Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (12): 1319-1327.DOI: 10.17521/cjpe.2016.0107

• Research Articles • Previous Articles     Next Articles

Growth metabolism of wheat under drought stress at the jointing-booting stage

Rui GUO1,2,*, Ji ZHOU3, Fan YANG4, Feng LI1, Hao-Ru LI1,2, Xu XIA1,2, Qi LIU1,2   

  1. 1Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

    2Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing 100081, China

    3Land Consolidation and Rehabilitation Centre, the Ministry of Land and Resources, Beijing 100034, China
    and
    4Jilin Academy of Forestry Sciences, Changchun 130033, China
  • Online:2016-12-31 Published:2016-12-30
  • Contact: Rui GUO

Abstract: AimsThe aim of this study was to investigate the effects of drought stress on primary, secondary metabolites and metabolic pathways in the leaves of wheat, these parameters were evaluated to determine the physiological adaptive mechanisms by which wheat tolerates drought stress at the jointing-booting stage.MethodsA pot experiment was carried out in rain-proof shelter. The relative growth rate, photosynthetic characteristics and metabolism seedlings exposed to stresses lasting 12 days at jointing-booting stage were measured.Important findings The results displayed that the photosynthesis decreased under drought stress, causing the decreases of relative growth rate and dry matter mass. Profiles of 64 key metabolites produced by wheat including organic acids, amino acids, carbohydrates, purine, etc. were examined, 29 of them were changed significantly under drought stress. Principal component analysis (PCA) showed that 64% variations can be explained by the two principal components. One-way ANOVA analysis results revealed that long term drought stress decreased malic acid, citric acid and aconitic acid significantly, indicating inhibited tricarboxylic acid cycle. We further found that prolonged drought stress led to accumulation of progressive amino acids (proline, serine, valine) and carbohydrates (myo-inositol, fructose, clucose) in wheat leaves and depletion of transamination products (asparagine, glutamine, γ-aminobutyric acid). These results imply wheat may enhance its drought tolerance mainly by increasing amino acid biosynthesis and glycolysis under water-deficit conditions. Our findings suggest that drought condition altered metabolic networks including transamination, the tricarboxylic cycle, gluconeogenesis/glycolysis, glutamate-mediated proline biosynthesis, and the metabolisms of choline, pyrimidine and purine. This study provides new insights into the metabolic adaptation of wheat to drought stress and important information for developing drought-tolerant wheat cultivars.

Key words: wheat, jointing-booting stage, drought stress, growth characters, metabolites profiles