Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
  
Research progress on home-field advantage of leaf litter decomposition
ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng
Chin J Plant Ecol    2023, 47 (5): 597-607.   DOI: 10.17521/cjpe.2022.0143
Accepted: 08 September 2022

Abstract1063)   HTML152)    PDF (3221KB)(676)       Save

Litter often decomposes more rapidly in its native habitat (“home”) than in non-native habitats (“away”), a phenomenon called the “home-field advantage”. To explore the driving mechanism of home-field advantage of litter decomposition is important to predict the process of plant nutrient return and ecosystem carbon budget. This study reviewed the research progress on the home-field advantage of litter decomposition in recent years by discussing the quantification of home-field advantage, the controlling factors, and related driving mechanisms. There are four common metrics to describe home-field advantage in litter decomposition, and the use of linear model analysis to calculate home-field advantage is more appropriate. Litter quality (chemical composition, etc.) and soil microbial community structure are the main factors influencing the home-field advantage of litter decomposition, and soil fauna, climatic conditions, decomposition time, plant life form and growth form can also influence the intensity of the home-field advantage. Greater differences in litter quality usually generate stronger home-field advantage. Microbial taxa in the soil drive the home-field advantage of litter decomposition, but the role of soil microbes is often mediated by animal and climatic disturbances. In addition, the existence of phyllosphere microbes makes the home-field advantage of litter decomposition stronger. The litter chemical convergence hypothesis, decomposer control hypothesis and substrate quality-matrix quality interaction hypothesis are major hypotheses explaining the home-field advantage in litter decomposition, but they are not impeccable. We believe that the association between litter and soil microbial community is the driving force behind home-field advantage. The current researches on the factors and relative contribution of home-field advantage are not deep enough and usually focusing on a single ecosystem. Future investigations should explore deeper on the factors and their relative contributions of home-field advantage, and focus on more ecosystem types to improve the understandings of the mechanism of home-field advantage.

Table and Figures | Reference | Related Articles | Metrics
  
Diversity and evolutionary ecology of nectar spurs in angiosperms
YANG Ming-Wei, JIN Xiao-Fang
Chin J Plant Ecol    2023, 47 (9): 1193-1210.   DOI: 10.17521/cjpe.2022.0445
Accepted: 16 March 2023

Abstract839)   HTML227)    PDF (30366KB)(485)       Save

For many plants, nectar is hidden in the depth of nectar spurs. The diverse morphology and length of nectar spurs can attract pollinators with various proboscis lengths and promote the differentiation of pollination niche, which plays an important role in the formation of species diversity. Therefore, nectar spur is considered as a key innovation trait in promoting speciation and an ideal trait for studying floral evolution and plant-pollinator coevolution in angiosperm. This review systematically summarizes the worldwide plant taxonomic databases and published articles, classifies the nectar spur plants, and reviews the diversity and evolutionary mechanisms of nectar spur plants. We investigated 3 427 nectar spur species belonging to 13 orders, 23 families and 271 genera of angiosperm. Among them, Orchidaceae has the largest number of species, with 1 536 species, following by Papaveraceae with 487 species, Ranunculaceae with 351 species, Balsaminaceae with 284 species and Violaceae with 197 species, accounting for 83.3% of all the species. According to the sources of the development of nectar spurs, the nectar spurs can be divided into six types: petal spur, corolla spur, sepal spur, calyx spur, tepal spur and hypanthium spur. The petal spurs are the predominant type, detected in 212 genera. The average length of nectar spurs in Balsaminaceae is the longest (23.8 mm) among the 2 546 species whose nectar spurs have been measured. The shortest nectar spurs are reported in Lycelandaceae, which are only 1.6 mm on average. Most nectar spurs have different degrees of curvature, likely helping to improve the pollination efficiency. The number of nectar spur(s) in a flower ranges from 1 to 6, and most species have only one nectar spur in a flower. Multiple nectar spurs may increase the visiting time of pollinators. Some plants in Orchidaceae and Violaceae have appendages inside the nectar spurs, which may have the function of nectar secretion. The pollinators of plants with nectar spur mainly comprise insects from Hymenoptera, Lepidoptera, and some long-proboscis species from Diptera and birds. Nectar robbers are mainly bees and birds. There is a general association of geographic mosaic theory of coevolution between the length of nectar spur and the length of pollinator proboscis. Evolutionary ecologists have proposed the hypothesis of “Darwin’s Mechanistic Model” and “The Pollinator Shift Model” to explain this phenomenon. In future studies of the mechanisms of nectar spur evolution, we should not only focus on the morphological characteristics of spur length and proboscis length and the pollination ecology, but also explore the driving forces of nectar spurs evolution from cell division/elongation, functional genes, abiotic factors, with the help of novel technological approaches including developmental anatomy and genomics.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
  
Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation
WANG Xiao-Yue, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying
Chin J Plant Ecol    2023, 47 (4): 479-490.   DOI: 10.17521/cjpe.2022.0211
Accepted: 06 August 2022

Abstract827)   HTML84)    PDF (1388KB)(729)       Save

Aims Plant diversity is the basis for plant communities to maintain ecosystem stability. Despite the scarcity of vegetation, desert steppes play an irreplaceable ecological service function in terms of wind-break and sand- fixation, etc. However, how plant diversity in desert steppes responds to long-term extreme precipitation changes still remains poorly understood.

Methods Based on a long-term field experiment involving five precipitation treatments (50% reduction, 30% reduction, natural, 30% increase, and 50% increase) conducted in a desert steppe in Ningxia since 2014, the changing characteristics of plant biomass, species diversity and their relationships with soil properties were studied from May to October in 2020.

Important findings During the growing season, plant community biomass, Patrick richness index and Shannon-Wiener diversity index tended to increase first and then decrease, whereas no obvious regularities in Pielou evenness index and Simpson dominance index. Compared with the natural precipitation, the decreased precipitation had less effect on plant biomass and diversity, especially the 30% reduction in precipitation. In most cases, the increased precipitation stimulated the growth of Sophora alopecuroides, Stipa brevifloraand Pennisetum centrasiaticum,and thus increasing plant biomass. However, it did not significantly change plant diversity when precipitation increased, especially the 30% increase of precipitation. Plant biomass was significantly affected by soil urease activity, temperature, water content, pH, phosphatase activity and sucrase activity, while plant diversity was significantly affected by soil water content, electrical conductivity, and urease activity. In general, the results indicated that plants have high adaptability to moderate or even extreme drought in the research area under seven consecutive years of changing precipitation; moderately increasing precipitation increased soil water availability, enhanced exchangeable ion mobility, and stimulated enzyme activity, thereby promoting plant growth. However, the continuous increase of precipitation leaded to the increase of plant biomass and plant water consumption, resulting in the lack of soil water in the late growth season and then the early completion of the life cycle of some plants.

Table and Figures | Reference | Related Articles | Metrics
  
Reduced release of labile carbon from Abies fargesii var. faxoniana needle litter after snow removal in an alpine forest
LAI Shuo-Tian, WU Fu-Zhong, WU Qiu-Xia, ZHU Jing-Jing, NI Xiang-Yin
Chin J Plant Ecol    2023, 47 (5): 672-686.   DOI: 10.17521/cjpe.2022.0111
Accepted: 06 September 2022

Abstract813)   HTML23)    PDF (2518KB)(226)       Save

Aims Changes in the depth and duration of seasonal snowpack induced by climate change may affect litter decomposition, particularly the release of labile carbon during the early decomposition periods in alpine forests. Our objective of this study was to assess the effect of snow removal on labile carbon fractions in litter (i.e., dissolved organic carbon (DOC), hot-water extractable carbon (HWEC) and non-structural carbon (NSC)) during early stage of litter decomposition in an alpine forest on the eastern Qingzang Plateau.
Methods An in situ litter input microcosm experiment was conducted in an alpine forest dominated by 120 to 150-year-old fir (Abies fargesii var. faxoniana) from October 2018 to October 2019. Air-dried fir needle litter was incubated at control and snow removal plots and the concentrations of total organic carbon (TOC), DOC, HWEC, NSC, soluble sugars and starch in decomposing fir litter were determined during winter (snow formation period, snow coverage period and snow melt period) and growing season (early, middle and late growing season).
Important findings Results showed that litter mass remained by 76.4% and 86.2% at control and snow removal plots, respectively, over one year of decomposition. After decomposition for one year, 60.5% and 74.8% of organic carbon remained in decomposing litter at control and snow removal plots, respectively. After decomposition for a winter, the release of HWEC and soluble sugars from decomposing litter were lower, while TOC, DOC, NSC and starch in fir needle litter were higher in snow removal plots than that in control plot. After decomposition for a growing season, the release of TOC, HWEC, DOC, NSC, soluble sugars and starch were reduced by 36.3%, 0.8%, 43.7%, 28.3%, 21.7% and 33.7%, respectively, in the snow removal plots compared to those in the control plots. The results from partial least square model indicated that labile carbon release was strongly controlled by soil freezing-thawing cycle, urease activity, soil temperature and DOC concentration. These results suggest that the presence of snow cover accelerated the release of labile carbon from decomposing litter during winter and growing seasons, highlighting the importance of seasonal snow cover in controlling litter decomposition in high-latitude and high-altitude ecosystems. Moreover, the significant influence of snow cover on labile carbon release during winter could have a legacy effect on litter decomposition during the subsequent growing season, suggesting that snow cover is of great significance for soil biogeochemical cycles in this alpine forest.

Table and Figures | Reference | Related Articles | Metrics
  
A review of forest aboveground biomass estimation based on remote sensing data
HAO Qing, HUANG Chang
Chin J Plant Ecol    2023, 47 (10): 1356-1374.   DOI: 10.17521/cjpe.2023.0008
Accepted: 30 May 2023

Abstract773)   HTML39)    PDF (1249KB)(474)       Save

Forests are crucial terrestrial ecosystems with wide distribution and substantial biomass, playing a vital role in the global carbon cycle. The estimation of aboveground biomass (AGB) in forests serves as a significant indicator of ecosystem productivity and is pivotal for studying material cycles and global climate change. Traditional methods for AGB estimation rely on individual tree-scale or forest stand-scale tree physical structural information measurements, which are often time-consuming and labor-intensive to obtain. Remote sensing technology offers a solution for comprehensively and multi-temporally obtaining forest structural information in large scale, making it indispensable for forest AGB estimation. Therefore, it is important to review and summarize recent advancements in remote sensing techniques for estimating forest AGB to promote their application and guide the development of related industries. This paper presents a comprehensive overview of the principles and methods used for estimating forest AGB using optical data, synthetic aperture radar (SAR) data, and light detection and ranging (LiDAR) data. It also analyzes the current status of synergistic estimation of forest AGB using multiple remote sensing data sources. The study highlights three key findings: (1) The use of novel remote sensing data, such as high-resolution satellite imagery and Global Ecosystem Dynamics Investigation LiDAR data, is expanding the boundaries of spatial and temporal resolutions, providing enhanced data sources for forest AGB research. (2) Synergistic approaches that combine multiple remote sensing data sources show promise in improving the accuracy of forest AGB estimation, but further optimization of related models is needed. (3) Machine learning, artificial intelligence, and deep learning techniques have been widely applied in forest AGB estimation, but continuous research on remote sensing mechanisms remains essential for innovation. Improvements in models and methodologies should revolve around a better understanding of these mechanisms.

Table and Figures | Reference | Related Articles | Metrics
  
Research advances on trade-off relationships of plant fine root functional traits
SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing
Chin J Plant Ecol    2023, 47 (8): 1055-1070.   DOI: 10.17521/cjpe.2022.0456
Accepted: 13 March 2023

Abstract753)   HTML167)    PDF (1581KB)(587)       Save

Trade-offs among plant functional traits reflect the trade-off relationships between resource acquisition and conservation of different plants, which are of pivotal importance for understanding the mechanisms by which plants adapt to the environment. However, due to the heterogeneity of the soil environment and the limitations of technical means, the study of below-ground root functional traits and their interrelationships is currently lagging behind that of above-ground functional traits. Traditionally, fine roots have been defined as all roots ≤2 mm in diameter. The acquisition and utilization of soil resources by plants depends on architectural traits, morphological traits, chemical traits and biotic traits of fine roots and so on, including fine roots associations with mycorrhizal fungi. Recently, the root economics space has been proposed, which demonstrates the existence of trade-offs between the do-it-yourself strategy of plants increasing their own root surface area and the outsourcing strategy of investments into fungal symbionts for enhanced nutrient mobilization from hyphal expansion, in addition to the traditional trade-offs between fast (high nitrogen content and metabolic rate) and slow (high tissue density) investment return. It was found that thin-root species obtained soil resources mainly by increasing specific root length, whereas thick-root species relied more on mycorrhizal fungi. However, the carbon economy of resource acquisition through the root and mycorrhizal hyphal pathways remains unclear. In future research, the key issues of root functional traits were suggested as follows: 1) for research methods, it is urgent to establish a unified set of definitions and research methods for root classification, sampling, storage, functional traits and their research methods; 2) for research traits, the research of “hard” traits of fine roots should be strengthened; 3) for the trade-offs between functional traits of fine roots, it is of great significance to strengthen the study of the trade-offs between construction costs and resource benefits between plant roots and mycorrhizal fungi.

Table and Figures | Reference | Related Articles | Metrics
  
Community characteristics, research states and problems of tropical rain forests in China
ZHU Hua, TAN Yun-Hong
Chin J Plant Ecol    2023, 47 (4): 447-468.   DOI: 10.17521/cjpe.2022.0260
Accepted: 03 January 2023

Abstract734)   HTML74)    PDF (1136KB)(580)       Save

Tropical rain forests are currently distributed in the southeastern Xizang, southern Yunnan, southern Guangxi, southern Taiwan, and Hainan Island in China. The ecological physiognomy, species composition and diversity of the tropical rain forests were reported in literatures, however with different terms for different regions of China, due partly to different methods, definitions and references used. In this review article, we summarize current research status and main questions on the phytosociological characteristics of the tropical rain forests in China, to provide information for further studies, protection and management. The lowland tropical rain forests in China belong to the northern marginal type of the southeastern Asian lowland rain forests, and share the similar community structure, physiognomy, and species diversity with other subtypes of the southeastern Asian lowland rain forests. Distributed in the northern edge of the monsoonal tropical zone, the lowland tropical rain forests in China are limited by seasonal drought and insufficient amount of heat, which is usually demanded by typical tropical rain forests, and therefore were given the name “tropical seasonal rain forest” by Chinese researchers. They are different from the typical humid or wet tropical rain forests in that they include a certain proportion of deciduous trees in canopy, less megaphanerophytes and epiphytes, but more lianas and microphyllous species in tree leaf sizes. The tropical rain forests in China show different floristic composition in different regions. Specifically, they contain less typical tropical floristic components, and show a transition to the tropical lower montane forests in southwestern China, and to the subtropical evergreen broad-leaved forests in south China. They show similar community structure and ecological physiognomy in Yunnan and Guangxi. Furthermore, the tropical seasonal rain forest in Yunnan contains dipterocarp trees and has the highest proportion of tropical Asian floristic components among the tropical rain forests in China and show the similar community structure characteristics as the lowland tropical rain forests in the Southeast Asia, although occurring on a higher altitude (up to 1 100 m above sea level, can reach up to 1 300 m in some certain areas). We further discuss the uncertainty and confusion in definition, classification and description of the tropical rain forests from literatures in different regions of China and propose to give a consolidated consideration on the definition and classification of the tropical rain forests in China.

Reference | Related Articles | Metrics
  
Progress of plant-soil feedback in ecology studies
ZHAO Rong-Jiang, CHEN Tao, DONG Li-Jia, GUO Hui, MA Hai-Kun, SONG Xu, WANG Ming-Gang, XUE Wei, YANG Qiang
Chin J Plant Ecol    2023, 47 (10): 1333-1355.   DOI: 10.17521/cjpe.2023.0055
Accepted: 15 May 2023

Abstract731)   HTML37)    PDF (1703KB)(610)       Save

Plant-soil feedback experiment is an important way for studying plant-soil biota interactions. Plant growth can change soil physical, chemical, and biotic properties in ways that then alter subsequent plant performance, population fluctuation, and community dynamics. This process, referred to as “plant-soil feedback” (PSF), might play a key role in biodiversity maintenance, sustainable agriculture development, and ecological restoration. In this review, we first provide an overview of the concept and research methods of PSF. Second, we review the research progress of the role of PSF in the maintenance of plant species diversity, plant community succession, plant invasions and range shifts, ecological response to climate change, above- and below-ground multitrophic interactions, ecosystem restoration, and crop performance in different cropping systems. We suggest three directions for future PSF studies, including: (1) the transition from single-species to community-level interactions between plants and soil biota; (2) the test of PSF experiments in field conditions; (3) the expansion of theoretical knowledge into ecological practice.

