Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (6): 672-680.doi: 10.17521/cjpe.2018.0033

• Research Articles • Previous Articles     Next Articles

Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition

ZHU Qi-Lin1,XIANG Rui1,TANG Li1,2,LONG Guang-Qiang1,2,*()   

  1. 1 College of Resources and Environmental Science, Yunnan Agriculture University, Kunming 650201, China
    2 Yunnan Scientific Observation Station for Cultivated Land Conservation of the Ministry of Agriculture, Kunming 650201, China
  • Received:2018-01-30 Revised:2018-04-25 Online:2018-06-20 Published:2018-06-20
  • Contact: Guang-Qiang LONG E-mail:ynaulong2316@163.com
  • Supported by:
    Supported by the Yunnan Agricultural Joint Project(2017FG001-027);the Reserve Talent Young Academic and Technical Leaders of Yunnan Province(2017HB027);the National Natural Science Foundation of China(41201289);the National Natural Science Foundation of China(41361065)

Abstract:

Aims The aim of this study was to explore the response of photosynthetic carbon assimilation and photosynthetic nitrogen (N) use efficiency (PNUE) of maize to intercropping system of maize and potato under different N addition, which has a great significance for the N regulation and N fertilizer management for the increase in intercropping yield.

Methods In order to analyze the effects of intercropping and additional N level on leaf characteristics, photosynthetic parameters, PNUE and yield of maize, field experiment with mono- and inter-cropping system under four N addition levels (N0, 0 kg·hm -2, N1, 125 kg·hm -2, N2, 250 kg·hm -2 and N3, 375 kg·hm -2) treatments were set up.

Important findings The results showed that inter-cropping planting significantly increased leaf dry mass of maize and leaf mass per area compared with maize monoculture. Among different N treatment levels (except N3), leaf area of maize under intercropping close to potato increased compared with that under maize monoculture. Intercropping also increased the light saturation point of photosynthesis and dark respiration rate of maize compared with maize monoculture. PNUE decreased as the increasing of N levels in monoculture maize, intercropping maize leaves close to potato (I-P) and leaves close to maize of other row (I-M), and the largest decline was found in I-P. At the same N level (less than 250 kg N·hm-2), PNUE and photosynthetic rate (Pn) of maize in I-P were significantly higher than those in M and I-M system. Intercropping system significantly improve the yield of maize (land equivalent ratio > 1). This study concluded that higher PNUE and Pn of maize close to the potato contributed to the increase of intercropped maize yield under less than or equal to 250 kg N·hm-2 addition.

Key words: intercropping, nitrogen level, leaf nitrogen content, photosynthetic rate, photosynthetic nitrogen use efficiency

Fig. 1

Illustration of maize monoculture and intercropping maize and potato. I, intercropping; I-M, intercropping maize leaves close to maize of other row; I-P, intercropping maize leaves close to potato; M, monoculture."

Table 1

Effects of N levels on yield and biomass of maize (×103 kg·hm-2)(mean ± SD)"

氮水平
N level (kg·hm-2)
产量 Yield 生物量 Biomass 土地当量比
Land equivalent ratio
I M I M
0 (N0) 7.54 ± 0.23Aa 5.18 ± 0.71Aa 17.62 ± 1.01Aa 14.88 ± 1.24Aa 1.46
125 (N1) 12.30 ± 1.57Ab 9.99 ± 1.63Ab 25.69 ± 0.52Ab 21.84 ± 0.73Bb 1.23
250 (N2) 14.40 ± 1.67Ab 11.69 ± 1.97Bb 28.82 ± 1.88Ac 24.90 ± 2.73Bc 1.23
375 (N3) 14.29 ± 1.47Ab 11.92 ± 1.11Bb 28.63 ± 2.33Ac 25.20 ± 1.75Bc 1.20

Fig. 2

Effects of monoculture and intercropping on photosynthetic characteristics of maize under different nitrogen levels (mean + SD). Different lowercase letters indicate significant difference among different N levels in the same planting pattern (p < 0.05). Different capital letters mean significant difference between monoculture and intercropping at the same N level (p < 0.05). I-M, intercropping maize leaves close to maize of other row; I-P, intercropping maize leaves close to potato; M, monoculture, Pn, net photosynthetic rate; Ci, intercellular CO2 concentration; Gs, stomatal conductance; Tr, transpiration rate; Ls, stomatal limitation; WUE, water use efficiency."

