Chin J Plan Ecolo ›› 2006, Vol. 30 ›› Issue (5): 713-722.doi: 10.17521/cjpe.2006.0093

• Research Articles •     Next Articles

VEGETATION DYNAMICS IN THE DRY VALLEYS OF YUNNAN,CHINA, DURING THE LAST 150 YEARS: IMPLICATIONS FOR ECOLOGICAL RESTORATION

MOSELEY Robert K1; TANG Ya2   

  1. 1 The Nature Conservancy, Yunnan Meteorological Bureau, Kunming 650034, China; 2 Department of Environmental Sciences and Engineering, Sichuan University, Chengdu 610065, China
  • Online:2006-09-30 Published:2006-09-30
  • Contact: MOSELEY Robert K

Abstract:

In southwestern China, there are many opinions about past environmental conditions and the historical drivers of change, but little direct evidence. Such is the case in Dry Valley ecosystems, where current conservation programs appear to be based more on subjective perceptions than scientific understanding. Our research objective was to develop an historical profile— the description and explanation of environmental change —for the Dry Valleys to see if today’s perceptions about past change are supported by data. Our study area encompassed n orthwestern Yunnan and adjacent Sichuan and Tibet. Specifically, we assessed vegetation dynamics by comparing historical records from 1868-1949 to conditions in 2001-2005. We used two sources to establish baseline conditions from which to assess change: 28 historical publications and 56 old photographs for which we rephotographed the modern scene. Our major finding is that there has been no substantial change in the cover of Dry Valley vegetation during the last 150 years. We also found that the aerial coverage of crop fields has decreased and major land slide activity was caused by chronic geological instability and infrastructure development. Overall, we found that comparisons of written and photographic records between 1868 and 2005 do not support many common assumptions regarding environmental degradation in the Dry Valleys, upon which current ecological restoration programs are based.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] Yang Hong-yuan. Basic Principle and Method of Fluorescence Microscopy[J]. Chin Bull Bot, 1984, 2(06): 45 -48 .
[5] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[6] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[7] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[8] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[10] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .