Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (8): 838-848.doi: 10.17521/cjpe.2015.0080

• Orginal Article • Previous Articles    

A review of new research progress on the vulnerability of xylem embolism of woody plants

LI Rong1,*, JIANG Zai-Min2,*, ZHANG Shuo-Xin1,3, CAI Jing1,3,**()   

  1. 1College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
    2College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
    3Qinling National Forest Ecosystem Research Station, Yangling, Shaanxi 712100, China
  • Received:2015-04-09 Accepted:2015-06-30 Online:2015-08-17 Published:2015-08-01
  • Contact: Rong LI,Zai-Min JIANG,Jing CAI
  • About author:

    # Co-first authors


Xylem cavitation/embolism is the blockage of xylem conduits when woody plants suffer from water stress under drought and other environmental conditions, the study of embolism has become a hot and key topic under global climate change. Recent researches on the relationship between the vulnerability of xylem embolism and hydraulic architecture/drought tolerance have made some progress, however, scholars reached different conclusions based on results from different regions or different materials. This paper reviews the current achievements and controversial viewpoints, which includes indicator of xylem embolism vulnerability (P50), method of vulnerability curve establishment, the relationship between embolism vulnerability and hydraulic architecture (vessel diameter, vessel length, pit area, wood density, fiber and fiber tracheid) and the relationship between embolism vulnerability and drought tolerance of woody plants. Future studies should use Cochard Cavitron centrifuge and Sperry centrifuge coupled with traditional methods to establish vulnerability curves, calculate P50, analyze the difference among different organisms (root, stem, leaf), and measure physiological and ecological indexes. Future studies should be aimed to explore the relationship between the vulnerability of xylem embolism and hydraulic architecture/drought tolerance and to assess drought tolerance ability of different species under future climate change.

Key words: xylem embolism, embolism vulnerability, hydraulic architecture, drought tolerance

1 An F, Zhang SX (2005). Studies of roots and shoots vulnerability to xylem embolism in seven woody plants.Acta Ecologica Sinica, 25, 1928-1933.(in Chinese with English abstract)
[安锋, 张硕新 (2005). 7种木本植物根和小枝木质部栓塞的脆弱性. 生态学报, 25, 1928-1933.]
2 Anderegg WRL, Plavcová L, Anderegg LDL, Hacke UG, Berry JA, Field CB (2013). Drought’s legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk.Global Change Biology, 19, 1188-1196.
3 Angeles G, Barbara B, Boyer JS, Brodribb T, Brooks JR, Burns MJ, Cavender-Bares J, Clearwater M, Cochard H, Comstock J, Davis SD, Domec JC, Donovan LA, Ewers FW, Gartner BL, Hacke UG, Hinckley TM, Holbrook NM, Jones HG, Kavanagh K, Law B, López-Portillo J, Lovisolo C, Martin T, Vilalta JM, Mayr S, Meinzer FC, Melcher P, Mencuccini M, Mulkey S, Nardini A, Neufeld H S, Passioura J, Pockman W, Pratt RB, Rambal S, Richter H, Sack L, Salleo S, Schubert A, Schulte P, Sparks JP, Sperry J, Teskey RO, Tyree MT (2004). The cohesion-tension theory.New Phytologist, 163, 451-452.
4 Arango-Velez A, Zwiazek JJ, Thomas BR, Tyree MT (2011). Stomatal factors and vulnerability of stem xylem to cavitation in poplars.Physiologia Plantarum, 143, 154-165.
5 Awad H, Barigah T, Badel E, Cochard H, Herbette S (2010). Poplar vulnerability to xylem cavitation acclimates to drier soil conditions.Physiologia Plantarum, 139, 280-288.
6 Brodribb TJ, Bowman DJMS, Nichols S, Delzon S, Burlett R (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit.New Phytologist, 188, 533-542.
7 Brodribb TJ, Cochard H (2009). Hydraulic failure defines the recovery and point of death in water-stressed conifers.Plant Physiology, 149, 575-584.
8 Cai J, Li S, Zhang HX, Zhang SX, Tyree MT (2014). Recalcitrant vulnerability curves: Methods of analysis and the concept of fibre bridges for enhanced cavitation resistance.Plant, Cell & Environment, 37, 35-44.
9 Cai J, Tyree MT (2010). The impact of vessel size on vulnerability curves: Data and models for within-species variability in saplings of aspen, Populus tremuloides Michx.Plant, Cell & Environment, 33, 1059-1069.
10 Cai J, Tyree MT (2014). Measuring vessel length in vascular plants: Can we divine the truth? History, theory, methods, and contrasting models.Trees, 28, 643-655.
11 Cai J, Zhang SX, Tyree MT (2010b). A computational algorithm addressing how vessel length might depend on vessel diameter.Plant, Cell & Environment, 33, 1234-1238.
12 Choat B, Cobb AR, Jansen S (2008). Structure and function of bordered pits: New discoveries and impacts on whole- plant hydraulic function.New Phytologist, 177, 608-626.
13 Choat B, Drayton WM, Brodersen C, Matthews MA, Shackel KA, Wada H, Mcelrone AJ (2010). Measurement of vulnerability to water stress-induced cavitation in grapevine: A comparison of four techniques applied to a long-vesseled species.Plant, Cell & Environment, 33, 1502-1512.
14 Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012). Global convergence in the vulnerability of forests to drought.Nature, 491, 752-755.
15 Christensen-Dalsgaard KK, Tyree MT (2014). Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ.Plant, Cell & Environment, 37, 1074-1085.
16 Christman MA, Sperry JS, Adler FR (2009). Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of Acer.New Phytologist, 182, 664-674.
17 Christman MA, Sperry JS, Smith DD (2012). Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species.New Phytologist, 193, 713-720.
18 Cochard H (2002). A technique for measuring xylem hydraulic conductance under high negative pressures.Plant, Cell & Environment, 25, 815-819.
19 Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S (2013). Methods for measuring plant vulnerability to cavitation: A critical review.Experimental Botany, 64, 4779-4791.
20 Cochard H, Barigah ST, Kleinhentz M, Eshel A (2008). Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species?Journal of Plant Physiology, 165, 976-982.
21 Cochard H, Bréda N, Granier A, Aussenac G (1992). Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q. pubescens Willd, Q. robur L).Annals of Forest Science, 49, 225-233.
22 Cochard H, Casella E, Mencuccini M (2007). Xylem vulnerability to cavitation varies among poplar and willow clones and correlates with yield.Tree Physiology, 27, 1761-1767.
23 Cochard H, Damour G, Bodet C, Tharwat I, Poirier M, Améglio T (2005). Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves.Physiologia Plantarum, 124, 410-418.
24 Cochard H, Delzon S (2013). Hydraulic failure and repair are not routine in trees.Annals of Forest Science, 70, 659-661.
25 Cochard H, Herbette S, Barigah T, Badel E, Ennajeh M, Vilagrosa A (2010). Does sample length influence the shape of xylem embolism vulnerability curves? A test with the Cavitron spinning technique.Plant, Cell & Environ- ment, 33, 1543-1552.
26 Davis SD, Kolb KJ, Barton KP (1998). Ecophysiological processes and demographic patterns in the structuring of California chaparral. In: Rundel PW, Montenegro G, Jaksic F eds. Landscape Degradation and Biodiversity in Mediterranean Type Ecosystems. Springer, Berlin. 297-310.
27 Delzon S, Douthe C, Sala A, Cochard H (2010). Mechanism of water-stress induced cavitation in conifers: Bordered pit structure and function support the hypothesis of seal capillary-seeding.Plant, Cell & Environment, 33, 2101-2111.
28 Dixon HH (1914). Transpiration and the Ascent of Sap in Plants. Macmillan, New York.
29 Domec JC, Gartner BL (2001). Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees.Trees-Structure and Function, 15, 204-214.
30 Ellmore GS, Ewers FW (1986). Fluid flow in the outermost xylem increment of a ring-porous tree, Ulmus americana.American Journal of Botany, 73, 1771-1774.
31 Ennajeh M, Simoes F, Khemira H, Cochard H (2011). How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms?Physiologia Plantarum, 142, 205-210.
32 Ewers BE, Oren R, Sperry JS (2000). Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda.Plant, Cell & Environment, 23, 1055-1066.
33 Ewers FW, Fishe JB, Chiu ST (1990). A survey of vessel dimensions in stems of tropical lianas and other growth forms.Oecologia, 84, 544-552.
34 Ewers FW, Fisher JB (1989). Variation in vessel length and diameter in stems of six tropical and subtropical lianas.American Journal of Botany, 76, 1452-1459.
35 Fichot R, Barigah TS, Chamaillard S, Le Thiec D, Laurans F, Cochard H, Brignolas F (2010). Common trade-offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoides × Populus nigra hybrids.Plant, Cell & Environment, 33, 1553-1568.
36 Gullo MA, Salleo S, Piaceri EC, Rosso R (1995). Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus corris.Plant, Cell & Environment, 18, 661-669.
37 Hacke UG, Jacobsen AL, Pratt RB (2009). Xylem function of arid-land shrubs from California, USA: An ecological and evolutionary analysis.Plant, Cell & Environment, 32, 1324-1333.
38 Hacke UG, Jansen S (2009). Embolism resistance of three boreal conifer species varies with pit structure.New Phytologist, 182, 675-686.
39 Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure.Oecologia, 126, 457-461.
40 Hacke UG, Sperry JS, Wheeler JK, Castro L (2006). Scaling of angiosperm xylem structure with safety and efficiency.Tree Physiology, 26, 689-701.
41 Hacke UG, Venturas MD, MacKinnon ED, Jacobsen AL, Sperry JS, Pratt RB (2015). The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems.New Phytologis, 205, 116-127.
42 Hargrave KR, Kolb KJ, Ewers FW, Davis SD (1994). Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae).New Phytologist, 126, 695-705.
43 Jacobsen AL, Ewers FW, Pratt RB, Paddock WA III, Davis SD (2005). Do xylem fibers affect vessel cavitation resistance?Plant Physiology, 139, 546-556.
44 Jacobsen AL, Pratt RB (2012). No evidence for an open vessel effect in centrifuge-based vulnerability curves of a long-vesselled liana (Vitis vinifera).New Phytologist, 194, 982-990.
45 Jacobsen AL, Pratt RB, Davis SD, Tobin MF (2014). Geogra- phic and seasonal variation in chaparral vulnerability to cavitation.Madrono, 61, 317-327.
46 Jansen S, Choat B, Pletsers A (2009). Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms.American Journal of Botany, 96, 409-419.
47 Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000). The role of aquaporins in cellular and whole plant water balance.Biochimica et Biophysica Acta, 1465, 324-342.
48 Kaldenhoff R, Fisher M (2006). Aquaporins in plants.Acta Physiologica, 187, 169-176.
49 Kolb KJ, Sperry JS (1999). Transport constraints on water use by the Great Basin shrub, Artemisia tridentata.Plant, Cell & Environment, 22, 925-936.
50 Lemoine D, Cochard H, Granier A (2002). Within crown variation in hydraulic architecture in beech (Fagus sylvatica L): Evidence for a stomatal control of xylem embolism.Annals of Forest Science, 59, 19-27.
51 Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer.New Phytologist, 190, 709-723.
52 Li JY, Zhai HB (2000). Hydraulic architecture and drought resistance of woody plants.Chinese Jounal of Applied Ecology, 11, 301-305.(in Chinese with English abstract)
[李吉跃, 翟洪波 (2000). 木本植物水力结构与抗旱性. 应用生态学报, 11, 301-305.]
53 Li YY, Sperry JS, Shao MA (2009). Hydraulic conductance and vulnerability to cavitation in corn (Zea mays L.) hybrids of differing drought resistance.Environmental and Experimental Botany, 66, 341-346.
54 Li YY, Sperry JS, Taneda H, Bush SE, Hacke UG (2008). Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angio- sperms.New Phytologist, 177, 558-568.
55 Liu XY, Li JY, Zhai HB, Zhu GB (2003). Discussion on drought resistance through hydraulic architecture of trees.Journal of Beijing Forestry University, 25(3), 48-54.(in Chinese with English abstract)
[刘晓燕, 李吉跃, 翟洪波, 朱国彬 (2003). 从树木水力结构特征探讨植物耐旱性. 北京林业大学学报, 25(3), 48-54.]
56 Loepfe L, Martinez-Vilalta J, Piñol J, Mencuccini M (2007). The relevance of xylem network structure for plant hydraulic efficiency and safety.Journal of Theoretical Biology, 247, 788-803.
57 Maherali H, Pockman WT, Jackson RB (2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation.Ecology, 85, 2184-2199.
58 Markesteijn L, Poorter L, Paz H, Sack L, Bongers F (2011). Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits.Plant, Cell & Environment, 34, 137-148.
59 Martre P, Morillon R, Barrieu F, North GB, Nobel PS, Chrispeels MJ (2002). Plasma membrane aquaporins play a significant role during recovery from water deficit.Plant Physiology, 130, 2101-2110.
60 Milburn JA, Johnson RPC (1966). The conduction of sap: II. Detection of vibrations produced by sap cavitation in Ricinus xylem.Planta, 69, 43-52.
61 Milburn JA, McLaughlin ME (1974). Studies of cavitation in isolated vascular bundles and whole leaves of Plantago mafor L.New Phytologist, 73, 861-871.
62 Nardini A, Tyree MT, Salleo S (2001). Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics.Plant Physiology, 125, 1700-1709.
63 Paddock WAS III, Davis SD, Pratt RB, Jacobsen AL, Tobin MF, López-Portillo J, Ewers FW (2013). Factors determining mortality of adult chaparral shrubs in an extreme drought year in California.Aliso, 31, 49-57.
64 Pammenter NW, van der Willigen C (1998). A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation.Tree Physiology, 18, 589-593.
65 Plaut JA, Yepez EA, Hill J, Pangle R, Sperry JS, Pockman WT, McDowell NG (2012). Hydraulic limits preceding mortality in a piñon-juniper woodland under experimental drought.Plant, Cell & Environment, 35, 1601-1617.
66 Plavcová L, Hacke UG, Sperry JS (2011). Linking irradiance-induced changes in pit membrane ultrastructure with xylem vulnerability to cavitation.Plant, Cell & Environment, 34, 501-513.
67 Pockman WT, Sperry JS (2000). Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation.American Journal of Botany, 87, 1287-1299.
68 Pockman WT, Sperry JS, O’Leary JW (1995). Sustained and significant negative water pressure in xylem.Nature, 378, 715-716.
69 Pratt RB, Jacobsen AL, Golgotiu KA, Sperry JS, Ewers FW, Davis SD (2007). Life history type and water stress tolerance in nine California chaparral species (Rhamnac- eae).Ecological Monographs, 77, 239-253.
70 Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert JH (2002). From genome to function: The Arabidopsis aquaporins. Genome Biology, 3, research0001.1-research0001.17.
71 Rockwell FE, Wheeler JK, Holbrook NM (2014). Cavitation and its discontents: Opportunities for resolving current controversies.Plant Physiology, 164, 1649-1660.
72 Rosner S, Klein A, Müller U, Karlsson B (2007). Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure.Tree Physiology, 27, 1165-1178.
73 Salleo S, Nardini A, Pitt F, Lo Gullo MA (2000). Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.).Plant, Cell & Environment, 23, 71-79.
74 Schreiber SG, Hacke UG, Hamann A, Thomas BR (2011). Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen.New Phytologist, 190, 150-160.
75 Sperry JS, Christman MA, Torres-Ruiz JM, Taneda H, Smith DD (2012). Vulnerability curves by centrifugation: Is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid?Plant, Cell & Environment, 35, 601-610.
76 Sperry JS, Donnelly JR, Tyree MT (1988). A method for measuring hydraulic conductivity and embolism in xylem.Plant, Cell & Environment, 11, 35-40.
77 Sperry JS, Hacke UG, Pittermann J (2006). Size and function in conifer tracheids and angiosperm vessels.American Journal of Botany, 93, 1490-1500.
78 Sperry JS, Tyree MT (1990). Water-stress-induced xylem embolism in three species of conifers.Plant, Cell & Environment, 13, 427-436.
79 Swift CC, Jacobs SM, Esler KJ (2008). Drought induced xylem embolism in four riparian trees from the Western Cape Province: Insights and implications for planning and evaluation of restoration.South African Journal of Botany, 74, 508-516.
80 Tixier A, Cochard H, Badel E, Dusotoit-Coucaud A, Jansen S, Herbette S (2013). Arabidopsis thaliana as a model species for xylem hydraulics: Does size matter?Journal of Experimental Botany, 64, 2295-2305.
81 Torres-Ruiz JM, Cochard H, Mayr S, Beikircher B, Diaz-Espejo A, Rodriguez-Dominguez CM, Badel E, Fernández JE (2014). Vulnerability to cavitation in Olea europaea current-year shoots: Further evidence of an open-vessel artifact associated with centrifuge and air-injection techniques.Physiologia Plantarum, 152, 465-474.
82 Torres-Ruiz JM, Jansen S, Choat B, McElrone A, Cochard H, Brodribb TJ, Badel E, Burlett R, Bouche PS, Brodersen CR, Li S, Morris H, Delzon S (2015). Direct micro-CT observation confirms the induction of embolism upon xylem cutting under tension.Plant Physiology, 167, 40-43.
83 Tyree MT, Alexander J, Jose-Luis M (1992). Loss of hydraulic conductivity due to water stress in intact juveniles of Quercus rubra and Populus deltoides.Tree Physiology, 10, 411-415.
84 Tyree MT, Engelbrecht BMJ, Vargas G, Kursar TA (2003). Desiccation tolerance of five tropical seedlings in Panama. Relationship to a field assessment of drought performance.Plant Physiology, 132, 1439-1447.
85 Tyree MT, Sperry JS (1989). Vulnerability of xylem to cavitation and embolism.Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19-36.
86 Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. Springer, Berlin. 45-56.
87 Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrín E (2003). Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs dur- ing an intense drought.Journal of Experimental Botany, 54, 2015-2024.
88 Vilagrosa CA (2001). Estrategias de resistencia al déficit hídrico en Pistacia lentiscus L. y Quercus coccifera L. Implicaciones en la repoblación forestal. PhD dissertation, Universidad De Alicante, Spain.
89 Wang RQ, Zhang LL, Zhang SX, Cai J, Tyree MT (2014). Water relations of Robinia pseudoacacia L.: Do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia? Plant, Cell & Environment, 37, 2667-2678.
90 Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM (2013). Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism.Plant, Cell & Environment, 36, 1938-1949.
91 Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005). Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: A basis for a safety versus efficiency trade-off in xylem transport.Plant, Cell & Environment, 28, 800-812.
92 Zhang HX, Li S, Zhang SX, Xiong XY, Cai J (2013). Relationships between xylem vessel structure and embolism vulnerability in four Populus clones.Scientia Silvae Sinicae, 49(5), 54-61.(in Chinese with English abstract)
[张海昕, 李珊, 张硕新, 熊晓燕, 蔡靖 (2013). 4个杨树无性系木质部导管结构与栓塞脆弱性的关系 . 林业科学,49(5), 54-61.]
93 Zhang SX, Shen WJ, Zhang YY, Zhou XX (1997). The vulnerability of xylem embolism in twigs of some drought-resistent tree species.Journal of Northwest Forestry College, 12(2), 1-6.(in Chinese with English abstract)
[张硕新, 申卫军, 张远迎, 周新霞 (1997). 几个抗旱树种木质部栓塞脆弱性的研究. 西北林学院学报, 12(2), 1-6.]
94 Zimmermann MH (1983). Xylem structure and the ascent of sap. In: Wood Science. Springer, Berlin. 169-216.
95 Zimmermann MH, Potter D (1982). Vessel-length distribution in branches, stem and roots of Acer rubrum L.International Association of Wood Anatomists Bulletin, 3, 103-109.
[1] AN Rui, MENG Feng, YIN Peng-Xian, DU Guang-Yuan. Comparison of methods for detecting vulnerability of xylem embolism in Robinia pseudoacacia [J]. Chin J Plant Ecol, 2018, 42(11): 1113-1119.
[2] Dan-Dan LUO, Chuan-Kuan WANG, Ying JIN. Plant water-regulation strategies: Isohydric versus anisohydric behavior [J]. Chin J Plan Ecolo, 2017, 41(9): 1020-1032.
[3] Liang-Jun ZHU, Zong-Shan LI, Xiao-Chun WANG. Anatomical characteristics of xylem in tree rings and its relationship with environments [J]. Chin J Plan Ecolo, 2017, 41(2): 238-251.
[4] Ying JIN, Chuan-Kuan WANG, Zheng-Hu ZHOU. Mechanisms of xylem embolism repair in woody plants: Research progress and questions [J]. Chin J Plan Ecolo, 2016, 40(8): 834-846.
[5] Rong LI, Wei DANG, Jing CAI, Shuo-Xin ZHANG, Zai-Min JIANG. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees [J]. Chin J Plan Ecolo, 2016, 40(3): 255-263.
[6] Yan-Tao ZHAO, Ming-Shan XU, Zhi-Hao ZHANG, Liu-Li ZHOU, Qing-Qing ZHANG, ARSHAD Ali, Yan-Jun SONG, En-Rong YAN. Hydraulic architecture of evergreen broad-leaved woody plants at different successional stages in Tiantong National Forest Park, Zhejiang Province, China [J]. Chin J Plan Ecolo, 2016, 40(2): 116-126.
[7] LI Tao and CHEN Bao-Dong. Arbuscular mycorrhizal fungi improving drought tolerance of maize plants by up-regulation of aquaporin gene expressions in roots and the fungi themselves [J]. Chin J Plan Ecolo, 2012, 36(9): 973-981.
[8] Xinyong Guo, Chen Cheng, Aiying Wang, Yuxing Zhang, Zhong Wang, Na Yu, Jianbo Zhu. Drought-tolerance Analysis of Tobacco Plant Transformed with Sasussured involucrata siCOR Gene [J]. Chin Bull Bot, 2012, 47(2): 111-119.
[9] Jianhui Chen, Ronghua Li, Peiguo Guo, Yanshi Xia, Changen Tian, Shenyu Miao. Impact of Drought Stress on the Ultrastructure of Leaf Cells in Three Barley Genotypes Differing in Level of Drought Tolerance [J]. Chin Bull Bot, 2011, 46(1): 28-36.
[14] Benqin Wang Xi Chen Chengbin Xiang. Arabidopsis Late-flowering Mutants with Elevated SOD Activities Show Enhanced Tolerance to Abiotic Stresses [J]. Chin Bull Bot, 2007, 24(05): 572-580.
[15] HE Wei-Ming. Effects of Water Factors on Hydraulic and Growth Characteristics of Sabina vulgaris Seedlings [J]. Chin J Plan Ecolo, 2001, 25(1): 11-16.
Full text



[1] Yan Xiao-hua Cai Zhu-ping. Effects of S-07, PP333 and Triadimefon on Peroxidaseisoentyme of Rice Seedling[J]. Chin Bull Bot, 1995, 12(专辑3): 109 -112 .
[2] . [J]. Chin Bull Bot, 1994, 11(专辑): 13 .
[3] Xiaomin Yu;Xingguo Lan;Yuhua Li. The Ub/26S Proteasome Pathway and Self-incompatible Responses in Flowering Plants[J]. Chin Bull Bot, 2006, 23(2): 197 -206 .
[4] WANG Ling-Li LIU Wen-Zhe. Contents of Camptothecin in Camptotheca acuminata from Different Provenances[J]. Chin Bull Bot, 2005, 22(05): 584 -589 .
[5] Dai Yun-ling and Xu Chun-hui. Advances in Research on Protein Components of Oxygen-evolving Complex[J]. Chin Bull Bot, 1992, 9(03): 1 -16 .
[6] . Advances in Research on Photosynthesis of Submerged Macrophytes[J]. Chin Bull Bot, 2005, 22(增刊): 128 -138 .
[7] Shaobin Zhang;Guoqin Liu. Research Advances in Plant Actin Isoforms[J]. Chin Bull Bot, 2006, 23(3): 242 -248 .
[9] MA Li-Hui, WU Pu-Te, and WANG You-Ke. Spatial pattern of root systems of dense jujube plantation with jujube age in the semiarid loess hilly region of China[J]. Chin J Plan Ecolo, 2012, 36(4): 292 -301 .
[10] PAN Yu-De, Melillo J. M., Kicklighter D. W., XIAO Xiang-Ming, McGuire A. D.. Modeling Structural and Functional Responses of Terrestria Ecosystems in China to Changes in Climate and Atmospheric CO2[J]. Chin J Plan Ecolo, 2001, 25(2): 175 -189 .