Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (4): 409-417.doi: 10.17521/cjpe. 2016.0338

Special Issue: Mangrove

• Orginal Article • Previous Articles     Next Articles

Effects of Spartina alterniflora invasion on enrichment of sedimental heavy metals in a mangrove wetland and the underlying mechanisms

Quan CHEN1,2, Ke-Ming MA1,*()   

  1. 1State Key Laboratory of Urban & Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    and
    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-11-03 Accepted:2017-02-28 Online:2017-05-19 Published:2017-04-10
  • Contact: Ke-Ming MA E-mail:mkm@rcees.ac.cn

Abstract:

Aims The cordgrass Spartina alterniflora is one of the highly successful invasive plants in coastlines worldwide. Although the S. alterniflora invasion is threatening mangroves and the increasing heavy metal pollution of oceans and coasts are of growing concerns, especially in China, the effects of S. alterniflora invasion on the enrichment of sedimental heavy metals in mangrove wetlands are not known. The objectives of this study are to determine the effects of S. alterniflora invasion on enrichment of sedimental heavy metals in the mangrove wetland and the underlying mechanisms.
Methods We investigated differences in the contents of sedimental heavy metals, including As, Cd, Cr, Cu, Ni, Pb, Zn, and Mn, for two pairs of comparisons (unvegetated shoal vs S. alterniflora monoculture and Avicennia marina monoculture vs A. marina + S. alterniflora mixture), and their relationships with environmental factors in Zhanjiang Mangrove National Natural Reserve, Guangdong, China.
Important findings Spartina alterniflora invasions in mangrove wetlands increased the contents of sedimental heavy metals, with the effects being significant on Cr, Ni, Cu, Zn, and Mn. The intermediate level of pollution was only detected in the sedimental Cd. The presence of S. alterniflora resulted in enrichment in the sedimental heavy metals in the mangrove wetland in Zhanjiang, but not to the degree of concerns for contaminations. The contents of sedimental organic matter, total C, total N, total S and total K were strongly related to the contents of sedimental heavy metals in the invaded mangrove wetland. Ultimately, the dense above-and below-ground architectures of the invasive S. alterniflora likely play a predominant role in causing enrichment of sedimental heavy metals.

Key words: Spartina alterniflora, Avicennia marina, heavy metals, sediment physicochemical property, vegetation characteristics, Zhanjiang, China

Table 1

Vegetation characteristics in two pairs of comparative habitats in a mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China"

生境
Habitat
地理坐标
Geographical location
植物群落结构特征 Plant community characteristics
平均株高
Mean plant height (m)
盖度
Coverage
植株密度
Plant density (ind.·m-2)
根系生物量
Root biomass (g·m-3)
裸滩 Unvegetated shoal (US) 109.78° E, 21.51° N - - - -
互花米草
Spartina alterniflora (SA)
109.77° E, 21.42° N 1.16 ± 0.01** 0.91 ± 0.01** 42.55 ± 0.56** 1 165.77 ± 151.25**
海榄雌 Avicennia marina (AM) 109.76° E, 21.52° N 1.58 ± 0.03** 0.88 ± 0.01** 0.33 ± 0.02** 1 685.82 ± 63.67**
互花米草+海榄
Spartina alterniflora +
Avicennia marina (MIX)
109.79° E, 21.49° N 1.25 ± 0.08 0.56 ± 0.02 22.00 ± 0.29 1 176.04 ± 125.72

Table 2

Physicochemical properties of sediments in two pairs of comparative habitats in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China"