Fig. 3

Response of net photosynthetic rate (Pn) of maize leaves to photon flux density at monoculture and intercropping planting. I, intercropping; M, monoculture."

Table 2

Effects of N levels on morphological characteristics of maize leaves grown in monoculture and intercropping pattern (mean ± SD)"

叶片指标
Leaf indexes
种植模式
planting pattern
氮水平 N level (kg·hm-2)
0 (N0) 125 (N1) 250 (N2) 375 (N3)
叶面积
Leaf area (cm2·leaf-1)
M 308 ± 14Aa 466 ± 26Ab 493 ± 19Ab 553 ± 28Ac
I-M 283 ± 17Aa 478 ± 19Ab 524 ± 13ABb 562 ± 22Ac
I-P 394 ± 8Ba 498 ± 16Bb 549 ± 23Bc 576 ± 12Ac
叶干质量
Leaf dry mass (g·leaf-1)
M 1.71 ± 0.09Aa 2.55 ± 0.08Ab 2.68 ± 0.10Ab 2.86 ± 0.22Ab
I-M 1.19 ± 0.07Ba 2.66 ± 0.19Ab 2.68 ± 0.14Ab 3.02 ± 0.19Ac
I-P 1.44 ± 0.11ABa 2.90 ± 0.16Bb 3.30 ± 0.28Bb 3.62 ± 0.10Bc
比叶质量
LMA (g·m-2 )
M 55.72 ± 3.97Aa 54.90 ± 4.22Aa 54.41 ± 1.87Aa 51.82 ± 4.94Aa
I-M 42.42 ± 5.11Ba 58.33 ± 2.16Abc 63.00 ± 3.86Bb 53.78 ± 4.60Ac
I-P 36.65 ± 2.07Ba 55.59 ± 4.78Abc 62.75 ± 2.21Bc 48.82 ± 3.76Bb
单位质量含氮量
Nmass (g·kg-1)
M 14.55 ± 1.30Aa 21.62 ± 1.04Ab 31.02 ± 0.89Ac 34.04 ± 1.15Ac
I-M 15.99 ± 0.71Aa 23.78 ± 1.03Ab 31.17 ± 0.76Ac 34.08 ± 0.80Ac
I-P 18.68 ± 0.86Ba 24.86 ± 0.66Ab 32.97 ± 1.23Ac 37.12 ± 0.49Ac
单位面积含氮量
Narea (mg·cm-2)
M 0.42 ± 0.05Aa 0.62 ± 0.01Ab 0.84 ± 0.06Abc 0.89 ± 0.06Ac
I-M 0.34 ± 0.03Aa 0.69 ± 0.08Ab 0.82 ± 0.06Ac 0.92 ± 0.06Ac
I-P 0.36 ± 0.03Aa 0.72 ± 0.05Ab 0.91 ± 0.01Ac 0.93 ± 0.02Ac
光合氮利用效率
PNUE (CO2 μmol·g-1·s-1)
M 49.85 ± 5.24Aa 32.57 ± 0.48Ab 32.73 ± 2.37Ab 32.01 ± 2.39Ab
I-M 64.71 ± 6.25Ba 31.53 ± 2.03Ab 28.65 ± 0.23Ab 26.32 ± 5.41Ab
I-P 75.58 ± 5.38Ca 47.14 ± 5.39Bb 39.29 ± 5.40Bc 30.28 ± 2.06Ad

Table 3

Effects of intercropping pattern on net photosynthetic rate (Pn), nitrogen content per unit area (Narea) and photosynthetic nitrogen use efficiency (PNUE) of maize leaves grown under different nitrogen levels"

氮水平
N rate (kg·hm-2)
Pn (%) Narea (%) PNUE (%)
M I-M I-P M I-M I-P M I-M I-P
0 (N0) - - - - - - - - -
125 (N1) -1.8 4.8 16.2 50.2 116.5 86.8 -34.7 -51.3 -37.6
250 (N2) 28.8 18.8 32.5 98.6 172.1 158.6 -34.3 -55.7 -48.0
375 (N3) 27.6 28.9 -3.0 101.9 174.9 173.5 -35.8 -59.3 -59.9
[1] Al-Dalain SA ( 2009). Effect of intercropping of zea maize with potato Solanum tuberosum, L. on potato growth and on the productivity and land equivalent ratio of potato and zea maize. Agricultural Journal, 4, 164-170.
[2] Banik P, Sharma RC ( 2009). Yield and resource utilization efficiency in baby corn-legume-intercropping system in the eastern plateau of India. Journal of Sustainable Agriculture, 33, 379-395.
doi: 10.1080/10440040902834970
[3] Bindraban PS ( 1999). Impact of canopy nitrogen profile in wheat on growth. Field Crops Research, 63, 63-77.
doi: 10.1016/S0378-4290(99)00030-1
[4] Chen YS, Dai JF, Luo WH, Tai X, Han L, Mi XJ, Ding QF, Pu CX ( 2008). Quantifying the effects of leaf nitrogen concentration on the maximum leaf gross photosynthesis rate of greenhouse cucumber under different radiation and temperature conditions after flowering. Transactions of the Chinese Society of Agricultural Engineering, 24(7), 13-19.
[ 陈永山, 戴剑锋, 罗卫红, 邰翔, 韩利, 米晓洁, 丁琪峰, 卜崇兴 ( 2008). 叶片氮浓度对温室黄瓜花后叶片最大总光合速率影响的模拟. 农业工程学报, 24(7), 13-19.]
[5] Cheng L, Fuchigami LH ( 2000). Rubisco activation state decreases with increasing mitogen content in apple leaves. Journal of Experimental Botany, 51, 1687-1694.
doi: 10.1093/jexbot/51.352.1949-a pmid: 11053458
[6] Chu GH, Zhang JX ( 2016). Effects of nitrogen application on photosynthetic characteristics, yield and nitrogen use efficiency in drip irrigation of super high-yield spring maize. Journal of Maize Sciences, 24(1), 130-136.
[ 楚光红, 章建新 ( 2016). 施氮量对滴灌超高产春玉米光合特性、产量及氮肥利用效率的影响. 玉米科学, 24(1), 130-136.]
[7] Ding L, Wang KJ, Jiang GM, Biswas DK, Xu H, Li LF, Li YH ( 2005). Effects of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Annals of Botany, 96, 925-930.
doi: 10.1093/aob/mci244
[8] Duan WW, Li HL, Xiao K, Li YM ( 2007). Effects of nitrogen fertilizer on photosynthesis and its physiological and biochemical characteristics in ear-leaf of maize. Acta Agriculture Boreali-Sinica, 22(1), 26-29.
doi: 10.3321/j.issn:1000-7091.2007.01.007
[ 段巍巍, 李慧玲, 肖凯, 李雁鸣 ( 2007). 氮肥对玉米穗位叶光合作用及其生理生化特性的影响. 华北农学报, 22(1), 26-29.]
doi: 10.3321/j.issn:1000-7091.2007.01.007
[9] Evans JR ( 1983). Nitrogen and photosynthesis in the flag leaf of wheat ( Triticum aestivum L.). Plant Physiology, 72, 292-302.
[10] Furbank RT, Foyer CH, Walker DA ( 1987). Regulation of photosynthesis in isolated spinach chloroplasts during orthophosphate limitation. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 894, 552-561.
doi: 10.1016/0005-2728(87)90135-6
[11] Ghallnoum O, Evans JR, Chow WS, Andrews TJ, Conroy JP, von Caemmerer S ( 2005). Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses. Plant Physiology, 137, 638-650.
doi: 10.1104/pp.104.054759
[12] Guan YX, Lin B, Ling BY ( 2000). The interactive effects of growth light condition and nitrogen supply on maize ( Zea mays L.) seedling photosynthetic traits and metabolism of carbon and nitrogen. Acta Agronomica Sinica, 26, 806-812.
[ 关义新, 林葆, 凌碧莹 ( 2000). 光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响. 作物学报, 26, 806-812.]
[13] Huang JY, Li XP, Sun DL ( 2003). Ecophysiological effects of multiple cropping of winter wheat-spring corn-summer corn in Huanghuaihai Plain. Chinese Journal of Applied Ecology, 14, 51-56.
[ 黄进勇, 李新平, 孙敦立 ( 2003). 黄淮海平原冬小麦-春玉米-夏玉米复合种植模式生理生态效应研究. 应用生态学报, 14, 51-56.]
[14] Hikosaka K ( 2004). Interspecific difference in the photosynthesis-?nitrogen relationship: Patterns, physiological causes, and ecological importance. Journal of Plant Research, 117, 481-494.
doi: 10.1007/s10265-004-0174-2
[15] Jiao NY, Ning TY, Yang MK, Fu GZ, Yin F, Xu GW, Li ZJ ( 2013 a). Effects of maize‖peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta Ecologica Sinica, 33, 4324-4330.
[ 焦念元, 宁堂原, 杨萌珂, 付国占, 尹飞, 徐国伟, 李增嘉 ( 2013 a). 玉米花生间作对玉米光合特性及产量形成的影响. 生态学报, 33, 4324-4330.]
[16] Jiao NY, Yang MK, Ning TY, Yin F, Xu GW, Fu GZ, Li YJ ( 2013 b). Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chinese Journal of Plant Ecology, 37, 1010-1017.
[ 焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军 ( 2013b ). 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 37, 1010-1017.]
[17] Li DD, Tian MY, Cai J, Jiang D, Cao WX, Dai TB ( 2013). Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regulation, 70, 257-263.
doi: 10.1007/s10725-013-9797-4
[18] Li DY, Chen ZY, Xu KZ, Zhang ZA, Wu ZH, Ji P, Zhang P ( 2013). Changes of nitrogen content in leaf and its correlations with net photosynthetic rate of soybean cultivars released in different years. Chinese Journal of Oil Crop Sciences, 35, 171-178.
doi: 10.7505/j.issn.1007-9084.2013.02.010
[ 李大勇, 陈展宇, 徐克章, 张治安, 武志海, 季平, 张鹏 ( 2013). 不同年代大豆品种叶片氮含量及其与净光合速率的关系. 中国油料作物学报, 35, 171-178.]
doi: 10.7505/j.issn.1007-9084.2013.02.010
[19] Li G, Gao HY, Liu P, Yang JS, Dong ST, Zhang JW, Wang JF ( 2010). Effects of nitrogen fertilization on photosynthetic performance in maize leaf at grain filling stage. Plant Nutrition and Fertilizer Science, 16, 536-542.
doi: 10.11674/zwyf.2010.0304
[ 李耕, 高辉远, 刘鹏, 杨吉顺, 董树亭, 张吉旺, 王敬锋 ( 2010). 氮素对玉米灌浆期叶片光合性能的影响. 植物营养与肥料学报, 16, 536-542.]
doi: 10.11674/zwyf.2010.0304
[20] Liu T, Lu JW, Ren T, Li XK, Cong RH ( 2016). Relationship between photosynthetic nitrogen use efficiency and nitrogen allocation in photosynthetic apparatus of winter oilseed rape under different nitrogen levels. Journal of Plant Nutrition and Fertilizer, 22, 518-524.
doi: 10.11674/zwyf.14434
[ 刘涛, 鲁剑巍, 任涛, 李小坤, 丛日环 ( 2016). 不同氮水平下冬油菜光合氮利用效率与光合器官氮分配的关系. 植物营养与肥料学报, 22, 518-524.]
doi: 10.11674/zwyf.14434
[21] Li Y ( 2011). Studies on Mechanisms of the Effects of Photosynthesis and photosynthetic Nitrogen Use Efficiency of Rice Plants. PhD dissertation, Nanjing Agricultural University, Nanjing.
doi: 10.7666/d.Y2038625
[ 李勇 ( 2011). 氮素营养对水稻光合作用与光合氮素利用率的影响机制研究. 博士学位论文, 南京农业大学, 南京.]
doi: 10.7666/d.Y2038625
[22] Lü LH, Zhao M, Zhao JR, Tao HB, Wang P ( 2008). Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica, 41, 2624-2632.
[ 吕丽华, 赵明, 赵久然, 陶洪斌, 王璞 ( 2008). 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 41, 2624-2632.]
[23] Ma XL, Zhu QL, Geng CX, Lu ZG, Long GQ, Tang L ( 2017). Contribution of nutrient uptake and utilization on yield advantage in maize and potato intercropping under different nitrogen application rates. Chinese Journal of Applied Ecology, 28, 1265-1273.
[ 马心灵, 朱启林, 耿川雄, 鲁泽刚, 龙光强, 汤利 ( 2017). 不同氮水平下作物养分吸收与利用对玉米马铃薯间作产量优势的贡献. 应用生态学报, 28, 1265-1273.]
[24] Mushagalusa GN ( 2008). Shoot and root competition in potato/maize intercropping: Effects on growth and yield. Environmental & Experimental Botany, 64, 180-188.
doi: 10.1016/j.envexpbot.2008.05.008
[25] Pal M, Rao LS, Jain V, Srivastava AC, Pandey R, Raj A, Singh KP . ( 2005). Effects of elevated CO2 and nitrogen on wheat growth and photosynthesis. Biologia Plantarum, 49, 467-470.
doi: 10.1007/s10535-005-0031-8
[26] Shen LX, Wang P, Zhang RB ( 2005). Effect of nitrogen supply on yield and grain filling in summer maize with different crop density. Plant Nutrition and Fertilizer Science, 11, 314-319.
doi: 10.3321/j.issn:1008-505X.2005.03.005
[ 申丽霞, 王璞, 张软斌 ( 2005). 施氮对不同种植密度下夏玉米产量及籽粒灌浆的影响. 植物营养与肥料学报, 11, 314-319.]
doi: 10.3321/j.issn:1008-505X.2005.03.005
[27] Song H, Yang Y, Zhou WX, Zhang YQ, Li HP, Li CH ( 2017). Effects of light, nitrogen and their interaction on photosynthetic traits and matter accumulation of maize. Journal of Maize Sciences, 25(1), 121-126.
[ 宋航, 杨艳, 周卫霞, 张勇强, 李鸿萍, 李潮海 ( 2017). 光、氮及其互作对玉米光合特性与物质生产的影响. 玉米科学, 25(1), 121-126.]
[28] Sun NX, Zong XF, Wang SG ( 2005). Effects of nitrogen supply on photosynthetic traits of maize. Journal of Southwest Agricultural University (Natural Science), 27, 389-392.
doi: 10.3969/j.issn.1673-9868.2005.03.027
[ 孙年喜, 宗学凤, 王三根 ( 2005). 不同供氮水平对玉米光合特性的影响. 西南农业大学学报(自然科学版), 27, 389-392.]
doi: 10.3969/j.issn.1673-9868.2005.03.027
[29] Tambussi EA, Nogués S, Araus JL ( 2005). Ear of durum wheat under water stress: Water relations and photosynthetic metabolism. Planta, 221, 446-458.
doi: 10.1007/s00425-004-1455-7 pmid: 15645303
[30] Vos J, Pelvander P ( 2001). Effects of partial shading of the potato plant on photosynthesis of treated leaves, leaf area expansion and allocation of nitrogen and dry matter in component plant parts. European Journal of Agronomy, 14, 209-220.
doi: 10.1016/S1161-0301(00)00090-3
[31] Wang D, Yu ZW, Li YQ, Shi GP ( 2007). Effects of nitrogen fertilizer rate on photosynthetic character, sucrose synthesis in flag leaves and grain yield of strong gluten wheat Jimai 20. Acta Agronomica Sinica, 33, 903-908.
[ 王东, 于振文, 李延奇, 史桂萍 ( 2007). 施氮量对济麦20旗叶光合特性和蔗糖合成及籽粒产量的影响. 作物学报, 33, 903-908.]
[32] Wang S, Yang JF, Han XR, Liu XH, Zhan XM, Liu SG ( 2008). Effect of fertilizer application on photosynthetic traits of spring maize. Soils and Fertilizers Sciences in China,( 6), 23-27.
[ 王帅, 杨劲峰, 韩晓日, 刘小虎, 战秀梅, 刘顺国 ( 2008). 不同施肥处理对旱作春玉米光合特性的影响. 中国土壤与肥料, ( 6), 23-27.]
[33] Warren CR, Dreyer E, Adams MA ( 2003). Photosynthesis-?Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores. Tree, 17, 359-366.
[34] Xiao JP, Xie WQ, Guo HC ( 2011). Characteristics of photosynthesis and yield in potato intercropping with maize. Chinese Potato, 25, 339-341.
[ 肖继坪, 颉炜清, 郭华春 ( 2011). 马铃薯与玉米间作群体的光合及产量效应. 中国马铃薯杂志, 25, 339-341.]
[35] Yan YH, Yang WY, Zhang XQ, Chen XL, Chen ZQ ( 2011). Effects of different nitrogen levels on photosynthetic characteristics, dry matter accumulation and yield of relay strip intercropping Glycine max after blooming. Acta Prataculturae Sinica, 20, 233-238.
[ 闫艳红, 杨文钰, 张新全, 陈小林, 陈忠群 ( 2011). 施氮量对套作大豆花后光合特性、干物质积累及产量的影响. 草业学报, 20, 233-238.]
[36] Yang LF, Yan JJ, Cai ZC ( 2010). Effects of N-applications and photosynthesis of maize ( Zea mays L.) on soil respiration and its diurnal variation. Frontiers of Agriculture in China, 4, 42-49.
[37] Yuan Y, Wu FZ, Zhou XG, Zhang LZ ( 2011). Interactive effect of light intensify and nitrogen supply on photosynthetic characteristics of tomato. Crops, 1(1), 13-16.
[ 袁野, 吴凤芝, 周新刚, 张丽茁 ( 2011). 光氮互作对番茄光合特性的影响. 作物杂志, 1(1), 13-16.]
[38] Zhang YQ, Wang JD, Gong SH, Sui J ( 2015). Photosynthetic response of yield enhancement by nitrogen fertilization in winter wheat fields with drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 31(6), 170-177.
[ 张彦群, 王建东, 龚时宏, 隋娟 ( 2015). 滴灌条件下冬小麦施氮增产的光合生理响应. 农业工程学报, 31(6), 170-177.]
[1] Zhi-Min LI, Chuan-Kuan WANG, Dan-Dan LUO. Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii [J]. Chin J Plan Ecolo, 2017, 41(11): 1140-1148.
[2] Wen-Sai ZHAO, Yong-Lin SUN, Xi-Ping LIU. Effects of drought-rewatering-drought on photosynthesis and growth of maize [J]. Chin J Plan Ecolo, 2016, 40(6): 594-603.
[3] Xiao-Lin SI, Wen-Yin WANG, Xiao-Gang GAO, Dang-Hui XU. Effects of nitrogen and silicon application on leaf nitrogen content and net photosynthetic rate of Elymus nutans in alpine meadow [J]. Chin J Plan Ecolo, 2016, 40(12): 1238-1244.
[4] TANG Hai-Ping,XUE Hai-Li,FANG Fei. A comparison of measured and calculated net community CO2 exchange: Scaling from leaves to communities [J]. Chin J Plan Ecolo, 2015, 39(9): 924-931.
[5] Jingjing Cui, Kezhang Xu, Jingjiao Shi, Zhihai Wu, Zhanyu Chen, Zhian Zhang, Chunsheng Wu. Changes in Sink-source Variation Characteristics of Different Rice Varieties [J]. Chin Bull Bot, 2015, 50(6): 699-705.