Table and Figures | Reference | Related Articles | Metrics
  
A fossil pollen dataset of China
ZHOU Bo-Rui, LIAO Meng-Na, LI Kai, XU De-Yu, CHEN Hai-Yan, NI Jian, CAO Xian-Yong, KONG Zhao-Chen, XU Qing-Hai, ZHANG Yun, Ulrike HERZSCHUH, CAI Yong-Li, CHEN Bi-Shan, CHEN Jing-An, CHEN Ling-Kang, CHENG Bo, GAO Yang, $\boxed{\hbox{HUANG Ci-Xuan}}$ , HUANG Xiao-Zhong, LI Sheng-Feng, LI Wen-Yi, LIU Kam-Biu, LIU Guang-Xiu, LIU Ping-Mei, LIU Xing-Qi, MA Chun-Mei, SONG Chang-Qing, SUN Xiang-Jun, TANG Ling-Yu, WANG Man-Hua, WANG Yong-Bo, $\boxed{\hbox{XIA Yu-Mei}}$ , XU Jia-Sheng, YAN Shun, YANG Xiang-Dong, YAO Yi-Feng, YE Chuan-Yong, ZHANG Zhi-Yong, ZHAO Zeng-You, ZHENG Zhuo, ZHU Cheng
Chin J Plant Ecol    2023, 47 (10): 1453-1463.   DOI: 10.17521/cjpe.2022.0316
Accepted: 08 November 2022

Abstract722)   HTML37)    PDF (2044KB)(339)       Save

Fossil pollen and spore records provide highly creditable proxy data to investigate the past environmental changes such as palaeovegetation and palaeoclimate. Pollen database promotes past environmental studies from local to regional and global scales and from qualitative to quantitative reconstructions. This is of great significance on exploring the interactions among past vegetation, climates and anthropogenic disturbances at large spatial scale and long temporal scale, to better understand the evolution of the earth system. In this paper, a fossil pollen dataset of China is compiled, by synthesizing 372 original or digitized fossil pollen records including 790 pollen taxa in China’s land and ocean during the late-Quaternary (since 50 ka BP). The dataset includes site names, latitude, longitude and altitude, pollen data source, sample type, sediment length or span, sample number of each site, dating method and dating number, age span and reference, as well as the fossil pollen percentage of each sampling site. The pollen data, mostly published from late 1980s to present, are concentrated in vegetation regions of temperate and subtropical forests, temperate grasslands, temperate deserts and alpine vegetation on the Qingzang Plateau. Sample sites are distributed at different altitudes from deep sea to high Qingzang Plateau, but the majority of the sites are located between 0-2 000 m. The dataset comprises of 178 raw pollen records (47.8%) and 194 digitized pollen records (52.2%). Pollen samples are mainly from lake sediment (151 sites), alluvial/fluvial sediment (99 sites), and peat (67 sites), accounting for 85.2% of the total sampling sites. Radiocarbon is the main dating method that accounts for 93.8% of total samples, and most of the sites have 2-10 radiocarbon dating data. Each site has an average number of pollen taxa of 19, with the most sites having 4-30 pollen taxa. The temporal and spatial distribution of representative pollen taxa (Pinus, Quercus, Artemisia and Poaceae) reveals increasing trends both in their distributional range and pollen concentration from the last glacial maximum to Holocene, but such trends have various regional patterns in different parts of China. This fossil pollen dataset is a fruitful work of collection of pollen records in most territory of China that conducted by palynologists from China and overseas during the last half century. It consolidates the valuable and fundamental data that can be potentially utilized to explore the evolution of past environments and their driving mechanism of climate change and human disturbance.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
  