生境 Habitat 容重 Bulk density 盐度 Salinity (%) 砂粒 Sand (%) 粉粒 Silt (%) 黏粒 Clay (%) pH
US 1.44 ± 0.02** 8.75 ± 0.34 5.42 ± 0.13** 90.46 ± 0.38 2.67 ± 0.28 6.62 ± 0.02
SA 0.65 ± 0.02 29.29 ± 1.07** 2.08 ± 0.08 89.53 ± 0.53 8.12 ± 0.53** 6.58 ± 0.03
AM 0.91 ± 0.03** 15.43 ± 0.51 2.56 ± 0.13 86.90 ± 1.76 6.31 ± 1.01 6.43 ± 0.02
MIX 0.61 ± 0.02 33.50 ± 0.64** 2.38 ± 0.08 86.14 ± 0.75 10.80 ± 0.76** 6.52 ± 0.02**
生境 Habitat 有机质
Organic matter (%)
全氮
Total nitrogen (%)
全硫
Total sulphur (%)
全磷
Total phosphorus (%)
全钾
Total potassium (%)
全碳
Total carbon (%)
US 1.01 ± 0.03 0.06 ± 0.001 0.17 ± 0.01 0.015 ± 0.000 0.42 ± 0.01 0.65 ± 0.02
SA 2.15 ± 0.04** 0.14 ± 0.004** 0.36 ± 0.01** 0.031 ± 0.001** 0.69 ± 0.02** 1.48 ± 0.03**
AM 2.23 ± 0.06 0.12 ± 0.002 0.41 ± 0.03 0.019 ± 0.001 0.59 ± 0.01 1.55 ± 0.04
MIX 2.40 ± 0.06 0.15 ± 0.004** 0.41 ± 0.01 0.032 ± 0.001** 0.69 ± 0.0.02** 1.62 ± 0.04**

Table 3

Relationships (by stepwise regression analysis) between vegetation characteristics and physicochemical properties in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China"

理化性质 Physicochemical properties 植被特征 Vegetation characteristics p R2 回归方程 Regression equation
有机质含量 Organic matter content (COM) PH <0.001 0.848 COM = 0.89PH + 1.09
全氮含量 Total nitrogen content (CTN) PD, PH, C <0.001 0.923 CTN = 0.001PD + 0.08PH - 0.07C + 0.06
全磷含量 Total phosphorus content (CTP) PD <0.001 0.689 CTP = 0.0003PD + 0.02
全硫含量 Total sulphur content (CTS) PH <0.001 0.860 CTS = 0.16PH + 0.18
全钾含量 Total potassium content (CTK) PD, PH, C 0.001 0.903 CTK = 0.05PD + 0.21PH - 0.19C + 0.42
全碳含量 Total carbon content (CTC) PH, PD, C 0.047 0.887 CTC = 0.58PH + 0.005PD + 0.67
容重 Bulk density (BD) PD, PH, C 0.001 0.961 BD = 0.68CC - 0.014PD - 0.71PH + 1.43
盐度 Salinity (Sal) PD, PH, C <0.001 0.939 Sal = 0.006PD + 0.25PH - 0.38C + 0.91
pH PD, PH 0.022 0.608 pH = 0.003PD - 0.122PH + 6.62
砂粒比例 Sand ratio (Sa) C <0.001 0.837 Sa = 5.11 - 3.41C
粉粒比例 Silt ratio (Si) PH 0.03 0.295 Si = 90.55 - 2.31PH
黏粒比例 Clay ratio (Cl) PD, PH, C 0.003 0.807 Cl = 0.15PD + 9.48PH - 12.97C + 2.74

Fig. 1

Contents of sedimental heavy metals in two pairs of comparative habitats (mean ± SE) in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China. Values in columns followed by ** indicate significant differences in each pair of comparative habitats based on paired-sample t-tests (p < 0.01). See Table 1 for information on habitats."

Table 4

Contents of sedimental heavy metals in four habitats in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China"

生境 Habitat 砷 As (µg·g-1) 镉 Cd (µg·g-1) 铬 Cr (µg·g-1) 铜 Cu (µg·g-1) 镍 Ni (µg·g-1) 铅 Pb (µg·g-1) 锌 Zn (µg·g-1) 锰 Mn (µg·g-1)
US 16.64 ± 3.90 1.29 ± 0.77 23.41 ± 0.45c 5.89 ± 0.35c 3.34 ± 3.40b 28.54 ± 1.41b 27.80 ± 0.52c 64.21 ± 1.54b
SA 15.91 ± 2.42 1.50 ± 0.41 45.17 ± 1.17a 12.49 ± 0.51a 12.58 ± 2.53a 33.30 ± 1.83ab 54.07 ± 1.58a 87.58 ± 4.17a
AM 15.59 ± 3.21 1.43 ± 0.48 35.42 ± 0.90b 9.22 ± 0.33b 5.40 ± 2.92b 37.52 ± 1.34a 41.95 ± 1.49b 67.82 ± 5.36b
MIX 16.13 ± 3.36 1.43 ± 0.40 46.33 ± 0.99a 12.72 ± 0.41a 14.92 ± 4.48a 34.09 ± 2.17ab 56.66 ± 1.40a 86.15 ± 3.35a

Table 5

Heavy metal pollution level and evaluation criteria"

污染程度
Pollution level

No
轻度
Mild
偏中度
Partial-moderate
中度
Moderate
偏重
Partial-hazardous

Hazardous
严重
Severe
级别 Level 0 1 2 3 4 5 6
累积指数 Accumulation index (I) ≤0 0-1 1-2 2-3 3-4 4-5 >5

Table 6

Pollution levels for individual sedimental heavy metal in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China"

生境 Habitat 砷 As 镉 Cd 铬 Cr 铜 Cu 镍 Ni 铅 Pb 锌 Zn 锰 Mn
裸滩 US -0.80 ± 0.32 0.92 ± 0.21 -1.99 ± 0.03 -3.55 ± 0.09 -2.37 ± 0.40 -0.86 ± 0.07 -2.40 ± 0.03 -3.50 ± 0.03
互花米草 SA -0.70 ± 0.24 1.27 ± 0.11 -1.04 ± 0.04 -2.45 ± 0.06 -1.13 ± 0.08 -0.64 ± 0.08 -1.44 ± 0.05 -3.06 ± 0.07
海榄雌 AM -1.26 ± 0.57 1.15 ± 0.17 -1.40 ± 0.04 -2.88 ± 0.05 -2.65 ± 0.34 -0.45 ± 0.05 -1.80 ± 0.05 -3.46 ± 0.11
混生群落 MIX -1.22 ± 0.66 1.21 ± 0.11 -1.01 ± 0.03 -2.42 ± 0.05 -0.91 ± 0.12 -0.61 ± 0.09 -1.37 ± 0.04 -3.08 ± 0.06
总和 Total -1.00 ± 0.23 1.14 ± 0.08 -1.36 ± 0.06 -2.82 ± 0.07 -1.76 ± 0.17 -0.64 ± 0.04 -1.75 ± 0.06 -3.28 ± 0.05

Table 7

Summary of Pearson correlation analyses between the sedimental heavy metal contents and the physicochemical properties in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China"

理化性质 Physicochemical properties 砷 As 镉 Cd 铬 Cr 铜 Cu 镍 Ni 铅 Pb 锌 Zn 锰 Mn
有机质含量 Organic matter content (COM) -0.100 0.201 0.886** 0.863** 0.703** 0.729** 0.880** 0.560*
全氮含量 Total nitrogen content (CTN) -0.094 0.405 0.980** 0.963** 0.838** 0.607* 0.973** 0.732**
全磷含量 Total phosphorus content (CTP) -0.060 0.249 0.950** 0.961** 0.932** 0.339 0.957** 0.398
全硫含量 Total sulphur content (CTS) -0.020 0.179 0.779** 0.747** 0.589* 0.712** 0.774** 0.812**
全钾含量 Total potassium content (CTK) -0.059 0.214 0.990** 0.974** 0.848** 0.580* 0.980** 0.782**
全碳含量 Total carbon content (CTC) -0.120 0.223 0.876** 0.853** 0.680** 0.737** 0.868** 0.534*
容重 Bulk density (BD) 0.043 -0.154 -0.973** -0.941** -0.854** -0.527* -0.967** -0.790**
盐度 Salinity (Sal) -0.024 -0.150 0.956** 0.955** 0.943** 0.331 0.960** 0.855**
pH -0.059 -0.226 -0.238 -0.217 -0.007 -0.623** -0.237 0.268
砂粒比例 Sand ratio (Sa) 0.150 -0.107 -0.904** -0.870** -0.679** -0.647** -0.886** -0.662**
粉粒比例 Silt ratio (Si) 0.398 0.234 -0.426 -0.430 -0.378 -0.586* -0.417 -0.230
黏粒比例 Clay ratio (Cl) -0.281 -0.017 0.898** 0.981** 0.868** 0.497* 0.895** 0.776**

Table 8

Relationships (by stepwise regression analysis) between the sedimental heavy metal contents and the vegetation characteristics in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China"

