Chin J Plan Ecolo ›› 2013, Vol. 37 ›› Issue (11): 1028-1034.doi: 10.3724/SP.J.1258.2013.00106

• Research Articles • Previous Articles     Next Articles

Effects of arbuscular mycorrhizal fungi on calorific value and contents of carbon and ash in Robinia pseudoacacia

ZHU Xiao-Qin1, WANG Chun-Yan2, SHENG Min2, CHEN Hui2, and TANG Ming2*   

  1. 1College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China;

    2College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
  • Received:2013-06-26 Revised:2013-10-03 Online:2013-11-06 Published:2013-11-01
  • Contact: TANG Ming


Aims It is still unknown whether arbuscular mycorrhizal (AM) fungi could increase calorific value and carbon content in plants. Our objectives in this study were to (1) determine the effects of two AM fungi, Glomus intraradices and G. versiforme, on biomass, calorific value, carbon content, and ash content in black locust (Robinia pseudoacacia) seedlings; and (2) assess the effectiveness of G. intraradices and G. versiforme in affecting biomass and energy accumulation in black locust.
Methods Three treatments were performed: black locust seedlings, including inoculations of seedlings with G. intraradices, G. versiforme, respectively, and no inoculum as control. Seedlings were grown in a greenhouse for 14 months following treatments, and then their biomass, gross calorific value, carbon content, and ash content of the roots, stems, and leaves were measured. Ash-free calorific value, energy accumulation, and carbon accumulation were calculated.
Important findings We found that inoculations with the two AM fungi increased the biomass, calorific value, and carbon content in black locust seedlings. The accumulations of biomass, energy, and carbon were 89.61%, 102.20%, and 93.30% greater in black locust seedlings inoculated with G. intraradices, and 91.34%, 94.19% and 77.21% greater in those inoculated with G. versiforme, respectively, than the controls. Both calorific value and carbon content were the highest in seedlings inoculated with G. intraradices; and the gross calorific value of roots, stems and leaves were 7.72%, 8.94%, 8.41% higher, respectively, in seedlings inoculated with G. intraradices than the controls. Glomus intraradices was found to be more effective than G. versiforme in enhancing calorific value and accumulation of energy and carbon.

No related articles found!
Full text



[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] Yang Hong-yuan. Basic Principle and Method of Fluorescence Microscopy[J]. Chin Bull Bot, 1984, 2(06): 45 -48 .
[5] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[6] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[7] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[8] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[10] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .