Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (11): 1082-1093.doi: 10.17521/cjpe.2018.0082

• Research Articles • Previous Articles     Next Articles

Spatio-temporal dynamics of two alpine treeline ecotones and ecological characteristics of their dominate species at the eastern margin of Qinghai-Xizang Plateau

ZHOU Tian-Yang1,2,3,NARAYAN Prasad Gaire4,8,LIAO Li-Bin1,2,ZHENG Li-Li2,5,WANG Jin-Niu1,3,6,*(),SUN Jian5,WEI Yan-Qiang7,XIE Yu1,WU Yan1,3,*()   

  1. 1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
    2University of Chinese Academy of Sciences, Beijing 101408, China
    3Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chinese Academy of Sciences, Chengdu 610041, China
    4Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
    5Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    6International Center for Integrated Mountain Development, Kathmandu, Nepal
    7Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    8Xishuangbanna Tropical Botanical garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan 666303, China
  • Received:2018-04-11 Accepted:2018-11-04 Online:2019-03-13 Published:2018-11-20
  • Contact: Jin-Niu WANG,Yan WU;
  • Supported by:
    Supported by the National Natural Science Foundation of China(41661144045);Supported by the National Natural Science Foundation of China(31400389)


Aims Temperature limit is the main cause of alpine treeline formation. Therefore, it is important to understand the response mechanisms of alpine treeline as well as their tree species under the global climate change. The present study focused on the spatio-temporal dynamics of treeline and ecological characteristics of the tree species in two treeline ecotones.
Methods Two vertical belt-transect plots were established in each treeline ecotone of the Zheduo Mountain and Jianziwan Mountain of the eastern Qinghai-Xizang Plateau. Top and bottom of each transects were lain between species line and forest line, respectively. Detailed information of each tree species treeline, including species name, latitude, longitude, height, age, base diameter, and coordinates, was recorded accordingly.
Important findings The temperatures of the two research areas have increased during the past 58 years. The precipitation has decreased slightly in both the Zheduo Mountain and Jianziwan Mountain. The age structure of Abies fabri from the Zheduo Mountain and A. squamata from the Jianziwan Mountain showed a reversed “J” shape curve and a bimodal shape, respectively. Within the two transects, due to the limitation of seed diffusion, the dominate species showed aggregated distributions at the small scale. At the large scale, A. fabri was aggregated at the Zheduo Mountain, while A. squanmata of the Jianziwan Mountain was randomly distributed due to the impact of surrounding environmental factors. Both tree height and base diameter decreased with the increase of elevation. The fir trees (Abies spp.) at the upper part of the treeline ecotone presented an allometric growth, whose height growth rate was higher than that of base growth, while the relationships between height growth and base growth were isometric at almost mid and lower part of the treeline ecotone. Compared with 10 years ago, there was no significant change at the position of treeline and tree species line of the Zheduo Mountain and the Jianziwan Mountain, neither of the tree density in the Jianziwan Mountain. However, the number of trees in the Zheduo Mountain increased by about 25%. Compared with 20 years ago, tree species lines of the Zheduo Mountain and Jianziwan Mountain were shifted upwards by 50 and 30 m, respectively. Besides, their treeline positions were increased by 75 and 40 m, respectively. Furthermore, the number of trees also increased significantly by 220% and 100%, respectively. Therefore, the treeline and its constructive species are mainly affected by temperature at the large spatio-temporal scale, while influenced by temperature and ambient environment at the small spatio-temporal scale.

Key words: treeline, spatio-temporal dynamics, age structure, allometric, altitude gradient

Table 1

The basic information of treeline ecotone of Zheduo Mountain and Jianziwan Mountain"

Altitude (m)
Longitude and latitude
Slope aspect
Main species
Zheduo Mountain
4 210-4 380 101.73° E, 30.05° N 正北 North 27.5° 峨眉冷杉、川西云杉、四川红杉
Abies fabri, Picea likiangensis, Larix mastersiana
Jianziwan Mountain
4 360-4 520 100.82° E, 30.02° N 西偏北30°
North-west 30°
25.3° 鳞皮冷杉、四川红杉 Abies squamata, Larix mastersiana

Fig. 1

The difference value map between 2010-2017 and 1961-1970. A, Annual mean temperature. B, Annual precipitation."

