Chin J Plan Ecolo ›› 2009, Vol. 33 ›› Issue (3): 508-515.doi: 10.3773/j.issn.1005-264x.2009.03.010

• Research Articles • Previous Articles     Next Articles


YUE Guang-Yang; ZHAO Ha-Lin; ZHANG Tong-Hui; ZHAO Xue-Yong; ZHAO Wei; NIU Li; LIU Xin-Ping   

  1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Online:2009-05-31 Published:2009-05-31
  • Contact: YUE Guang-Yang

Abstract: Aims Our objectives were to develop an appropriate procedure for scaling up the sap flow from individual stems to the whole shrub and to the plot and to assess the utility of using sap flow gauges to determine the stand-level transpiration of shrub plantations in a semiarid sandy environment.
Methods Sap flow rates of stems in a 15-year-old Caragana microphylla shrub in Horqin Sandy Land, China were measured using the stem heat balance techniques in June 2006 to determine transpiration of the C. microphylla plantation. The gauge-equipped stems, ranging in basal diameter from 0.4 to 1 cm, were selected on the basis of statistical analysis within the representative sampling plot for determining the “mean stem”. Synchronously, total leaf area of the plant was measured by the basal cross-sectional area method and the leaf area density (LAD) method. We took advantage of the sparse distribution of C. microphylla and the ease of directly measuring LAD for individual shrubs to create a new scaling method based on these direct LAD measurements for shrubs in the study plot. We extrapolated the measurements of water use by individual stems to determine the area-averaged transpiration of the shrubland. The method used for the extrapolation assumed that the transpiration of a shrub was proportional to its leaf area.
Important findings We found daily differences of <14.3% between transpiration estimated with sap measurements and with a weighing lysimeter reference, suggesting that the scaling procedure can be used to provide reliable estimates of transpiration from the shrub C. microphylla in Horqin Sandy Land.

No related articles found!
Full text



[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] CHEN Shao-Liang LI Jin-Ke BI Wang-Fu WANG Sha-Sheng. Genotypic Variation in Accumulation of Salt Ions, Betaine and Sugars in Poplar Under Conditions of Salt Stress[J]. Chin Bull Bot, 2001, 18(05): 587 -596 .
[6] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[7] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[8] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[9] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .
[10] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .