Chin J Plan Ecolo ›› 2010, Vol. 34 ›› Issue (1): 89-99.doi: 10.3773/j.issn.1005-264x.2010.01.012

• Review • Previous Articles     Next Articles

A review of the evolutionary and ecological significance of lever-like stamens

ZHANG Bo1, 2; SUN Shan1;ZHANG Zhi-Qiang3;LI Qing-Jun1*   

  1. 1Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; 2Graduate University of Chinese Academy of Sciences, Beijing 100049, China; and 3Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
  • Online:2010-01-01 Published:2010-01-01
  • Contact: LI Qing-Jun

Abstract: We review the structural diversity and evolutionary significance of a type of highly modified stamen that is lever-like or spurred and can function as lever during pollination. Evolutionary changes of the androecium in stamen number and morphology often take place during floral evolution, shifting from pollen production to new functions. Lever-like stamens have been described in several subfamilies of Lamiaceae and six genera of Zingiberaceae. There are two types. One is derived from connective elongation and is largely structured by two parallel developed stamens; it occurs in the Lamiaceae, typically Salvia. The other is modified from one developed stamen and occurs in the Zingiberaceae. Both types have a similar role in pollination in that pollinators have to push the lower arm of the staminal lever into the corolla tube for nectar and consequently load pollen on their backs; this is widely regarded as a mechanism of facilitating crossing-pollination and can affect reproductive success via precise pollination, pollen dispensing, etc. These stamens independently originated and evolved in different taxa. For example, there have been three independent evolutions in Salvia, and this has been presumed a key innovation driving species’ radiation within the genus. Future research is needed at the levels of both macro- and micro-evolution to fully understand evolutionary and ecological significance of lever-like stamens.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhi-Duan Chen, Tuo Yang, Li Lin, Li-Min Lu, Hong-Lei Li, Miao Sun, Bing Liu, Min Chen, Yan-Ting Niu, Jian-Fei Ye, Zhi-Yong Cao, Hong-Mei Liu, Xiao-Ming Wang, Wei Wang, Jing-Bo Zhang, Zhen Meng, Wei Cao, Jian-Hui Li, Sheng-Dan Wu, Hui-Ling Zhao, Zhong-Jian Liu, Zhi-Yuan Du, Qing-Feng Wang, Jing Guo, Xin-Xin Tan, Jun-Xia Su, Lin-Jing Zhang, Lei-Lei Yang, Yi-Ying Liao, Ming-He Li, Guo-Qiang Zhang, Shih-Wen Chung, Jian Zhang, Kun-Li Xiang, Rui-Qi Li, Douglas E. Soltis, Pamela S. Soltis, Shi-Liang Zhou, Jin-Hua Ran, Xiao-Quan Wang, Xiao-Hua Jin, You-Sheng Chen, Tian-Gang Gao, Jian-Hua Li, Shou-Zhou Zhang, An-Ming Lu, China Phylogeny Consortium. Tree of life for the genera of Chinese vascular plants[J]. J Syst Evol, 2016, 54(4): 277 -306 .
[2] SHI Wei, WANG Zheng-Quan, LIU Jin-Liang, GU Jia-Cun, GUO Da-Li. FINE ROOT MORPHOLOGY OF TWENTY HARDWOOD SPECIES IN MAOERSHAN NATURAL SECONDARY FOREST IN NORTHEASTERN CHINA[J]. Chin J Plan Ecolo, 2008, 32(6): 1217 -1226 .
[3] LI Jun, WANG Xue-Chun, SHAO Ming-An, ZHAO Yu-Juan, LI Xiao-Fang. Simulation of biomass and soil desiccation of Robinia pseudoacacia forestlands on semi-arid and semi-humid regions of China’s Loess Plateau[J]. Chin J Plan Ecolo, 2010, 34(3): 330 -339 .
[4] Yuanjie Xu,Dunmei Lin,Ming Shi,Yanjie Xie,Yizhi Wang,Zhenhua Guan,Jianying Xiang. Spatial heterogeneity and its causes in evergreen broad-leaved forests in the Ailao Mountains, Yunnan Province[J]. Biodiv Sci, 2017, 25(1): 23 -33 .
[5] GONG Ji-Rui, HUANG Yong-Mei, GE Zhi-Wei, DUAN Qing-Wei, YOU Xin, AN Ran, ZHANG Xin-Shi. ECOLOGICAL RESPONSES TO SOIL WATER CONTENT IN FOUR HYBRID POPULUS CLONES[J]. Chin J Plan Ecolo, 2009, 33(2): 387 -396 .
[6] XU Zhen-Zhu, ZHOU Guang-Sheng, XIAO Chun-Wang, WANG Yu-Hui. INTERACIVE EFFECTS OF DOUBLED ATMOSPHERIC CO2 CONCENTRATIONS AND SOIL DROUGHT ON WHOLE PLANT CARBON ALLOCATION IN TWO DOMINANT DESERT SHRUBS[J]. Chin J Plan Ecolo, 2005, 29(2): 281 -288 .
[7] YU Hua, Bee-Lian ONG. Diurnal Photosynthesis and Carbon Economy of Acacia mangium in English[J]. Chin J Plan Ecolo, 2003, 27(5): 624 -630 .
[8] Zili Wu, Mengyao Yu, Lu Chen, Jing Wei, Xiaoqin Wang, Yong Hu, Yan Yan, Ping Wan. Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network[J]. Chin Bull Bot, 2015, 50(2): 171 -179 .
[9] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[10] Yu Wang,Huiyong Zhang,Peng Xiang,Youyin Ye,Gengming Lin,Qingliang Yang,Mao Lin. Observing the morphological features of Emiliania huxleyi coccoliths using atomic force microscopy[J]. Biodiv Sci, 2016, 24(7): 847 -854 .