Chin J Plan Ecolo ›› 2013, Vol. 37 ›› Issue (9): 872-888.doi: 10.3724/SP.J.1258.2013.00091

• Review • Previous Articles     Next Articles

A review of the present situation and future prospect of science of protective forest

ZHU Jiao-Jun1,2,3*   

  1. 1State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;

    2Liaoning Key Laboratory for Management of Non-commercial Forest, Shenyang 110016, China;

    3Qingyuan Experimental Station of Forest Ecology, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2013-05-02 Revised:2013-08-09 Online:2013-09-02 Published:2013-09-01
  • Contact: ZHU Jiao-Jun E-mail:jiaojunzhu@iae.ac.cn

Abstract:

The science of protective forest includes the theories and technologies of creating and managing (using, conserving, repairing and renewing) protective forests in a sustainable manner to meet the desired goals, needs, and values for human benefits. This science is practiced in both plantations and natural stands. Its major goal is to create and manage protective forests to continue a sustainable benefit of protection for the objectives needed to be protected. The development of this science mostly depends on the requirements from the creation of protective forests because it is a related science involving the practice of growing and tending trees and the protective forests. It is an applied art and a technology. The worldwide national-level ecological engineering projects, such as the Great Plains Shelterbelt Project (Roosevelt Engineering) in USA, the Great Plan for the Transformation of Nature in the former Soviet Union, the forestry and water conservation projects in Japan and the Green Dam Engineering Project in the five countries of North Africa, promoted the development of the science of protective forest. The major advances in the science included planning and design, tree species selection, spatial arrangement, planting technologies, structure modeling, thinning and tending, decline and regeneration and benefit assessment. There is much more literature on benefit assessment than other aspects. In China, many areas are influenced by desertification, soil and water loss and windy climate, so protective forests have been created widely, especially the Three North Protective Forest Program (the Green Great Wall) initiated in the west of Northeast China, the north of North China and Northwest China. Therefore, the science of protective forest has developed greatly as well, especially with significant contributions to management theory and techniques. The science of protective forest generally contains a broad range of concerns on the theories and technologies in creating and managing protective forests, which are linked by the benefit assessment. In fact, all forests, particularly non-commercial forests have protective functions. The methods of studying protective forests range from the stand scale to more microcosmic and to more macroscopic scales. With regard to creation of protective forests, studies should be done on planning and design according to regional differentiation characteristics on the basis of ecosystem stability and landscape ecology. For managing protective forests, studies should include the decline mechanism, the near-natural management and the assessment of protective forests. Benefit assessment of protective forests will be conducted at a large scale with remote sensing technology.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hu Shi-yi. Lipoid Bodies in Plant Tissues[J]. Chin Bull Bot, 1994, 11(04): 49 -51 .
[2] CHENG Hong-Yan. Introduction of State Key Laboratory of Biomembrane and Membrane Biotechnology[J]. Chin Bull Bot, 1998, 15(04): 78 .
[3] Liu Dong-zhuo and Li Lan. The Karyotype Analysis of Solanum pseudocapsicum[J]. Chin Bull Bot, 1992, 9(03): 50 .
[4] WANG Bao-Shan;LI De-Quan;ZHAO Shi-Jie;MENG Qing-Wei and ZOU Qi. Effects of Iso-osmotic NaCl and KCl Stress on Growth and Gas Exchange of Sorghum Seedlings[J]. Chin Bull Bot, 1999, 16(04): 449 -453 .
[5] LI Yao-Dong WEI Yu-Ning XU Ben-Mei. Study on the ABA Content and SOD Activity in Ancient Lotus and Modern Lotus Seeds[J]. Chin Bull Bot, 2000, 17(05): 439 -442 .
[6] LI Zhong-Kui HU Hong-Jun LI Ye-Guang. Advances in Molecular Phylogenetic Relationship of Volvocales[J]. Chin Bull Bot, 2002, 19(04): 419 -424 .
[7] WANG Ting SU Ying-Juan ZHU Jian-Ming HUANG Chao LI Xue-Yan. PCR_RFLP Analysis of rbc L Genes in Taxaceae and Related Taxa[J]. Chin Bull Bot, 2001, 18(06): 714 -721 .
[8] . [J]. Chin Bull Bot, 1994, 11(专辑): 51 .
[9] Dong Shu-ting, Hu Chang-hao, Yue Shou-song, Wang Qun-ying, Gao Rong-qi, Pan Zi-long. The Characteristics of Canopy Photosynthesis of Summer Corn (Zea mays) and its Relation with Canopy Structure and Ecological Conditions[J]. Chin J Plan Ecolo, 1992, 16(4): 372 -378 .
[10] YANG Wei, YE Qi-Gang, LI Zuo-Zhou, HUANG Hong-Wen. GENETIC DIFFERENTIATION OF QUANTITATIVE TRAITS AND LOCAL ADAPTABILITY OF REMNANT POPULATIONS OF ISOETES SINENSIS AND IMPLICATIONS FOR CONSERVATION AND GENETIC REINFORCEMENT[J]. Chin J Plan Ecolo, 2008, 32(1): 143 -151 .