Fig. 2

Age structure of treeline-forming species at treeline in the Zheduo Mountain (A) and Jianziwan Mountain (B)."

Fig. 3

The relationships of tree height(H), base diameter (Dtb) and altitude (A) in Zheduo Mountain (A, C) and Jianziwan Mountain(B, D)."

Table 2

The correlation between the growth of height and base diameter in Zhedou Mountain and Jianziwan Mountain"

Y (m)
R2 p 斜率(95%置信区间)
Slope (95% confidence interval)
Test of isometry p
折多山 Zheduo Mountain <100 0.80 <0.001 1.64 (1.30, 2.08)a <0.001
100-200 0.54 <0.001 0.72 (0.51, 1.00)c 0.053
201-300 0.72 <0.001 1.15 (0.98, 1.34)b 0.08
>300 0.52 <0.001 1.12 (0.90, 1.34)b 0.296
剪子弯山 Jianziwan Mountain <100 0.75 <0.001 1.53 (1.21, 1.93)a <0.001
100-200 0.85 <0.001 0.99 (0.80, 1.22)b 0.92
201-300 0.80 <0.001 0.83 (0.63, 1.10)b 0.18
>300 0.90 <0.001 0.85 (0.74, 0.98)b 0.028

Fig. 4

Point pattern analyses for the Zheduo Mountain (A) and Jianziwan Mountain (B). The two green lines are the confidence intervals for the fitting, and the solid line is from the simulation."

Table 3

The regression model of tree height (H) and tree age (a)"

Regression equation
R2 p
折多山 Zheduo Mountain H = 34.80e0.079a 0.68 < 0.001
剪子弯山 Jianziwan Mountain H = 14.38e0.087a 0.71 < 0.001

Fig. 5

The spatio-temporal pattern of treeline dynamics in the Zheduo Mountain (A) and Jianziwan Mountain (B). The solid line is the position of treeline and the dash line is tree species line."

[30] Luckman B, Kavanagh T ( 2000). Impact of climate fluctuations on mountain environments in the Canadian Rockies. AMBIO, 29, 371-380.
doi: 10.1579/0044-7447-29.7.371
[31] MacDonald GM, Szeicz JM, Claricoates J, Dale KA ( 1998). Response of the central Canadian treeline to recent climatic changes. Annals of the Association of American Geographers, 88, 183-208.
doi: 10.1111/1467-8306.00090
[32] Mayr S, Charra-Vaskou K ( 2007). Winter at the alpine timberline causes complex within-tree patterns of water potential and embolism in Picea abies. Physiologia Plantarum, 131, 131-139.
doi: 10.1111/ppl.2007.131.issue-1
[33] Niklas KJ ( 2005). Modelling below- and above-ground biomass for non-woody and woody plants. Annals of Botany, 95, 315-321.
doi: 10.1093/aob/mci028 pmid: 15546927
[34] Pelissier R, Goreaud F ( 2015). Ads package for R: A fast unbiased implementation of the k-function family for studying spatial point patterns in irregular-shaped sampling windows. Journal of Statistical Software, 63, 1-18.
[35] Ran F, Liang YM, Yang Y, Yang Y, Wang GX ( 2014). Spatial-temporal dynamics of an Abies fabri population near the alpine treeline in the Yajiageng area of Gongga Mountain, China. Acta Ecologica Sinica, 34, 6872-6878.
doi: 10.5846/stxb201311252809
[ 冉飞, 梁一鸣, 杨燕, 杨阳, 王根绪 ( 2014). 贡嘎山雅家埂峨眉冷杉林线种群的时空动态. 生态学报, 34, 6872-6878.]
doi: 10.5846/stxb201311252809
[36] Ripley BD ( 1977). Modeling spatial patterns. Journal of the Royal Statistical Society Series B—Methodological, 39, 172-212.
doi: 10.1111/rssb.1977.39.issue-2
[37] Shi CM, Masson-Delmotte V, Daux V, Li ZS, Carre M, Moore JC ( 2015). Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from alpine treeline dendrochronology. Climate Dynamics, 45, 1367-1380.
doi: 10.1007/s00382-014-2386-z
[38] Shi JY, Han HR, Cheng XQ, Dong LL, Tian HX, Cai MK, Kang FF ( 2017). Age structure and dynamics of Pinus tabuliformis population in the Liaoheyuan Nature Reserve of Hebei Province. Chinese Journal of Ecology, 36, 1808-1814.
doi: 10.13292/j.1000-4890.201707.019
[ 矢佳昱, 韩海荣, 程小琴, 董玲玲, 田慧霞, 蔡锰柯, 康峰峰 ( 2017). 河北辽河源自然保护区油松种群年龄结构和种群动态. 生态学杂志, 36, 1808-1814.]
doi: 10.13292/j.1000-4890.201707.019
[39] Stevens GC, Fox JF ( 1991). The causes of treeline. Annual Review of Ecology and Systematics, 22, 177-191.
doi: 10.1146/
[40] Stewart GH, Rose AB ( 1990). The significance of life-history strategies in the developmental history of mixed beech (nothofagus) forests, New-Zealand. Vegetatio, 87, 101-114.
doi: 10.1007/bf00042947
[41] van Bogaert R, Haneca K, Hoogesteger J, Jonasson C, de Dapper M, Callaghan TV ( 2011). A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th Century climate warming. Journal of Biogeography, 38, 907-921.
doi: 10.1111/j.1365-2699.2010.02453.x
[42] Wang T, Zhang QB, Ma KP ( 2006). Treeline dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China. Global Ecology and Biogeography, 15, 406-415.
doi: 10.1111/j.1466-822X.2006.00233.x
[43] Wang YF, Julio Camarero J, Luo TX, Liang EY ( 2012). Spatial patterns of smith fir alpine treelines on the south-eastern Tibetan Plateau support that contingent local conditions drive recent treeline patterns. Plant Ecology & Diversity, 5, 311-321.
doi: 10.1080/17550874.2012.704647
[44] Wang YF, Liang EY ( 2012). A review on progresses in treeline dynamics and climate change. Journal of Earth Environment, 3, 855-861.
[ 王亚锋, 梁尔源 ( 2012). 树线波动与气候变化研究进展. 地球环境学报, 3, 855-861.]
[45] Wang YF, Liang EY, Lu XM, Zhu HF, Piao SL, Zhu LP ( 2017). Are treelines advancing in response to climate warming on the Tibetan Plateau? Chinese Journal of Nature, 39, 179-183.
doi: 10.3969/j.issn.0253-9608.2017.03.004
[ 王亚锋, 梁尔源, 芦晓明, 朱海峰, 朴世龙, 朱立平 ( 2017). 气候变暖会使青藏高原树线一直上升吗? 自然杂志, 39, 179-183.]
doi: 10.3969/j.issn.0253-9608.2017.03.004
[46] Warton DI, Duursma RA, Falster DS, Taskinen S ( 2012). Smatr 3—An R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257-259.
doi: 10.1111/j.2041-210X.2011.00153.x
[47] Warton DI, Wright IJ, Falster DS, Westoby M ( 2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
doi: 10.1017/S1464793106007007 pmid: 16573844
[48] Wilmking M, Juday GP, Barber VA, Zald HSJ ( 2004). Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology, 10, 1724-1736.
doi: 10.1111/j.1365-2486.2004.00826.x
[49] Wong MH, Duan CQ, Long YC, Luo YM, Xie GQ ( 2010). How will the distribution and size of subalpine Abies georgei forest respond to climate change? A study in northwest Yunnan, China. Physical Geography, 31, 319-335.
doi: 10.2747/0272-3646.31.4.319
[50] Xie CQ, Tian MX, Zhao ZR, Zheng WL, Wang GY ( 2015). Spatial point pattern analysis of Abies georgei var. smithii in forest of Sygera Mountains in southeast Tibet, China. Chinese Journal of Applied Ecology, 26, 1617-1624.
[ 解传奇, 田民霞, 赵忠瑞, 郑维列, 王国严 ( 2015). 西藏色季拉山急尖长苞冷杉种群点格局分析. 应用生态学报, 26, 1617-1624.]
[51] Xie ZQ, Chen WL, Lu P, Hu D ( 1999). The demography and age structure of the endangered plant population of Cathaya argyrophylla. Acta Ecologica Sinica, 19, 523-528.
doi: 10.3321/j.issn:1000-0933.1999.06.002
[ 谢宗强, 陈伟烈, 路鹏, 胡东 ( 1999). 濒危植物银杉的种群统计与年龄结构. 生态学报, 19, 523-528.]
doi: 10.3321/j.issn:1000-0933.1999.06.002
[52] Yang H, Li YL, Shen L, Kang XG, Yue G, Wang Y ( 2014). Spatial distribution patterns of seedling and sapling in a spruce-fir forest in the Changbai Mountains area in northeastern China. Acta Ecologica Sinica, 34, 7311-7319.
doi: 10.5846/stxb201303150432
[ 杨华, 李艳丽, 沈林, 亢新刚, 岳刚, 王妍 ( 2014). 长白山云冷杉林幼苗幼树空间分布格局及其更新特征. 生态学报, 34, 7311-7319.]
doi: 10.5846/stxb201303150432
[53] Yang XD, Yan ER, Zhang ZH, Sun BW, Huang HX, Arshad A, Ma WJ, Shi QR ( 2013). Tree architecture of overlapping species among successional stages in evergreen broad-leaved forests in Tiantong region, Zhejiang Province, China. Chinese Journal of Plant Ecology, 37, 611-619.
doi: 10.3724/SP.J.1258.2013.00063
[ 杨晓东, 阎恩荣, 张志浩, 孙宝伟, 黄海侠, Arshad A, 马文济, 史青茹 ( 2013). 浙江天童常绿阔叶林演替阶段共有种的树木构型. 植物生态学报, 37, 611-619.]
doi: 10.3724/SP.J.1258.2013.00063
[1] Bai DZ ( 2012). The Impact Factors of Growth and Regeneration of Picea crassifolia Growing at Timberline in The Qilian Mountains. PhD dissertation, Chinese Academy of Forestry, Beijing.
[ 白登忠 ( 2012). 祁连山青海云杉林线树木生长、更新的影响因素研究. 博士学位论文, 中国林业科学研究院, 北京.]
[54] Zhang JT ( 1998). Analysis of spatial point pattern for plant species. Acta Phytocologica Sinica, 22, 57-62.
[ 张金屯 ( 1998). 植物种群空间分布的点格局分析. 植物生态学报, 22, 57-62.]
[2] Batllori E, Blanco-Moreno JM, Ninot JM, Gutierrez E, Carrillo E ( 2009). Vegetation patterns at the alpine treeline ecotone: The influence of tree cover on abrupt change in species composition of alpine communities. Journal of Vegetation Science, 20, 814-825.
doi: 10.1111/j.1654-1103.2009.01085.x
[3] Camarero JJ, Gutierrez E ( 2004). Pace and pattern of recent treeline dynamics, response of ecotones to climatic variability in the Spanish Pyrenees. Climatic Change, 63, 181-200.
doi: 10.1023/B:CLIM.0000018507.71343.46
[55] Zhang PJ, Qing H, Zhang L, Xu YD, Mu L, Ye RH, Qiu X, Chang H, Shen HH, Yang J ( 2017). Population structure and spatial pattern of Caragana tibetica communities in Nei Mongol shrub-encroached grassland. Chinese Journal of Plant Ecology, 41, 165-174.
doi: 10.17521/cjpe.2015.0448
[ 张璞进, 清华, 张雷, 徐延达, 木兰, 晔薷罕, 邱晓, 常虹, 沈海花, 杨劼 ( 2017). 内蒙古灌丛化草原毛刺锦鸡儿种群结构和空间分布格局. 植物生态学报, 41, 165-174.]
doi: 10.17521/cjpe.2015.0448
[4] Cheng W, Luo P, Wu N ( 2005). Ecological characteristics of minjiang fir (Abies faxoniana Rehd. et Wild) population near timberline on upper Min River. Chinese Journal of Applied and Envirnmental Biology, 11, 300-303.
doi: 10.3321/j.issn:1006-687X.2005.03.010
[ 程伟, 罗鹏, 吴宁 ( 2005). 岷江上游林线附近岷江冷杉种群(Abies faxoniana Rehd. et Wild)的生态学特点. 应用与环境生物学报, 11, 300-303.]
doi: 10.3321/j.issn:1006-687X.2005.03.010
[5] Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, Lafrankie JV, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T ( 2000). Spatial patterns in the distribution of tropical tree species. Science, 288, 1414-1418.
doi: 10.1126/science.288.5470.1414 pmid: 10827950
[6] Dai JH, Cui HT ( 1999). A reviewon the studies of alpine timberline. Scientia Geographica Sinica, 19(3), 52-58.
doi: 10.3969/j.issn.1000-0690.1999.03.010
[ 戴君虎, 崔海亭 ( 1999). 国内外高山林线研究综述. 地理科学, 19(3), 52-58.]
doi: 10.3969/j.issn.1000-0690.1999.03.010
[7] Falster DS, Westoby M ( 2003). Plant height and evolutionary games. Trends in Ecology & Evolution, 18, 337-343.
doi: 10.1016/S0169-5347(03)00061-2
[8] Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP ( 2014). Treeline dynamics with climate change at the Central Nepal Himalaya. Climate of the Past, 10, 1277-1290.
doi: 10.5194/cp-10-1277-2014
[9] Gao J, Wang JN, Xu B, Xie Y, He JD, Wu Y ( 2016). Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow. Chinese Journal of Plant Ecology, 40, 775-787.
doi: 10.17521/cjpe.2015.0288
[ 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦 ( 2016). 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究. 植物生态学报, 40, 775-787.]
doi: 10.17521/cjpe.2015.0288
[10] Harsch MA, Hulme PE, Mcglone MS, Duncan RP ( 2009). Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, 12, 1040-1049.
doi: 10.1111/ele.2009.12.issue-10
[11] IPCC (Intergovernmental Panel on Climate Change) (2014). Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
[12] Jin HJ, Ma QL, Zhang DK, Liu YJ, Yuan HB ( 2012). Analysis on typical shrub plant community characteristics and quantitative characteristics in Ulanbuh desert. Acta Botanica Boreall-Occidentalia Sinica, 32, 579-588.
doi: 10.3969/j.issn.1000-4025.2012.03.022
[ 靳虎甲, 马全林, 张德魁, 刘有军, 袁洪波 ( 2012). 乌兰布和沙漠典型灌木群落结构及数量特征. 西北植物学报, 32, 579-588.]
doi: 10.3969/j.issn.1000-4025.2012.03.022
[13] Kim JW, Lee JS ( 2015). Dynamics of alpine treelines: Positive feedbacks and global, regional and local controls. Journal of Ecology and Environment, 38, 1-14.
doi: 10.5141/ecoenv.2015.001
[14] Klasner FL, Fagre DB ( 2002). A half century of change in alpine treeline patterns at Glacier National Park, Montana, USA. Arctic Antarctic and Alpine Research, 34, 49-56.
doi: 10.1080/15230430.2002.12003468
[15] Knowles P, Grant MC ( 1983). Age and size structure analyses of engelmann spruce, ponderosa pine, lodgepole pine, and limber pine in Colorado. Ecology, 64, 1-9.
doi: 10.2307/1937322
[16] Körner C ( 1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
doi: 10.1007/s004420050540 pmid: 28308263
[17] Körner C ( 2003). Alpine Plant Life. 2nd edn. Springer, Berlin.
[18] Körner C (Translated by Wu N, Shi PL, Yi SL, Wang JN)( 2017). Alpine Treelines. Publishing House of Electronics Industry, Beijing.
[吴宁,石培礼,易绍良, 王金牛 (译)( 2017). 高山树线——全球高海拔树木生长上线的功能生态学. 电子工业出版社, 北京.]
[19] Körner C, Paulsen J ( 2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732.
doi: 10.1111/j.1365-2699.2003.01043.x
[20] Kullman L ( 1993). Tree timit dynamics of Betula pubescens ssp. tortuosa in relation to climate variability: Evidence from Central Sweden. Journal of Vegetation Science, 4, 765.
[21] Kullman L ( 2001). 20th century climate warming and tree-limit rise in the southern Scandes of Sweden. AMBIO, 30, 72-80.
doi: 10.1579/0044-7447-30.2.72 pmid: 11374309
[22] Lan GY, Hu YH, Cao M, Zhu H, Wang H, Zhou SS, Deng XB, Cui JY, Huang JG, Liu LY, Xu HL, Song JP, He YC ( 2008). Establishment of Xishuangbanna tropical forest dynamics plot: Species compositions and spatial distribution patterns. Chinese Journal of Plant Ecology (Chinese Version), 32, 287-298.
doi: 10.3773/j.issn.1005-264x.2008.02.006
[ 兰国玉, 胡跃华, 曹敏, 朱华, 王洪, 周仕顺, 邓晓保, 崔景云, 黄建国, 刘林云, 许海龙, 宋军平, 何有才 ( 2008). 西双版纳热带森林动态监测样地——树种组成与空间分布格局. 植物生态学报, 32, 287-298.]
doi: 10.3773/j.issn.1005-264x.2008.02.006
[23] Li GC, Song HD, Li Q, Bu SH ( 2017). Spatial point pattern analysis of main trees and flowering Fargesia qinlingensis in Abies fargesii forests in Mt. Taibai of the Qinling Mountains, China. Chinese Journal of Applied Ecology, 28, 3487-3493.
doi: 10.13287/j.1001-9332.201711.003
[ 李国春, 宋华东, 李琦, 卜书海 ( 2017). 太白山巴山冷杉林主要树种与开花秦岭箭竹的空间点格局分析. 应用生态学报, 28, 3487-3493.]
doi: 10.13287/j.1001-9332.201711.003
[24] Li LP, Mohamma A, Wang XP ( 2011). Study on relationship between height and DBH of mountain coniferous forests in Xinjiang. Arid Zone Research, 28(1), 47-53.
[ 李利平, 安尼瓦尔·买买提, 王襄平 ( 2011). 新疆山地针叶林乔木胸径-树高关系分析. 干旱区研究, 28(1), 47-53.]