重金属元素 Heavy metals 植被特征 Vegetation characteristics p R2 回归方程 Regression equation
砷 As
镉 Cd
铬 Cr PD, PH, C <0.001 0.901 Cr = 0.44PD + 19.31PH - 21.40C + 23.72
铜 Cu PD, PH, C <0.001 0.855 Cu = 0.14PD + 5.66PH - 6.51C + 5.99
镍 Ni PD <0.001 0.573 Ni = 0.22PD + 5.44
铅 Pb PH 0.001 0.509 Pb = 5.00PH + 28.39
锌 Zn PD, PH, C <0.001 0.909 Zn = 0.58PD + 26.16PH - 31.22C + 28.09
锰 Mn PD <0.001 0.630 Mn = 0.55PD + 67.47
[1] Banerjee K, Senthilkumar B, Purvaja R, Ramesh R (2012). Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, Northeast coast of India.Environmental Geochemistry and Health, 34, 27-42.
[2] Bortolus A, Carlton JT, Schwindt E (2015). Reimagining South American coasts: Unveiling the hidden invasion history of an iconic ecological engineer.Diversity and Distributions, 21, 1267-1283.
[3] Bradley BA, Blumenthal DM, Early R, Grosholz ED, Lawler JJ, Miller LP, Sorte CJ, D’Antonio CM, Diez JM, Dukes JS (2011). Global change, global trade, and the next wave of plant invasions.Frontiers in Ecology and the Environment, 10, 20-28.
[4] Caetano M, Vale C, Cesario R, Fonseca N (2008). Evidence for preferential depths of metal retention in roots of salt marsh plants.Science of the Total Environment, 390, 466-474.
[5] Chen H, Chen GZ, Ye ZH (2009). Research progress of heavy metal pollution in mangrove wetlands.Acta Ecologica Sinica, 29, 3893-3900. (in Chinese with English abstract)[程皓, 陈桂珠, 叶志鸿 (2009). 红树林重金属污染生态学研究进展. 生态学报, 29, 3893-3900.]
[6] Chen L, Wang W, Zhang Y, Lin G (2009). Recent progresses in mangrove conservation, restoration and research in China. Journal of Plant Ecology, 2, 45-54.
[7] Chen LZ, Wang WQ, Zhang YH, Huang L, Zhao CL, Yang SC, Yang ZW, Chen YC, Xu HL, Zhong CR, Su B, Fang BZ, Chen NM, Zeng CZ, Lin GH (2010). Damage to mangroves from extreme cold in early 2008 in southern China.Chinese Journal of Plant Ecology, 34, 186-194. (in Chinese with English abstract)[陈鹭真, 王文卿, 张宜辉, 黄丽, 赵春磊, 杨盛昌, 杨志伟, 陈粤超, 徐华林, 钟才荣, 苏博, 方柏州, 陈乃明, 曾传志, 林光辉 (2010). 2008年南方低温对我国红树植物的破坏作用. 植物生态学报, 34, 186-194.]
[8] Chen Q, Li J, Zhang L, Lu H, Ren H, Jian S (2015). Changes in the macrobenthic faunal community during succession of a mangrove forest at Zhanjiang, South China.Journal of Coastal Research, 31, 315-325.
[9] Chen Q, Ma KM (2015). Research overview and trend on biological invasion in mangrove forests.Chinese Journal of Plant Ecology, 39, 283-299. (in Chinese with English abstract)[陈权, 马克明 (2015). 红树林生物入侵研究概况与趋势. 植物生态学报, 39, 283-299.]
[10] Chung CH (2006). Forty years of ecological engineering with Spartina plantations in China.Ecological Engineering, 27, 49-57.
[11] Clemens S, Palmgren MG, Krämer U (2002). A long way ahead: Understanding and engineering plant metal accumulation.Trends in Plant Science, 7, 309-315.
[12] Craft C, Reader J, Sacco JN, Broome SW (1999). Twenty-five years of ecosystem development of constructed Spartina alterniflora( Loisel) marshes.Ecological Applications, 9, 1405-1419.
[13] Elton CS (1958). The Ecology of Invasions by Plants and Animals. Methuen, London.
[14] Fonseca EF, Neto JAB, Silva CG (2013). Heavy metal accumulation in mangrove sediments surrounding a large waste reservoir of a local metallurgical plant, Sepetiba Bay, SE, Brazil.Environmental Earth Sciences, 70, 643-650.
[15] Gan HY, Zheng ZC, Liang K, Chen TH (2010). Spatial distribution and source of heavy metals in surface sediment from near-shore area of Beihai, Guangxi.Marine Environmental Science, 29, 698-704. (in Chinese with English abstract)[甘华阳, 郑志昌, 梁开, 陈太浩 (2010). 广西北海近岸海域表层沉积物的重金属分布及来源分析. 海洋环境科学, 29, 698-704.]
[16] Islam MS, Tanaka M (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis.Marine Pollution Bulletin, 48, 624-649.
[17] Kathiresan K, Bingham BL (2001). Biology of mangroves and mangrove ecosystems.Advances in Marine Biology, 40, 81-251.
[18] Li B, Liao CH, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ (2009). Spartina alterniflora invasions in the Yangtze River estuary, China: An overview of current status and ecosystem effects.Ecological Engineering, 35, 511-520.
[19] Li LQ (2008). Heavy Metals in the Mangrove Wetlands of China. PhD dissertation, Xiamen University, Xiamen. (in Chinese with English abstract)[李柳强 (2008). 中国红树林湿地重金属污染研究. 博士学位论文, 厦门大学, 厦门.]
[20] Li LQ, Ding ZH, Liu JL, Lin HN, Wu H (2008). Distribution of heavy metals in surficial sediments from main mangrove wetlands of China and their influence factors.Acta Oceanologica Sinica, 30(5), 159-164. (in Chinese with English abstract)[李柳强, 丁振华, 刘金铃, 林慧娜, 吴浩 (2008). 中国主要红树林表层沉积物中重金属的分布特征及其影响因素. 海洋学报, 30(5), 159-164.]
[21] Liao C, Luo Y, Jiang L, Zhou X, Wu X, Fang C, Chen J, Li B (2007). Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems, 10, 1351-1361.
[22] Lin GX, Lu WZ (2011). Investigation of plant resources in Zhanjiang Gaoqiao Mangrove and the surrounding regions, Guangdong Province.Guangdong Forestry Science and Technology, 27(5), 38-43. (in Chinese with English abstract)[林广旋, 卢伟志 (2011). 湛江高桥红树林及周边地区植物资源调查. 广东林业科技, 27(5), 38-43.]
[23] Ma RL, He YS, Yang Y, Xia N, Guo YP, Zhang GC, Lu S (2012). Geochemical characteristics of surface sediments from the Qiongzhou Strait.Marine Science Bulletin, 31(2), 131-135. (in Chinese with English abstract)[马荣林, 何玉生, 杨奕, 夏南, 郭跃品, 张固成, 陆珊 (2012). 琼州海峡表层沉积物元素地球化学特征. 海洋通报, 31(2), 131-135.]
[24] Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000). Biotic invasions: Causes, epidemiology, global consequences, and control.Ecological Applications, 10, 689-710.
[25] Nagajyoti PC, Lee KD, Sreekanth TVM (2010). Heavy metals, occurrence and toxicity for plants: A review.Environmental Chemistry Letters, 8, 199-216.
[26] Nath B, Birch G, Chaudhuri P (2013). Trace metal biogeochemistry in mangrove ecosystems: A comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.Science of the Total Environment, 463, 667-674.
[27] Nawab J, Khan S, Shah MT, Gul N, Ali A, Khan K, Huang Q (2016). Heavy metal bioaccumulation in native plants in chromite impacted sites: A search for effective remediating plant species.Clean-Soil Air Water, 44, 37-46.
[28] Pan K, Wang WX (2012). Trace metal contamination in estuarine and coastal environments in China.Science of the Total Environment, 421, 3-16.
[29] Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009). The remediation of heavy metals contaminated sediment.Journal of Hazardous Materials, 161, 633-640.
[30] Piazzolla D, Scanu S, Frattarelli FM, Mancini E, Tiralongo F, Brundo MV, Tibullo D, Pecoraro R, Copat C, Ferrante M, Marcelli M (2015). Trace-metal enrichment and pollution in coastal sediments in the Northern Tyrrhenian Sea, Italy.Archives of Environmental Contamination and Toxicology, 69, 470-481.
[31] Rainbow PS (2002). Trace metal concentrations in aquatic invertebrates: Why and so what?Environmental Pollution, 120, 497-507.
[32] Rashed MN (2010). Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. Journal of Hazardous Materials, 178, 739-746.
[33] Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, Garcia-Berthou E, Pascal M, Pysek P, Sousa R, Tabacchi E, Vila M (2013). Impacts of biological invasions: What’s what and the way forward?Trends in Ecology & Evolution, 28, 58-66.
[34] Tilman D (1999). The ecological consequences of changes in biodiversity: A search for general principles.Ecology, 80, 1455-1474.
[35] Usman ARA, Alkredaa RS, Al-Wabel MI (2013). Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bio-accumulator. Ecotoxicology and Environmental Safety, 97, 263-270.
[36] Wang AJ, Chen J, Li DY (2008). Impact of Spartina altemiflora on sedimentary environment of coastal wetlands of the Quanzhou Bay. The Ocean Engineering, 26(4), 60-69. (in Chinese with English abstract)[王爱军, 陈坚, 李东义 (2008). 互花米草对福建泉州湾海岸湿地沉积环境影响. 海洋工程, 26(4), 60-69.]
[37] Wang Q, An SQ, Ma ZJ, Zhao B, Chen JK, Li B (2005). Invasive Spartina alterniflora: Biology, ecology and management. Acta Phytotaxonomica Sinica, 44, 559-588. (in Chinese with English abstract)[王卿, 安树青, 马志军, 赵斌, 陈家宽, 李博 (2006). 入侵植物互花米草——生物学、生态学及管理. 植物分类学报, 44, 559-588.]
[38] Yadav A, Ram A, Majithiya D, Salvi S, Sonavane S, Kamble A, Ghadigaonkar S, Jaiswar JRM, Gajbhiye SN (2015). Effect of heavy metals on the carbon and nitrogen ratio in Avicennia marina from polluted and unpolluted regions. Marine Pollution Bulletin, 101, 359-365.
[39] Zhang JP, Ren H, Shen WJ, Jian SG, Lu HF (2009). Community composition, species diversity and population biomass of the Gaoqiao mangrove forest in Southern China. In: Herrera JR ed. International Wetlands: Ecology, Conservation and Restoration. Nova Science, New York. 177-190.
[40] Zhang MY, Cui LJ, Sheng LX, Wang YF (2009). Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China.Ecological Engineering, 35, 563-569.
[41] Zhang Y, Huang G, Wang W, Chen L, Lin G (2012). Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology, 93, 588-597.
[42] Zhang ZW, Xu XR, Sun YX, Yu S, Chen YS, Peng JX (2014). Heavy metal and organic contaminants in mangrove ecosystems of China: A review.Environmental Science and Pollution Research, 21, 11938-11950.
[43] Zou F, Zhang H, Dahmer T, Yang Q, Cai J, Zhang W, Liang C (2008). The effects of benthos and wetland area on shorebird abundance and species richness in coastal mangrove wetlands of Leizhou Peninsula, China.Forest Ecology and Management, 255, 3813-3818.
[1] SUN Hui-Min, JIANG Jiang, CUI Li-Na, ZHANG Shui-Feng, ZHANG Jin-Chi. Effects of Spartina alterniflora invasion on soil organic carbon composition of mangrove wetland in Zhangjiang River Estuary [J]. Chin J Plan Ecolo, 2018, 42(7): 774-784.
[2] Run Liu, Zhaohui Zhang, Jiachen Shen, Zhihui Wang. Community characteristics of bryophyte in Karst caves and its effect on heavy metal pollution: A case study of Zhijin Cave, Guizhou Province [J]. Biodiv Sci, 2018, 26(12): 1277-1288.
[3] HU Chu-Qi,LIU Jin-Ke,WANG Tian-Hong,WANG Wen-Lin,LU Shan,ZHOU Chang-Fang. Influence of three types of salt stress on photosynthesis in Spartina alterniflora and Phragmites australis [J]. Chin J Plan Ecolo, 2015, 39(1): 92-103.
[4] HUANG Yi, WANG Dong-Wei, CAI Jia-Liang, ZHENG Wei-Shuang. Review of glomalin-related soil protein and its environmental function in the rhizosphere [J]. Chin J Plan Ecolo, 2011, 35(2): 232-236.
[5] LI Jian, MA Jian-Hua, SONG Bo. HEAVY METAL ACCUMULATION AND HEALTH RISK ASSESSMENT IN THE ROADSIDE SOIL-WHEAT SYSTEM ALONG ZHENGZHOU-KAIFENG HIGHWAY, CHINA [J]. Chin J Plan Ecolo, 2009, 33(3): 624-628.
[6] Zhigang Nie;Yan Wang;Shaoshan Li. Heavy Metal-induced DNA Damage in Arabidopsis thaliana Protoplasts Measured by Single-cell Gel Electrophoresis [J]. Chin Bull Bot, 2009, 44(01): 117-123.
[7] Yimo Zhang, Qing Wang, Meng Lu, Xin Jia, Yupeng Geng, Bo Li. Variation and phenotypic plasticity in life history traits of Spartina al-terniflora along the east coast of China [J]. Biodiv Sci, 2008, 16(5): 462-469.
[8] Jianmin Ma;Ping Jin;Zhenbin Wu. Absorption and Purification of Heavy Metals by Submerged Macrophytes and Its Mechanism [J]. Chin Bull Bot, 2007, 24(02): 232-239.
[9] Hui Gao, Xiaowei Peng, Bo Li, Qianhong Wu, Huiqin Dong. Effects of the invasive plant Spartina alterniflora on insect diversity in Jiuduansha wetlands in the Yangtze River Estuary [J]. Biodiv Sci, 2006, 14(5): 400-409.
[10] Hepeng Li, Liquan Zhang, Donghui Wang. Distribution of an exotic plant Spartina alterniflora in Shanghai [J]. Biodiv Sci, 2006, 14(2): 114-120.
[11] Xiao Zhou, Tianhou Wang, Zhenming Ge, Wenyu Shi, Lichen Zhou. Impact of Spartina alterniflora invasion on the macrobethos community of Jiuduansha’s intertidal mudflat in the Yangtze River estuary [J]. Biodiv Sci, 2006, 14(2): 165-171.
[12] LUO Chun-Ling SHEN Zhen-Guo. The Mechanisms of Heavy Metal Uptake and Accumulation in Plants [J]. Chin Bull Bot, 2003, 20(01): 59-66.
[13] WANG Jian-Hong MA Mi. Biological Mechanisms of Phytoremediation [J]. Chin Bull Bot, 2000, 17(06): 504-510.
[14] Jiang Gao-ming. The Application of Pinus tabulaeformis Tree Rings in Revealing the Pollution History of Chengde City [J]. Chin J Plan Ecolo, 1994, 18(4): 314-321.
[15] Huang Yin-xiao, Lin Shun-hua, Ren Ji-kai, Chen Qing-lang, Chen Zhang-long, Han Rong-zhuang, Yao Yi-qun. The Translocation, Distribution and Accumulation of Heavy Metals in Crops-Soil System in the Eastern Suburbs of Beijing [J]. Chin J Plan Ecolo, 1986, 10(2): 131-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 2000, 17(06): 572 .
[2] Zhao yu-jin;Wang Tai and Tong Zhe. A Simplified Method for Extraction of Endogenous IAA ABA and GAs from Rice Leave[J]. Chin Bull Bot, 1994, 11(04): 52 -55 .
[3] Ni Jian and Wu Ji-you. Prospection of Hidden Deposit Using Spectral Reflectance of Plant Leaves Surface[J]. Chin Bull Bot, 1997, 14(01): 36 -40 .
[4] . Analysis of Wild Lotus with RAPD Markers[J]. Chin Bull Bot, 2005, 22(增刊): 64 -67 .
[5] Lin Peng, Lu Chang-yi, Wang Gong-li, Chen Huan-Xiong. Study on Dynamics of Litter Fall of Bruguiera sexangula Mangrove in Hainan Island,China[J]. Chin J Plan Ecolo, 1990, 14(1): 69 -74 .
[6] MA Yang, WANG Xue-Qin, ZHANG Bo, LIU Jin-Hui, HAN Zhang-Yong, and TANG Gang-Liang. Effects of wind erosion and sand burial on water relations and photosynthesis in Alhagi sparsifolia in the southern edge of the Taklimakan Desert[J]. Chin J Plan Ecolo, 2014, 38(5): 491 -498 .
[7] Jie Ming. Biosphere Project at the International Institute for Applied Systems Analysis[J]. Chin J Plan Ecolo, 1990, 14(1): 93 -94 .
[8] Zhi-Cheng CHEN, Xian-Chong WAN. The relationship between the reduction of nonstructural carbohydrate induced by defoliator and the growth and mortality of trees[J]. Chin J Plan Ecolo, 2016, 40(9): 958 -968 .
[9] Fan Li,Huanjun Zhang,Zhenbo Lü,Bingqing Xu,Liang Zheng. Species composition and community diversity of nekton in Laizhou Bay, China[J]. Biodiv Sci, 2013, 21(5): 537 -546 .
[10] Zongxin Ren, Hong Wang, Yibo Luo. Deceptive pollination of orchids[J]. Biodiv Sci, 2012, 20(3): 270 -279 .