Chin J Plant Ecol ›› 2008, Vol. 32 ›› Issue (2): 370-378.DOI: 10.3773/j.issn.1005-264x.2008.02.014

Special Issue: 青藏高原植物生态学:种群生态学

• Research Articles • Previous Articles     Next Articles

VARIATION OF LEAF STRUCTURE OF TWO DOMINANT SPECIES IN ALPINE GRASSLAND AND THE RELATIONSHIP BETWEEN LEAF STRUCTURE AND ECOLOGICAL FACTORS

HU Jian-Ying1,2, GUO Ke1,*(), DONG Ming1   

  1. 1Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2007-02-13 Accepted:2007-06-11 Online:2008-02-13 Published:2008-03-30
  • Contact: GUO Ke

Abstract:

Aims A comprehensive survey on anatomical features of the leaves of Carex moorcroftii and Stipa purpurea, two dominant species in Tibetan Plateau, has been conducted. Quantitative analysis on the relation between ecological factors and leaf structure variation was carried out in order to find out how they are acclimated to environments and whether these two species with different reproductive behavior have different adaptation mechanisms.
Methods A transect was set along the Qinghai-Tibet Road from Xidatan to Yangbajing, with great change in ecological features: altitude from 4 586 to 4 901 m, growing season precipitation from 384 to 202 mm, growing season monthly average temperature from 5.1 to 1.4 ℃, growing season monthly average humidity from 65% to 54%, growing season evaporation from 1 242 to 798 mm, and growing season monthly average wind speed from 2.4 to 4.0 m·s-1. We collected leaf samples along the transect, embedded them in paraffin, stained embedded sections by astra blue-basic fuchsin, and measured them. Variation coefficient, multi-comparison, correlation analysis and regression analysis were used to analyze structural diversity and the relation between diversity and ecological factors.
Important findings The leaf of S. purpurea curls inward, with lower epidermis outside, and stomata and epidermal hairs appear only on the upper epidermis inside. The leaf of C. moorcroftii usually unfolds like “V” in cross section with well-developed aerenchyma, and stomata and epidermal hairs appear only on the lower epidermis. The leaf structure of both species differs remarkably among populations. Multiple linear step by step regressions revealed for S. purpurea that there are significant linkages between soil available K and the size of mesophyll cells, growing season monthly average cloud coverage and lower epidermis thickness, growing season monthly average cloud coverage and phloem area, growing season monthly average humidity and single vessel semi-diameter, and growing season monthly average humidity and average vessel transverse section area. For C. moorcroftii, there are significant linkage between growing season monthly average lowest temperature and upper epidermis thickness, continentality and thickness of bulliform cells, soil pH value and size of upper epidermis cells, soil available phosphorus and vessel numbers, soil available phosphorus and phloem area, and soil available K and leaf aerenchyma area. Comparison of variance coefficients showed that C. moorcroftii had greater integrative variability than S. purpurea.

Key words: Alpine grassland, Tibetan Plateau, Carex moorcroftii, Stipa purpurea, leaf structure