Chin J Plan Ecolo ›› 2009, Vol. 33 ›› Issue (1): 125-133.doi: 10.3773/j.issn.1005-264x.2009.01.014

• Research Articles • Previous Articles     Next Articles


JIANG Fu-Wei1; JIANG Hong1, 2, 3*; LI Wei4; YU Shu-Quan3;ZENG Bo1;WANG Yan-Hong3   

  1. 1Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; 2International Institute for Earth System Science, Nanjing University, Nanjing 210093, China; 3International Ecological Center of Zhejiang Forestry College, Hangzhou 311300, China; 4College of Environment, Beijing Normal University, Beijing 100875, China
  • Online:2009-01-30 Published:2009-01-30
  • Contact: JIANG Hong

Abstract: Aims Our aims were to reveal the effects of acid rain stress on photosynthesis of three angiosperms (Parakmeria lotungensi, Lithocarpus glaber and Carya cathayensis) of different evolutionary ages, test the hypothesis that species with longer evolutionary time have higher adaptability and interpret results in terms of vegetation reconstruction in regions with severe acid rain.
Methods Three simulated acid rain treatments were randomly applied to the species: severe acid rain (pH 2.5), moderate acid rain (pH 4.0) and control (pH 5.6). The light response curves were determined in April 2007.
Important findings Under different acid rain treatments, maximum net photosynthetic rate (Pnmax) of P. lotungensi was in the order of pH 2.5 > pH 4.0 > pH 5.6, while that of L. glaber was pH 5.6 > pH 4.0 > pH 2.5 and there were no significant differences for C. cathayensis. In the control, the order of Pnmax was L. glaber > P. lotungensi > C. cathayensis. However, in the treatments with pH ≤ 4.0, the order was P. lotungensi > L. glaber > C. cathayensis. Therefore, P. lotungensi has higher photosynthetic capacity and higher adaptability than the other two species under acid rain stress. Compared with the other two species, P. lotungensi is a more favorable species for vegetation reconstruction in regions with severe acid rain.

No related articles found!
Full text



[1] Xiling Dai;Jianguo Cao;Quanxi Wang* . Formation and Development of Sporoderm of Ceratopteris thalictroides (L.) Brongn. (Parkeriaceae)[J]. Chin Bull Bot, 2008, 25(01): 72 -79 .
[2] Liu De-li. Heat-Shock Proteins of Plants and their Functions[J]. Chin Bull Bot, 1996, 13(01): 14 -19 .
[3] Chengqiang Ding, Dan Ma, Shaohua Wang, Yanfeng Ding. Optimization Process and Method of 2-D Electrophoresis for Rice Proteomics[J]. Chin Bull Bot, 2011, 46(1): 67 -73 .
[4] Xing Xue-rong Lu Chun-sheng Guo Da-li. Effect of Oraganic Acid to Nitrate Reductase and Nitrite Reductase Activity in the Vegetables[J]. Chin Bull Bot, 1995, 12(专辑2): 156 -162 .
[5] SONG Ke-Min. Phosphorus Nutrition of Plants: Phosphate Transport Systems and their Regulation[J]. Chin Bull Bot, 1999, 16(03): 251 -256 .
[6] CHEN Fa-Ju;YANG Ying-Gen;ZHAO De-Xiu;GUI Yao-Lin and GUO Zhong-Chen. Advances in Studies of Species Habitats Distribution and Chemical Composition of Snow Lotuses(Saussurea) in China[J]. Chin Bull Bot, 1999, 16(05): 561 -566 .
[7] YANG Hong-QiangJIE Yu-lingLI Jun. The Stresses Messenger from Roots and Its Production and Transport in Plant[J]. Chin Bull Bot, 2002, 19(01): 56 -62 .
[8] Xianwei Zhang;Li Yang;Tao Zhang;Kaifeng Jiang;Guixue Wang;Jiakui Zheng;*;Xianlin Ni;Cui Tian;Yingjiang Cao. QTL Mapping for Zinc Content in Rice Grains[J]. Chin Bull Bot, 2009, 44(05): 594 -600 .
[9] Hui Li, Guangcan Zhang, Huicheng Xie, Jingwei Xu, Chuanrong Li, Juwen Sun. The Effect of Phenol Concentration on Photosynthetic Physiological Parameters of Salix babylonica[J]. Chin Bull Bot, 2016, 51(1): 31 -39 .
[10] . [J]. Chin Bull Bot, 1996, 13(专辑): 97 -98 .