Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (2): 94-106.doi: 10.17521/cjpe.2018.0312

• Research Articles • Previous Articles     Next Articles

Effects of functional diversity on productivity in a typical mixed broadleaved-Korean pine forest

WEN Chun1,JIN Guang-Ze1,2,*()   

  1. 1 Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
    2 Key Laboratory of Sustainable Forest Ecosystem Management- Ministry of Education, Northeast Forestry University, Harbin 150040, China
  • Received:2018-12-13 Accepted:2019-02-13 Online:2019-06-04 Published:2019-02-20
  • Contact: JIN Guang-Ze E-mail:taxus@126.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(31730015);the Fundamental Research Funds for the Central Universities(2572017EA02)

Abstract: <i>Aims</i>

Exploring the relationship between biodiversity and ecosystem productivity has become a hot topic in ecological research. The results support the mass ratio hypothesis and niche complementarity hypothesis, but their relative importance is still controversial. Our aim is to test the relative importance of these two hypotheses in explaining the variability of productivity, and to explore whether the relationship between biodiversity and productivity is influenced by both biotic and abiotic factors.

<i>Methods</i>

We used the data of woody plants in a 9 hm2 typical mixed broadleaved-Korean pine forest. By calculating the initial biomass, species diversity, functional diversity, community-weighted mean functional traits and measuring environmental factors, we analyzed the relationship between diversity and productivity by the linear regression model and structural equation model.

<i>Important findings</i>

The results showed that: (1) Both species diversity and functional diversity played a significant role in productivity, and functional diversity was more closely related to productivity than species diversity; (2) the functional diversity index could better explain the variation of productivity than community-weighted mean functional traits. It suggested that the niche complementarity hypothesis was more suitable for explaining the variation of productivity in the mixed broadleaved-Korean pine forest; (3) the relationship between biodiversity and productivity was affected by biotic and abiotic factors, and compared with diversity and functional character composition (vegetation quality), initial stand biomass (vegetation quantity) could explain the variation of productivity more effectively. Our study suggests that, it is important to maintain forest functional diversity and strengthen the protection of plants and soil environments to increase productivity and biodiversity effectively.

Key words: functional diversity, forest productivity, niche complementarity hypothesis, mass ratio hypothesis, structural equation model

Table 1

Eight functional traits related to plant growth and community woody productivity and their significance"

功能性状 Functional trait 功能意义 Functional significance
木材密度 Wood density (WD) (g·mm-3) 木材经济谱, 生长和生存之间的权衡, 水的运输和分配
Wood economic spectrum, trade-off between growth, transport and distribution of water
最大高度 Maximum height (MH) (m) 植物竞争活力与策略, 光生态位, 结构多样性
Plant competitive vigor and strategy, light niche, structural diversity
比叶面积 Specific leaf area (SLA) (mm2·g-1) 叶经济谱, 植物耐荫性 Leaf economic spectrum, plant shade tolerance
叶面积 Leaf area (LA) (mm2) 光竞争, 蒸腾速率 Light acquisition, transpiration rate
叶片厚度 Leaf thickness (LT) (mm) 储水能力, 蒸腾速率 Storage capacity, transpiration rate
叶片干物质含量
Leaf dry matter content (LDMC) (mg·g-1)
养分吸收, 结构物质 Nutrient absorption, structural substance
叶片碳含量
Leaf carbon concentration (LCC) (mg·g-1)
结构物质, 养分吸收 Structural substance, nutrient absorption
叶片氮含量
Leaf nitrogen concentration (LNC) (mg·g-1)
叶经济谱, 氮吸收 Leaf economic spectrum, nitrogen acquisition

Table 2

Summary of environment variables in a 9 hm2 mixed broadleaved-Korean pine forest plot"

变量 Variables 范围 Range 平均值 Mean 标准偏差 SD
凹凸度 Convexity -1.91-2.36 0.01 0.40
海拔 Elevation (m) 425.45-505.52 463.25 18.20
坡度 Slope (°) 3.30-38.46 15.91 6.49
速效氮含量 Soil available nitrogen content (mg·kg-1) 605.77-1 482.85 1 103.60 161.34
速效磷含量 Soil available phosphorus content (mg·kg-1) 2.54-61.96 8.83 6.96
速效钾含量 Soil available potassium content (mg·kg-1) 190.46-516.66 332.61 59.05
全氮含量 Soil total nitrogen content (g·kg-1) 4.60-12.28 8.40 1.60
全磷含量 Soil total phosphorus content (g·kg-1) 0.40-1.19 0.82 0.15
pH值 Soil pH 5.34-6.29 5.77 0.16
有机碳含量 Soil organic carbon content (%) 31.29-216.77 75.75 31.25
土壤容重 Soil bulk density (mg·m-3) 0.41-0.87 0.62 0.10
体积含水率 Soil bulk moisture content (%) 13.72-48.40 30.35 5.91
质量含水率 Soil mass moisture content (%) 0.54-1.51 0.91 0.23

Table 3

Summary of functional diversity, species diversity indexes and community-weighted mean (CWM) functional traits in a 9 hm2 mixed broadleaved-?Korean pine forest plot"

假说 Hypothesis 指数 Index 平均值 Mean 范围 Range
生物量比率假说
Mass ratio hypothesis
木材密度的群落加权平均值 CWM of wood density (CWMWD) (g·mm-3) 0.47 0.34-0.63
最大树高的群落加权平均值 CWM of maximum height (CWMMH) (m) 17.24 4.59-43.01
比叶面积的群落加权平均值 CWM of specific leaf area (CWMSLA) (mm2·g-1) 254.30 158.29-392.23
叶面积的群落加权平均值 CWM of leaf area (CWMLA) (mm2) 33.87 8.20-74.54
叶片厚度的群落加权平均值 CWM of leaf thickness (CWMLT) (mm) 0.18 0.08-0.44
叶干物质含量的群落加权平均值 CWM of leaf dry matter content (CWMLDMC) ( mg·g-1) 0.29 0.19-0.38
叶片碳含量的群落加权平均值 CWM of leaf carbon content (CWMLCC) ( mg·g-1) 499.22 446.90-563.74
叶片氮含量的群落加权平均值 CWM of leaf nitrogen content (CWMLNC) ( mg·g-1) 23.56 17.49-32.38
生态位互补假说
Niche complementarity
hypothesis
物种丰富度 Species richness (C) 6.42 2-13
香农指数 Shannon index () 1.45 0.41-2.24
辛普森指数 Simpson index (D) 0.71 0.24-0.88
均匀度指数 Evenness index (J) 0.89 0.42-1.00
多维功能均匀度指数 Multidimensional functional evenness index (FEve) 0.72 0.21-0.99
Rao二次熵指数 Rao’s quadratic entropy index (FDQ) 8.39 0.81-15.41
8个性状组合的功能分散指数 FD is based on eight traits combined (FDcom) 2.68 0.72-3.87
木材密度的功能分散指数 FD is based on wood density (FDWD) 0.48 0.01-1.13
最大高度的功能分散指数 FD is based on maximum height (FDMH) 0.78 0.07-1.71
比叶面积的功能分散指数 FD is based on specific leaf area (FDSLA) 0.63 0.02-1.61
叶面积的功能分散指数 FD is based on leaf area (FDLA) 0.66 0.02-1.61
叶片厚度的功能分散指数 FD is based on leaf thickness (FDLT) 0.58 0.03-1.51
叶干物质含量的功能分散指数 FD is based on leaf dry matter content (FDLDMC) 0.58 0.06-1.26
叶片碳含量的功能分散指数 FD is based on leaf carbon content (FDLCC) 0.93 0.03-2.37
叶片氮含量的功能分散指数 FD is based on leaf nitrogen content (FDLNC) 0.51 0.03-2.38

Fig. 1

Relationships between coarse woody productivity (ln transformed) and species diversity index of communities in a typical mixed broadleaved-Korean pine forest. CWP, C, H°, D represent coarse woody productivity, species richness, Shannon index and Simpson index, respectively."

Fig. 2

Relationships between coarse woody productivity (ln transformed) and functional diversity index of communities in a typical mixed broadleaved-Korean pine forest. CWP, coarse woody productivity; FEve, multidimensional functional evenness index; FDQ, Rao’s quadratic entropy index; FDcom, functional dispersion indices of eight trait combinations; FDWD, functional dispersion indices of wood density; FDMH, functional dispersion indices of maximum height; FDSLA, functional dispersion indices of specific leaf area; FDLA, functional dispersion indices of leaf area; FDLDMC, functional dispersion indices of leaf dry matter content; FDLCC, functional dispersion indices of leaf carbon content; FDLNC, functional dispersion indices of leaf nitrogen content."

Fig. 3

Relationships between coarse woody productivity (ln transformed) and community weighted mean of different traits of communities in a typical mixed broadleaved-Korean pine forest. CWP, coarse woody productivity; CWMWD, CWM of wood density; CWMMH, CWM of maximum height; CWMSLA, CWM of specific leaf area; CWMLA, CWM of leaf area; CWMLDMC, CWM of leaf dry matter content; CWMLCC, CWM of leaf carbon content; CWMLNC, CWM of leaf nitrogen content."

Fig. 4

Relationships between coarse woody productivity (ln transformed, CWP) and environmental factors in a typical mixed broadleaved-Korean pine forest."

Table 4

Evaluation of linear regression models for forest productivity and diversity in a typical mixed broadleaved-Korean pine forest"

模型参数
Model parameters
物种多样性模型
Species diversity model
功能多样性模型 Functional diversity models
A B C
R2 0.169 0.269 0.188 0.377
AIC 2 148.61 2 047.73 2 136.52 1 932.43

Table 5

Relative importance of variables in linear model constructed with productivity"

指标
Indicator
解释变量 Explanatory variable
CWMMH CWMLCC CWMSLA CWMLNC CWMLA CWMWD CWMLDMC
变量重要性
Variable importance
1.00 1.00 0.90 0.67 0.48 0.39 0.14
含变量模型数
Containing models
10 10 9 6 5 4 2
指标
Indicator
解释变量 Explanatory variable
FDMH FDQ FDcom FDSLA C D FDLA FDWD FDLCC FEve FDLDMC
变量重要性
Variable importance
1.00 1.00 0.88 0.88 0.88 0.69 0.69 0.69 0.69 0.36 0.21 0.19
含变量模型数
Containing models
8 8 7 7 7 5 5 5 5 3 2 2
指标
Indicator
解释变量 Explanatory variable
海拔
Elevation
全磷含量
Total P
content
凹凸度
Convexity
速效磷含量
Available P
content
有机碳含量
Organic C
content
速效氮含量
Available N
content
体积含水率
Bulk moisture
坡度
Slope
pH
变量重要性
Variable importance
1.00 0.95 0.85 0.68 0.53 0.26 0.21 0.09 0.04
含变量模型数
Containing models
17 16 14 11 9 4 4 2 1

Fig. 5

Structural equation model (SEM) analysis of the effects of environmental factors, functional diversity, community-weight mean of functional traits and forest initial biomass on community woody productivity in a typical mixed broadleaved-Korean pine forest. Solid lines indicate significant paths, while dashed lines indicate insignificant paths. R² indicates the total variation in a dependent variable that is explained by the combined independent variables. ***, p < 0.001; **, p < 0.01; *, p < 0.05."

Table 6

Direct, indirect, and total standardized effects on the forest productivity, based on the structural equation models (SEM)"

解释变量
Explanatory variable
对生产力的作用途径
Pathway to productivity
结构方程模型 SEM
影响效应 Effect p
地形因子 Topography factors 直接效应 Direct effect -0.102 0.003
功能多样性的间接效应 Indirect effect via functional diversity -0.027 0.009
群落加权平均值的间接效应 Indirect effect via CWMs 0.008 0.043
初始生物量的间接效应 Indirect effect via initial biomass 0.055 <0.001
土壤因子的间接效应 Indirect effect via soil factors -0.024 0.002
总效应 Total effect -0.090 <0.001
土壤因子 Edaphic factors 直接效应 Direct effect 0.105 <0.001
功能多样性的间接效应 Indirect effect via functional diversity -0.021 0.045
群落加权平均值的间接效应 Indirect effect via CWMs -0.015 0.008
总效应 Total effect 0.069 0.019
功能多样性 Functional diversity 直接效应 Direct effect 0.302 <0.001
初始生物量的间接效应 Indirect effect via initial biomass 0.081 <0.001
总效应 Total effect 0.383 <0.001
群落加权平均值
Community-weighted mean functional traits
直接效应 Direct effect 0.090 0.002
初始生物量的间接效应 Indirect effect via initial biomass 0.152 <0.001
总效应 Total effect 0.242 <0.001
地上初始生物量 Initial standing biomass 直接效应 Direct effect 0.449 <0.001
总效应 Total effect 0.449 <0.001
[1] Ali A, Yan ER, Chang SX, Cheng JY, Liu XY ( 2017). Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Science of the Total Environment, 574, 654-662.
doi: 10.1016/j.scitotenv.2016.09.022
[2] Bartoń K ( 2018). Package ‘MuMIn’. . Cited: 2018-07-21.
[3] Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P ( 2012). Biodiversity loss and its impact on humanity. Nature, 489, 59-67.
[4] Cardinale BJ, Gonzalez A ( 2011). The functional role of producer diversity in ecosystems. American Journal of Botany, 98, 572-592.
doi: 10.3732/ajb.1000364
[5] Chang LW, Zeleny D, Li CF, Chiu ST, Hsieh CF ( 2013). Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology, 94, 2145-2151.
doi: 10.1890/12-2053.1
[6] Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP ( 2003). Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. Journal of Ecology, 91, 240-252.
doi: 10.1046/j.1365-2745.2003.00757.x
[7] Chen CG, Zhu JF (1989). A Handbook for Main Tree Species Biomass in Northeast China. China Forestry Publishing House, Beijing.
[ 陈传国, 朱俊凤 (1989). 东北主要林木生物量手册. 中国林业出版社, 北京.]
[8] Chen DM, Cheng JH, Chu PF, Mi J, Hu SJ, Xie YC, Tuvshintogtokh I, Bai YF ( 2016). Effect of diversity on biomass across grasslands on the Mongolian Plateau: Contrasting effects between plants and soil nematodes. Journal of Biogeography, 43, 955-966.
doi: 10.1111/jbi.2016.43.issue-5
[9] Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H ( 2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
doi: 10.1071/BT02124
[10] Díaz S, Lavorel S, Bello FD, Quétier F, Grigulis K, Robson TM ( 2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104, 20684-20689.
doi: 10.1073/pnas.0704716104
[11] Dănescu A, Albrecht AT, Bauhus J ( 2016). Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia, 182, 319-333.
doi: 10.1007/s00442-016-3623-4
[12] Edwards JR, Lambert LS ( 2007). Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychological Methods, 12, 1-22.
doi: 10.1037/1082-989X.12.1.1
[13] Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona JC, Lorenzo L, Salgado Negret B, Vaz M, Poorter L, Canham C ( 2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103, 191-201.
doi: 10.1111/1365-2745.12346
[14] Fox J ( 2008). Applied Regression Analysis and Generalized Linear Models. 2nd edn. Sage Publications, Thousand Oaks, USA.
[15] Fox J, Monette G ( 1992). Generalized collinearity diagnostics. Journal of the American Statistical Association, 87, 178-183.
doi: 10.1080/01621459.1992.10475190
[16] Gazol A, Camarero JJ ( 2016). Functional diversity enhances silver fir growth resilience to an extreme drought. Journal of Ecology, 104, 1063-1075.
doi: 10.1111/1365-2745.12575
[17] Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Partel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JM, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD ( 2016). Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390-393.
doi: 10.1038/nature16524
[18] Grime JP ( 1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86, 902-910.
doi: 10.1046/j.1365-2745.1998.00306.x
[19] Howard AL ( 2013). Handbook of structural equation modeling. Structural Equation Modeling-a Multidisciplinary Journal, 20, 354-360.
doi: 10.1080/10705511.2013.769397
[20] Huang XR ( 2018). Relationship between plant functional diversity and productivity of Pinus massoniana plantations in Guangxi. Biodiversity Science, 26, 690-700.
[ 黄小荣 ( 2018). 广西马尾松林植物功能多样性与生产力的关系. 生物多样性, 26, 690-700.]
[21] Laliberté E, Legendre P ( 2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
doi: 10.1890/08-2244.1
[22] Lin DM, Lai JS, Muller-Landau HC, Mi XC, Ma KP ( 2012). Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PLOS ONE, DOI: 10.1371/journal.pone.0048244.
[23] Lohbeck M, Poorter L, Martinez-Ramos M, Bongers F ( 2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 96, 1242-1252.
doi: 10.1890/14-0472.1
[24] Lü TT, Wang P, Yan H, Zhang W, Liao GX, Jiang HB, Zou CL, Sheng LX ( 2014). Relationship between functional diversity and productivity in meadow and marsh plant communities. Chinese Journal of Plant Ecology , 38, 405-416.
[ 吕亭亭, 王平, 燕红, 张稳, 廖桂项, 姜海波, 邹畅林, 盛连喜 ( 2014). 草甸和沼泽植物群落功能多样性与生产力的关系. 植物生态学报, 38, 405-416.]
[25] McGill BJ, Enquist BJ, Weiher E, Westoby M ( 2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185.
doi: 10.1016/j.tree.2006.02.002
[26] Mensah S, Veldtman R, Assogbadjo AE, Glèlè KR, Seifert T ( 2016). Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecology and Evolution, 6, 7546-7557.
doi: 10.1002/ece3.2525
[27] Micheli F, Halpern BS ( 2010). Low functional redundancy in coastal marine assemblages. Ecology Letters, 8, 391-400.
[28] Mokany K, Ash J, Roxburgh S ( 2008). Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 96, 884-893.
doi: 10.1111/j.1365-2745.2008.01395.x
[29] Mouchet MA, Villeger S, Mason NWH, Mouillot D ( 2010). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876.
doi: 10.1111/fec.2010.24.issue-4
[30] Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Slymos P, Stevens MHH, Wagner H (2009). The vegan Package. . Cited: 2019-02-04.
[31] Ouyang S, Xiang W, Wang X, Zeng Y, Lei P, Deng X, Peng C ( 2016). Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China. Forest Ecology and Management, 372, 291-302.
doi: 10.1016/j.foreco.2016.04.020
[32] Petchey OL, Hector A, Gaston KJ ( 2004). How do different measures of functional diversity perform? Ecology, 85, 847-857.
doi: 10.1890/03-0226
[33] Ratcliffe S, Liebergesell M, Ruiz-Benito P, Madrigal González J, Muñoz Castañeda JM, Kändler G, Lehtonen A, Dahlgren J, Kattge J, Peñuelas J, Zavala MA, Wirth C ( 2016). Modes of functional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25, 251-262.
doi: 10.1111/geb.12406
[34] Rosseel Y ( 2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1-36.
[35] Ruiz-Benito P, Gomez-Aparicio L, Paquette A, Messier C, Kattge J, Zavala MA ( 2014). Diversity increases carbon storage and tree productivity in Spanish forests. Global Ecology and Biogeography, 23, 311-322.
doi: 10.1111/geb.12126
[36] Schellberg J, Pontes LDS ( 2012). Plant functional traits and nutrient gradients on grassland. Grass and Forage Science, 67, 305-319.
doi: 10.1111/gfs.2012.67.issue-3
[37] Sun RY, Li QF, Niu CJ, Lou AR (2002). Basic Ecology. Higher Education Press, Beijing.
[ 孙儒泳, 李庆芬, 牛翠娟, 娄安如 (2002). 基础生态学. 高等教育出版社, 北京.]
[38] Tilman D ( 1997). Distinguishing between the effects of species diversity and species composition. Oikos, 80, 185.
doi: 10.2307/3546532
[39] Tobner CM, Paquette A, Gravel D, Reich PB, Williams LJ, Messier C ( 2016). Functional identity is the main driver of diversity effects in young tree communities. Ecology Letters, 19, 638-647.
doi: 10.1111/ele.12600
[40] Van MT, Peña-Claros M, Ascarrunz N, Arets EJMM, Licona JC, Toledo M, Poorter L ( 2017). Abiotic and biotic drivers of biomass change in a neotropical forest. Journal of Ecology, 105, 1223-1234.
doi: 10.1111/1365-2745.12756
[41] Wu Z, Raven P (1994-2009). Flora of China. Science Press and Missouri Botanical Garden Press, Beijing and St Louis.
[42] Zhang Y, Chen HYH ( 2015). Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252.
doi: 10.1111/1365-2745.12425