[25] Liang EY, Leuschner C, Dulamsuren C, Wagner B, Hauck M ( 2016). Global warming-related tree growth decline and mortality on the north-eastern Tibetan Plateau. Climatic Change, 13, 163-176.
doi: 10.1007/s10584-015-1531-y
[26] Liang EY, Wang YF, Eckstein D, Luo TX ( 2011). Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytologist, 190, 760-769.
doi: 10.1111/nph.2011.190.issue-3
[27] Liu XD, Chen BD ( 2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729-1742.
doi: 10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y
[28] Lloyd AH, Fastie CL ( 2002). Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Climate Change, 52, 481-509.
doi: 10.1023/A:1014278819094
[29] Lloyd AH, Fastie CL ( 2003). Recent changes in treeline forest distribution and structure in interior Alaska. Ecoscience, 10, 176-185.
doi: 10.1080/11956860.2003.11682765
[1] YANG Lei, SUN Han, FAN Yan-Wen, HAN Wei, ZENG Ling-Bing, LIU Chao, WANG Xiang-Ping. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China [J]. Chin J Plan Ecolo, 2017, 41(12): 1228-1238.
[2] Yili Guo, Dongxing Li, Bin Wang, Kundong Bai, Wusheng Xiang, Xiankun Li. C, N and P stoichiometric characteristics of soil and litter fall for six common tree species in a northern tropical karst seasonal rainforest in Nonggang, Guangxi, southern China [J]. Biodiv Sci, 2017, 25(10): 1085-1094.
[3] Jing GAO, Jin-Niu WANG, Bo XU, Yu XIE, Jun-Dong HE, Yan WU. Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow [J]. Chin J Plan Ecolo, 2016, 40(8): 775-787.
[4] Shao-An PAN, Guo-Quan PENG, Dong-Mei YANG. Biomass allocation strategies within a leaf: Implication for leaf size optimization [J]. Chin J Plant Ecol, 2015, 39(10): 971-979.
[5] XIAO Yao, TAO Ye, and ZHANG Yuan-Ming. Biomass allocation and leaf stoichiometric characteristics in four desert herbaceous plants during different growth periods in the Gurbantünggüt Desert, China [J]. Chin J Plan Ecolo, 2014, 38(9): 929-940.
[6] SHI Qing-Ru, XU Ming-Shan, ZHAO Yan-Tao, ZHOU Liu-Li, ZHANG Qing-Qing, MA Wen-Ji, ZHAO Qi, and YAN En-Rong. Testing of corner’s rules across woody plants in Tiantong region, Zhejiang Province: effects of micro-topography [J]. Chin J Plan Ecolo, 2014, 38(7): 665-674.
[7] ZHANG Jian-Hong, SHI Qing-Ru, XU Ming-Shan, ZHAO Yan-Tao, ZHONG Qiang, ZHANG Fu-Jie, and YAN En-Rong. Testing of Corner’s rules across woody plants in Tiantong region, Zhejiang Province: effects of individual density [J]. Chin J Plan Ecolo, 2014, 38(7): 655-664.
[8] WANG Yi-Kun, JIN Ai-Wu, ZHU Qiang-Gen, QIU Yong-Hua, JI Xin-Liang, and ZHANG Si-Hai. Effects of fertilization on the relations of diameter at breast height between different-aged ramets of Phyllostachys edulis population [J]. Chin J Plan Ecolo, 2014, 38(3): 289-297.
[9] YAN Zheng-Bing, KIM Nam-Young, HAN Ting-Shen, FANG Jing-Yun, and HAN Wen-Xuan. Effects of nitrogen and phosphorus fertilization on leaf carbon, nitrogen and phosphorus stoichiometry of Arabidopsis thaliana [J]. Chin J Plan Ecolo, 2013, 37(6): 551-557.
[10] DONG Man-Yu, JIANG Yuan, YANG Hao-Chun, WANG Ming-Chang, ZHANG Wen-Tao, and GUO Yuan-Yuan. Dynamics of stem radial growth of Picea meyeri during the growing season at the treeline of Luya Mountain, China [J]. Chin J Plan Ecolo, 2012, 36(9): 956-964.
[11] LIU Chao, WANG Yang, WANG Nan, and WANG Gen-Xuan. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: a review [J]. Chin J Plan Ecolo, 2012, 36(11): 1205-1216.
[12] YAN Bang-Guo, HE Guang-Xiong, LI Ji-Chao, and JI Zhong-Hua. Scaling relationships and stoichiometry of plant leaf biogenic elements from the arid-hot valley of Jinsha River, China [J]. Chin J Plan Ecolo, 2012, 36(11): 1136-1144.
[13] LI Song, ZHENG Xin-Jun, TANG Li-Song, LI Yan. Morphological investigation of desert shrubs of China’s Junggar Basin based on allometric theory [J]. Chin J Plan Ecolo, 2011, 35(5): 471-479.
[14] PING Xiao-Yan, ZHOU Guang-Sheng, SUN Jing-Song. Advances in the study of photosynthate allocation and its controls [J]. Chin J Plan Ecolo, 2010, 34(1): 100-111.
Full text



