, 286, 1123-1127.  CrossRef
[20] Hillebrand H, Matthiessen B (2009). Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters, 12, 1405-1419.  CrossRef
[21] Hooper DU (1998). The role of complementarity and composition in ecosystem responses to variation in plant diversity. Ecology, 79, 704-719.  CrossRef
[22] Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75, 3-35.  CrossRef
[23] Hou FJ (候扶江), Yang ZY(杨中艺) (2006). Effects of grazing of livestock on grassland. Acta Ecologica Sinica (生态学报), 26, 244-264.  CrossRef
[24] Huston MA (1997). Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia, 110, 449-460.  CrossRef
[25] Jiang XL (江小雷), Yue J (岳静), Zhang WG (张卫国), Liu B (柳斌)(2222). Biodiversity, ecosystem functioning and spatio-temporal scales. Acta Pratacultural Science, 19, 219-225.  CrossRef
[26] Kahmen A, Perner J, Buchmann N (2005). Diversity dependent productivity in semi-natural grasslands following climate perturbations. Functional Ecology, 19, 594-601.  CrossRef
[27] Kulmatiski A, Beard KH, Heavilin J (2012). Plant-soil feedbacks provide an additional explanation for diversity-productivity relationships. Proceedings of the Royal of Society B, doi: 10. 1098/rspb. 2012. 0285.  CrossRef
[28] Loreau M (2000). Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 91, 3-17.  CrossRef
[29] Loreau M (1998). Separating sampling and other effects in biodiversity experiments. Oikos, 82, 600-602.   CrossRef
[30] Loreau M, Hector A (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76.  CrossRef
[31] Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804-808.  CrossRef
[32] Ma WH, He JS, Yang YH, Wang XP, Liang CZ, Anwar M, Zeng H, Fang JY, Schmid B (2010). Evironmental factors covary with plant diversity-productivity relationships among Chinese grassland site. Global Ecology and Biogeography, 19, 233-243. CrossRef
[33] Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001). What is the observed relationship between species richness and productivity?. Ecology, 82, 2381-2396.  CrossRef
[34] Purvis A, Hector A (2000). Getting the measure of biodiversity. Nature, 405, 212-219.  CrossRef
[35] Schmid B (2002). The species richness-productivity controversy. Trends in Ecology and Evolution, 17, 113-114.   CrossRef
[36] Schnitzer SA, Klironomos JN, Hillerrislambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011). Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 92, 296-303.  CrossRef
[37] Thompson K, Askew AP, Grime JP, Dunnett NP, Willis AJ (2005). Biodiversity, ecosystem function and plant traits in mature and immature plant communities. Functional Ecology, 19, 355-358.  CrossRef
[38] Tilman D (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718-720.   CrossRef
[39] Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.  CrossRef
[40] Tilman D, Lehman CL, Thomson KT (1997). Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 94, 1857-1861.  CrossRef
[41] Wardle DA (1999). Is ‘sampling effect’ a problem for experiments investigating biodiversity-ecosystem function relationships? .Oikos, 87, 403-407.  CrossRef
[42] Wardle DA (2001). No observational evidence for diversity enhancing productivity in Mediterranean shrublands. Oecologia, 129, 620-621.  CrossRef
[43] Wardle DA, Bonner KI, Nicholson KS (1997). Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness affects ecosystem function. Oikos, 79, 247-258.  CrossRef
[44] Zhou Z. Sun OJ, Huang J, Gao Y, Han X (2006). Land use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem. Functional Ecology, 20, 753-762.  CrossRef
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yu Feng-lan;Wang Jing-ping;Li Jing-min and Shan Xue-qin. The Isolation and Identification of Sterols and Other Constituents from Seed Fat of Sapium sebiferum[J]. Chin Bull Bot, 1989, 6(02): 121 -123 .
[2] LI Al-Fen;CHEN Min amd ZHOU Bai-Cheng. Advances and Problems in Studies of Photosynthetic Pigment-Protein Complexes of Brown Algae[J]. Chin Bull Bot, 1999, 16(04): 365 -371 .
[3] CHEN Xiao-Mei and GUO Shun-Xing. Research Advances in Plant Disease Resistive Material[J]. Chin Bull Bot, 1999, 16(06): 658 -664 .
[4] LI Ji-Quan JIN You-Ju SHEN Ying-Bai HONG Rong. The Effect of Environmental Factors on Emission of Volatile Organic Compounds from Plants[J]. Chin Bull Bot, 2001, 18(06): 649 -656 .
[5] . [J]. Chin Bull Bot, 2005, 22(增刊): 157 .
[6] Jianxia Li, Chulan Zhang, Xiaofei Xia, Liangcheng Zhao. Cryo-sectioning Conditions and Histochemistry Comparison with Paraffin Sectioning[J]. Chin Bull Bot, 2013, 48(6): 643 -650 .
[7] JIANG Yang-Ming, CUI Wei-Hong, and DONG Qian-Lin. Comprehensive evaluation and analysis of tobacco planting environment based on space technology[J]. Chin J Plan Ecolo, 2012, 36(1): 47 -54 .
[8] Hu Cheng-biao, Zhu Hong-guang, Wei Yuan-lian. A Study on Microorganism and Biochemical Activity of Chinese-fir Plantation on Different Ecological Area in Guangxi[J]. Chin J Plan Ecolo, 1991, 15(4): 303 -311 .
[9] Hong-Xin SU Fan BAI Guang-Qi LI. Seasonal dynamics in leaf area index in three typical temperate montane forests of China: a comparison of multi-observation methods[J]. Chin J Plan Ecolo, 2012, 36(3): 231 -242 .
[10] AN Ran, GONG Ji-Rui, YOU Xin, GE Zhi-Wei, DUAN Qing-Wei, YAN Xin. Seasonal dynamics of soil microorganisms and soil nutrients in fast-growing Populus plantation forests of different ages in Yili, Xinjiang, China[J]. Chin J Plan Ecolo, 2011, 35(4): 389 -401 .