[43] Zhang Y, Chen HYH, Reich PB ( 2012). Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis. Journal of Ecology, 100, 742-749.
doi: 10.1111/j.1365-2745.2011.01944.x
[1] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 22-32.
[2] DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43.
[3] QIN Hao,ZHANG Yin-Bo,DONG Gang,ZHANG Feng. Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China [J]. Chin J Plant Ecol, 2019, 43(9): 762-773.
[4] CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226.
[5] LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164.
[6] Dexin Sun, Xiang Liu, Shurong Zhou. Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow [J]. Biodiv Sci, 2018, 26(7): 655-666.
[7] Xiaorong Huang. Relationship between plant functional diversity and productivity of Pinus massoniana plantations in Guangxi [J]. Biodiv Sci, 2018, 26(7): 690-700.
[8] SHI Guo-Xi, WANG Wen-Ying, JIANG Sheng-Jing, CHENG Gang, YAO Bu-Qing, FENG Hu-Yuan, ZHOU Hua-Kun. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity [J]. Chin J Plan Ecolo, 2018, 42(1): 126-132.
[9] Xingfeng Si, Yuhao Zhao, Chuanwu Chen, Peng Ren, Di Zeng, Lingbing Wu, Ping Ding. Beta-diversity partitioning: methods, applications and perspectives [J]. Biodiv Sci, 2017, 25(5): 464-480.
[10] Xiao-Bing ZHOU, Yuan-Ming ZHANG, Ye TAO, Lin WU. Effluxes of nitrous oxide, methane and carbon dioxide and their responses to increasing nitrogen deposition in the Gurbantünggüt Desert of Xinjiang, China [J]. Chin J Plan Ecolo, 2017, 41(3): 290-300.
[11] Ling-Zhao TAN, Chun-Yu FAN, Xiu-Hua FAN. Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China [J]. Chin J Plan Ecolo, 2017, 41(11): 1149-1156.
[12] Xiaobo Huang, Shuaifeng Li, Jianrong Su, Wande Liu, Xuedong Lang. The relationship between species richness and ecosystem multifunctionality in the Pinus yunnanensis natural secondary forest [J]. Biodiv Sci, 2017, 25(11): 1182-1191.
[13] Shanshan Tan, Renren Wang, Xiaoling Gong, Jiayao Cai, Guochun Shen. Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama [J]. Biodiv Sci, 2017, 25(10): 1054-1064.
[14] Lingjie Lei,Deliang Kong,Xiaoming Li,Zhenxing Zhou,Guoyong Li. Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives [J]. Biodiv Sci, 2016, 24(8): 922-931.
[15] Xi-Xi WANG, Wen-Xing LONG, Xiao-Bo YANG, Meng-Hui XIONG, Yong KANG, Jin HUANG, Xu WANG, Xiao-Jiang HONG, Zhao-Li ZHOU, Yong-Quan LU, Jing FANG, Shi-Xing LI. Patterns of plant diversity within and among three tropical cloud forest communities in Hainan Island [J]. Chin J Plan Ecolo, 2016, 40(5): 469-479.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Cui Gao;Yuxia Chen;Ying Bao;Min Feng;Anming Lu. Studies on Sexual Organs and Embryological Development Morphology of Speirantha gardenii (Convallariaceae)[J]. Chin Bull Bot, 2010, 45(06): 705 -712 .
[2] Jiang Gao-ming. The Impact of Globae Increasing of CO2 on Plants[J]. Chin Bull Bot, 1995, 12(04): 1 -7 .
[3] Zhang Jun Han Bi-wen. Advance in the Study of Histochemical Localization for[J]. Chin Bull Bot, 1995, 12(专辑3): 131 -142 .
[4] Tang Yan-cheng. A Short Guide to the International Code of Botanical Nomenclature V.[J]. Chin Bull Bot, 1984, 2(04): 51 -57 .
[5] Xu Ji. The Protective Protein of Nitrogenase Against Oxygen Damage-Fe-S Protein[J]. Chin Bull Bot, 1986, 4(12): 1 -4 .
[6] . [J]. Chin Bull Bot, 2001, 18(05): 633 .
[7] Huang Zhao-xiang;Zheng Zhen-gui and Zhu Du. Ecological Effect of Taxodium ascendens-Oryza sativa Ecosystem(I) The Growing Characteristic of Taxodium Ascendens in the Ecosystem[J]. Chin Bull Bot, 1996, 13(02): 48 -51 .
[8] GU Rui-Sheng;LIU Qun-Lu;CHEN Xue-Mei and JIANG Xiang-Ning. Comparison and Optimization of the Methods on Protein Extraction and SDS-PAGE in Woody Plants[J]. Chin Bull Bot, 1999, 16(02): 171 -177 .
[9] Jiang Gao-ming. LI-6400 Portable Photosynthesis System: Principle, Function, Basic Operation and Main Problems and Solutions During Measurement[J]. Chin Bull Bot, 1996, 13(增刊): 72 -76 .
[10] Li Ling;Luo Yun-xiu;He Jian-hui and Pan Rui-chi. Promoting the Formation of Adventitious Roots in Cutting of Some Woody Plants by GL Reagent[J]. Chin Bull Bot, 1996, 13(增刊): 63 -65 .