[1] Liu Ying-di. The Role of Ultrastructure in Algal Systematics[J]. Chin Bull Bot, 1990, 7(04): 18 -23 .
[2] Fan Guo-qiang and Jiang Jian-ping. Study on the Methods of Extraction of Protein from Paulownia Leaves[J]. Chin Bull Bot, 1997, 14(03): 61 -64 .
[3] Tong Zhe and Lian Han-ping. Cryptochrome[J]. Chin Bull Bot, 1985, 3(02): 6 -9 .
[4] Huang Ju-fu and Luo Ai-ling. The Advances of the Studies on Extraction of FeMoco from Nitrogenase Molybdenum-Iron Protein[J]. Chin Bull Bot, 1991, 8(03): 19 -25 .
[5] Hsu Rong-jiang Gu Wen-mao Gao Jing-cheng and Peng Chang-ming. Inhibitory Effect of High CO2 and Low O2 Tension on Ethylene Evolution in Apples[J]. Chin Bull Bot, 1984, 2(01): 29 -31 .
[6] Zou Shu-hua;Zhao Shu-wen and Xu Bao. Electropheresis Profiles of Esterase Isozymes in Different Types of Soybean[J]. Chin Bull Bot, 1985, 3(06): 18 -20 .
[7] . [J]. Chin Bull Bot, 1999, 16(增刊): 49 -52 .
[8] Houqing Zeng, Yaxian Zhang, Shang Wang, Xiajun Zhang, Huizhong Wang, Liqun Du. Calcium/calmodulin-mediated Signal Transduction System in Plants[J]. Chin Bull Bot, 2016, 51(5): 705 -723 .
[9] Zhu Zhi-qing. Abbreviations for some Commonly Used Terms in Ultrastructures of Plant Cells[J]. Chin Bull Bot, 1984, 2(04): 57 -58 .
[10] Gu An-gen;Wang Mao and Wang Li-jun. Different Opinions on the Origins and Evolutions of Pteridophyte and Oymnosperms[J]. Chin Bull Bot, 1990, 7(02): 58 -62 .