Species distribution pattern and formation mechanism of mangrove plants around the South China Sea
YANG Xin, REN Ming-Xun
Chin J Plant Ecol    2023, 47 (8): 1105-1115.   DOI: 10.17521/cjpe.2022.0366
Accepted: 18 October 2022

Abstract648)   HTML111)    PDF (2352KB)(395)       Save

Aims The region around the South China Sea is a relatively independent semi closed geographical unit, which can be divided into eight areas, including the coast of South China, Hainan Island, Taiwan Island, Indo-China Peninsula, Malay Peninsula, Kalimantan Island, Palawan Island, and Luzon Island. The region around the South China Sea is one of the regions with the most concentrated distribution of mangrove plants in the world. This study aims to explore the geographical distribution pattern and the underlying mechanisms of mangrove species in the eight regions around the South China Sea.

Methods Species richness and distribution of mangrove in the region around the South China Sea and other regions worldwide were obtained through extensive literature survey and mapped with ArcGIS. Species distribution map with 1° × 1° grid of four typical mangrove taxa, i.e. Rhizophoraceae, Malvaceae, Sonneratia, Avicennia, were drawn by DIVA-GIS 7.5.0. The migration history and route and its main influencing factors were explored through literature survey in ISI Web of Science.

Important findings (1) There are 39 species of true mangroves and 14 species of semi-mangroves distributed in this region, mostly distributed in Malay Peninsula, Kalimantan Island, Hainan Island, Indo-China Peninsula, Luzon Island. (2) All mangrove species are widespread in the region, which may be caused by the fact that South China Sea has completely different ocean current and monsoon directions in summer and winter, promoting the long-distance dispersals of mangrove plants. (3) There is a certain internal circulation in the northern and southern parts of the South China Sea, and resulting in the appearance of relatively isolated genetic lineages on both sides of the line connecting Cam Ranh Bay and the northern tip of Palawan Island, especially for the true mangroves such as Excoecaria agallocha, Lumnitzera racemose and Aegiceras corniculatum. (4) The sea level decreased by about 120 m during the Pleistocene, which profoundly affected the distribution pattern and migration route of mangroves in the region. In the future, phylogeographical studies using updated molecular technology, especially genomic data, is suggested to explore the dispersal history of mangrove plants and their future evolutionary trend under global climate change.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
  
Estimation of carbon storage in Shaanxi Yellow River Wetland Provincial Nature Reserve
XU Gan-Jun, WU Sheng-Yi, LI Wei, ZHAO Xin-Sheng, NIE Lei-Chao, TANG Xi-Ying, ZHAI Xia-Jie
Chin J Plant Ecol    2023, 47 (4): 469-478.   DOI: 10.17521/cjpe.2022.0071
Accepted: 29 July 2022

Abstract596)   HTML64)    PDF (1349KB)(363)       Save

Aims Ecosystem services such as carbon sequestration and climate regulation of wetland ecosystems are very important. Accurately assessing the carbon storage of natural reserves in the Yellow River Basin is helpful for carbon neutrality research and regional ecological protection and high-quality development.

Methods Based on field sampling and laboratory analysis, combined with remote sensing data, this study assessed carbon storage in the aboveground plant biomass and the top 50 cm soils of typical natural vegetation in Shaanxi Yellow River Wetland Provincial Nature Reserve. The total target area for assessment is 13 086.52 hm2, accounting for 23.87% of the nature reserve.

Important findings The results showed that the aboveground carbon storage of the tall-grass vegetation was significantly higher than that of the short-grass vegetation and shrubland, and their carbon densities were 496.73, 23.45 and 138.38 g·m-2, respectively; the carbon density of the soil at 0-50 cm was 7.15-11.98 kg·m-2, and the soil carbon storage in the tall-grass vegetation area (5.02 × 105 t) was significantly higher than that of the beach without vegetation (2.09 × 105 t), the short-grass vegetation area (3.40 × 105 t) and short-shrubland area (1.45 × 105 t); finally, combining the aboveground carbon storage in plant biomass and the soil carbon storage in the top 50 cm, the total carbon storage is estimated around 1.22 × 106 t for the natural vegetation area of Shaanxi Yellow River Wetland Provincial Nature Reserve, of which proportions of carbon storage were 17.13%, 27.95%, 12.13% and 42.79% for beaches, short-grass vegetation area, short-shrubland, and tall-grass vegetation area. These results can provide basic data for the protection and restoration of natural wetlands and the improvement of carbon sink function in the middle reaches of the Yellow River.