[6] WANG Chang-Shun,WANG Shi-Ping. A review of research on responses of leaf traits to climate change [J]. Chin J Plan Ecolo, 2015, 39(2): 206-216.
[7] YANG Hao,LUO Ya-Chen. Responses of the functional traits in Cleistogenes squarrosa to nitrogen addition and drought [J]. Chin J Plan Ecolo, 2015, 39(1): 32-42.
[8] PENG Dong-Hai, YANG Jian-Bo, LI Jian, XING Yong-Xiu, QIN Liu-Dong, YANG Li-Tao, and LI Yang-Rui. Effects of intercropping with soybean on bacterial and nitrogen-fixing bacterial diversity in the rhizosphere of sugarcane [J]. Chin J Plan Ecolo, 2014, 38(9): 959-969.
[9] ZHANG Cui-Ping, MENG Ping, ZHANG Jin-Song, and WAN Xian-Chong. Effects of a nitrogen fixing plant Vigna radiata on growth, leaf stomatal gas exchange and hydraulic characteristics of the intercropping Juglans regia seedlings [J]. Chin J Plan Ecolo, 2014, 38(5): 499-506.
[10] ZHANG Lin, YAN En-Rong, WEI Hai-Xia, LIU Xin-Sheng, SHEN Wei. Leaf nitrogen resorption proficiency of seven shrubs across timberline ecotones in the Sergymla Mountains, Southeast Xizang, China [J]. Chin J Plan Ecolo, 2014, 38(12): 1325-1332.
[11] WANG Rong-Rong, XIA Jiang-Bao, YANG Ji-Hua, ZHAO Yan-Yun, LIU Jing-Tao, and SUN Jing-Kuan. Comparison of light response models of photosynthesis in leaves of Periploca sepium under drought stress in sand habitat formed from seashells [J]. Chin J Plan Ecolo, 2013, 37(2): 111-121.
[12] Yanming Miao, Jinzhi Lü, Runcheng Bi, Guiqin Yan. Dynamic Changes of Traits of Leaves from Elaeagnus mollis [J]. Chin Bull Bot, 2012, 47(3): 257-263.
[13] CHEN Wei-Ying, CHEN Zhen-Yong, LUO Fu-Yan, PENG Zheng-Song, and YU Mao-Qun. Comparison between modified exponential model and common models of light-response curve [J]. Chin J Plan Ecolo, 2012, 36(12): 1277-1285.
[14] XIA Jiang-Bao, ZHANG Guang-Can, SUN Jing-Kuan, LIU Xia. Threshold effects of photosynthetic and physiological parameters in Prunus sibirica to soil moisture and light intensity [J]. Chin J Plan Ecolo, 2011, 35(3): 322-329.
[15] Lilin Chen, Sheng Lin, Minsheng You, Shaobo Chen, Liette Vasseur, Shuchun Ye. Effects of cover crops on mite communities in tea plantations [J]. Biodiv Sci, 2011, 19(3): 353-362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chin Bull Bot, 2004, 21(03): 360 -366 .
[5] . [J]. Chin Bull Bot, 1994, 11(专辑): 76 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[7] XU Jing-Xian WANG Yu-Fei YANG Jian PU Guang-Rong ZHANG Cui-Fen. Advances in the Research of Tertiary Flora and Climate in Yunnan[J]. Chin Bull Bot, 2000, 17(专辑): 84 -94 .
[8] Sun Zhen-xiao Xia Guang-min Chen Hui-min. Karyotype Analysis of Psathyrostachys juncea[J]. Chin Bull Bot, 1995, 12(01): 56 .
[9] . [J]. Chin Bull Bot, 1994, 11(专辑): 8 -9 .
[10] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chin Bull Bot, 2009, 44(03): 371 -378 .