Chin J Plan Ecolo ›› 2013, Vol. 37 ›› Issue (10): 942-949.doi: 10.3724/SP.J.1258.2013.00097

• Research Articles • Previous Articles     Next Articles

Effects of soil C:N on growth and distribution of nitrogen and carbon of Malus hupehensis seedlings

GE Shun-Feng, XU Hai-Gang, JI Meng-Meng, and JIANG Yuan-Mao*   

  1. College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong 271018, China
  • Received:2013-06-17 Revised:2013-08-22 Online:2013-09-29 Published:2013-10-01
  • Contact: JIANG Yuan-Mao E-mail:ymjiang@sdau.edu.cn

Abstract:

Aims Soil C:N is a sensitive indicator of soil quality and an indicator for assessing carbon and nitrogen nutrition balance of soils. Our objective was to explore the effects of soil C:N on growth and distribution of nitrogen and carbon of Malus hupehensis seedlings.
Methods Using the track technology of C and N double mark, we investigated growth parameters (height, stem diameter and dry matter of different organs), 15N parameters (absorption, N derived from fertilizer, distribution and utilization) and 13C parameters (distribution in different organs) of two-year old M. hupehensis seedlings under six different soil C:N treatments (T1–T6 were 4.70, 9.78, 14.70, 19.96, 25.60 and 28.83, respectively).
Important findings With increase of soil C:N, dry matter of roots increased significantly, while the height, stem diameter and dry matter of above ground parts and total plant increased at first and then decreased. The highest value appeared in the T4 treatment. There were significant differences in 15N utilization efficiency among the six different treatments.15N utilization efficiency increased from T1 to T4, and the rate of T4 (18.46%) was 1.73 times than that of T1. But, the 15N utilization efficiency decreased with a further increase of soil C:N, as the rate of T5 and T6 reduced that of T4 by 1.59% and 2.58%, respectively. In the two lower soil C:N treatments (T1 and T2), the order of Ndff value (15N derived from fertilizer) in the organs was roots > leaves > stems. With increase of soil C:N, Ndff value in leaves was the highest, followed by roots and stems. 15N distribution ratio in leaves increased, while 13C distribution decreased with increase of soil C:N, but the changes were the opposite in roots. Considering plant growth and utilization of nitrogen, the suitable soil C:N was 21–23 under these experimental conditions.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xiling Dai;Jianguo Cao;Quanxi Wang* . Formation and Development of Sporoderm of Ceratopteris thalictroides (L.) Brongn. (Parkeriaceae)[J]. Chin Bull Bot, 2008, 25(01): 72 -79 .
[2] Liu De-li. Heat-Shock Proteins of Plants and their Functions[J]. Chin Bull Bot, 1996, 13(01): 14 -19 .
[3] Chengqiang Ding, Dan Ma, Shaohua Wang, Yanfeng Ding. Optimization Process and Method of 2-D Electrophoresis for Rice Proteomics[J]. Chin Bull Bot, 2011, 46(1): 67 -73 .
[4] Xing Xue-rong Lu Chun-sheng Guo Da-li. Effect of Oraganic Acid to Nitrate Reductase and Nitrite Reductase Activity in the Vegetables[J]. Chin Bull Bot, 1995, 12(专辑2): 156 -162 .
[5] SONG Ke-Min. Phosphorus Nutrition of Plants: Phosphate Transport Systems and their Regulation[J]. Chin Bull Bot, 1999, 16(03): 251 -256 .
[6] CHEN Fa-Ju;YANG Ying-Gen;ZHAO De-Xiu;GUI Yao-Lin and GUO Zhong-Chen. Advances in Studies of Species Habitats Distribution and Chemical Composition of Snow Lotuses(Saussurea) in China[J]. Chin Bull Bot, 1999, 16(05): 561 -566 .
[7] YANG Hong-QiangJIE Yu-lingLI Jun. The Stresses Messenger from Roots and Its Production and Transport in Plant[J]. Chin Bull Bot, 2002, 19(01): 56 -62 .
[8] Xianwei Zhang;Li Yang;Tao Zhang;Kaifeng Jiang;Guixue Wang;Jiakui Zheng;*;Xianlin Ni;Cui Tian;Yingjiang Cao. QTL Mapping for Zinc Content in Rice Grains[J]. Chin Bull Bot, 2009, 44(05): 594 -600 .
[9] Hui Li, Guangcan Zhang, Huicheng Xie, Jingwei Xu, Chuanrong Li, Juwen Sun. The Effect of Phenol Concentration on Photosynthetic Physiological Parameters of Salix babylonica[J]. Chin Bull Bot, 2016, 51(1): 31 -39 .
[10] . [J]. Chin Bull Bot, 1996, 13(专辑): 97 -98 .