Table and Figures | Reference | Related Articles | Metrics
  
A dataset of ecosystem fluxes in a shrubland ecosystem of Mau Us Sandy Land in Yanchi, Ningxia, China (2012-2016)
HAN Cong, MU Yan-Mei, ZHA Tian-Shan, QIN Shu-Gao, LIU Peng, TIAN Yun, JIA Xin
Chin J Plant Ecol    2023, 47 (9): 1322-1332.   DOI: 10.17521/cjpe.2023.0001
Accepted: 13 March 2023

Abstract592)   HTML131)    PDF (1440KB)(280)       Save

Arid and semi-arid ecosystem areas, which constitute an important component of the global land surface, act to regulate the long-term trend and interannual variations in global carbon and water cycles. Previous studies on the mechanisms underlying ecosystem carbon and water cycling and the development of relevant data products focus primarily on forest, grassland, and cropland ecosystems, with few research attention given to semi-arid shrublands. This research gap hinders the evaluation and projection of ecosystem functions at the regional scale. Since 2011, we used the eddy covariance technique to make continuous in situ measurements of carbon, water and heat fluxes in a shrubland ecosystem at Yanchi Research Station, the Mau Us Sandy Land. Data processing steps mainly included data collection, post-processing of raw data, quality control, gap-filling and carbon flux partitioning. We produced flux and micro-meteorological datasets at half-hourly, daily, monthly, and annual temporal resolutions for the years 2012-2016, and analyzed the overall quality of the datasets in terms of the proportion of valid data and the energy balance closure of flux measurements. Results showed: (1) After quality control, the proportion of valid data for half-hour net ecosystem CO2 exchange (NEE), latent heat flux (LE), and sensible heat flux (Hs) was 56.23%-62.19%, 79.40%-94.12%, and 77.56%-91.27%, respectively. (2) Annual and monthly energy balance ratio ranged 0.78-0.83 and 0.59-1.19, respectively. (3) The energy balance closure estimated using the “ordinary least squares” regression method showed that the interannual and seasonal variations in the slope of regression curves varied with a range of 0.73-0.79 at interannual scale and 0.73-0.92 at seasonal scale, respectively. These results indicate that our datasets have a high proportion of valid data and a reasonable energy balance closure, and thus can be used in studies related to ecosystem processes and functions at varing spatio-temporal scales.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
  
Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China
LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai
Chin J Plant Ecol    2023, 47 (11): 1507-1522.   DOI: 10.17521/cjpe.2023.0098
Accepted: 15 June 2023

Abstract586)   HTML99)    PDF (9054KB)(322)       Save

Aims Biodiversity is important for maintaining multiple ecosystem functions and enhancing community resilience to disturbance. Selection effect and niche complementarity effect are two widely discussed mechanisms for maintaining ecosystem function, but the understanding of how these two mechanisms maintain forest ecosystem multifunctionality (EMF) under climate change is still limited. It is essential to deepen our understanding of these mechanisms, particularly in assessing whether there are differences in their effectiveness across different climatic zones.

Methods Based on plots distributed in natural forests of middle temperate and cold temperate zones in northeastern China, we used functional trait diversity (FDq= 0), single and multidimensional trait functional dispersion indices (FDis) to represent the niche complementarity effect, and community weighted mean trait values (CWM) to represent the selection effect. We also explored the driving force of EMF to climate change by using multivariate linear models and partial least squares path modeling (PLS-PM; structural equation model).

Important findings (1) In middle temperate forests, two attributes of biodiversity (tree species diversity (SR) and FDq= 0) had significant positive effects on EMF, and FDq= 0 had stronger effects than SR. In cold temperate forests, no significant relationship between biodiversity and EMF (BEMF) was found. (2) In middle temperate forest communities, the effects of SR on EMF were mediated by trait differences and community weighted mean maximum tree height (CWMHmax) value. Both selection effect and niche complementarity effect simultaneously maintained EMF in middle temperate forests, with selection effect slightly higher than complementarity effect. CWMHmax was the main biotic factor influencing cold temperate forest EMF, and selection effect was the main driving force on EMF in these forests. SR and trait differences did not have a significant promoting effect on EMF. (3) Due to the “insurance effect” of biodiversity, middle temperate forests had a stronger resistance to climate change. Climate factors had no significant impact on SR, trait differences, CWMHmax and EMF. However, cold temperate forests were sensitive to climate change, and climatic factors were important abiotic factors affecting EMF. Higher annual mean air temperature and precipitation significantly altered community trait composition (e.g., CWMHmax), diluting the contribution of species with high competitiveness and fitness traits (e.g., maximum tree height (Hmax) trait) to ecosystem functions, and reducing the strength of the selection effect. This study highlights the importance of biodiversity for maintaining forest EMF, and demonstrates that both selection effect and complementarity effect are driving forces for temperate forest EMF in northeastern China.

Table and Figures | Reference | Related Articles | Metrics
  
Insight into recent studies on the diversity of arbuscular mycorrhizal fungi in shaping plant community assembly and maintaining rare species
YANG Jia-Rong, DAI Dong, CHEN Jun-Fang, WU Xian, LIU Xiao-Lin, LIU Yu
Chin J Plant Ecol    2023, 47 (6): 745-755.   DOI: 10.17521/cjpe.2022.0373
Accepted: 25 October 2022

Abstract575)   HTML132)    PDF (996KB)(501)       Save

Arbuscular mycorrhiza (AM) is one of the oldest symbionts between plants and soil microorganisms, and about 80% terrestrial plant species can associate with AM fungi on earth. Because of the stable climate and poor soil phosphorus content in tropical and subtropical forests, this mutualistic symbiosis is much more common there. Previous studies have extensively investigated the diversity of AM fungi in tropical and subtropical forests, and have shown that AM fungi can promote plant recruitment and growth. However, this positive effect of AM fungi on plants (i.e., the positive plant-soil feedback) can weaken the contribution of the negative plant-soil feedback (caused by soil-borne pathogens) to maintaining tree species diversity, which appears to contradict with the surprisingly high tree diversity and high proportion of rare tree species in tropical and subtropical forests. Recently, a mounting number of empirical studies have found that the diversity of AM fungi varies significantly in different habitats and AM colonization depends on the identity of host species, thereby affecting the fitness of plants and further shaping the plant community structure. Through synthesizing the current research about the diversity of AM fungi in promoting plant coexistence and maintaining community diversity, we expect to put forward a promising study direction for testing the “rare species advantage” hypothesis, therefore improving the conservation of rare plant species.

Table and Figures | Reference | Related Articles | Metrics
  
Current and future trends of plant functional traits in macro-ecology
Congcong Liu Nianpeng He Ying LI Jiahui Zhang Pu Yan Ruomeng Wang Wang RuiLi
Chin J Plant Ecol    2024, 48 (1): 0-0.   DOI: 10.17521/cjpe.2023.0111
Accepted: 09 August 2023

Abstract513)      PDF (2160KB)(334)       Save
Plant functional traits are generally defined as relatively stable and measurable morphological, physiological, and phenological characteristics of plants that can indirectly affect plant growth, reproduction, and survival. Years of development have enabled the standardization of the definition, connotation, and measurement methods of plant functional traits. Now, the intraspecific and interspecific variation, biogeographic patterns, coordination, and the evolution of plant functional traits have been well explored. The gradual development of global plant functional trait databases since the 1990s has led to the expansion of plant functional traits beyond individual and local scales. Regional and global biogeographical studies on plant functional traits are gradually exploring community species coexistence mechanisms and maintenance of ecosystem functions. Researchers have found that traditional plant trait databases, which were created from published studies, have insufficient data to provide answers to questions about natural ecosystems. Therefore, constructing a plant trait database that considers compatibility and orderliness is crucial. As new databases and scientific concepts have emerged, the following areas have become the focus of studies on plant functional traits: 1) Coordination between functional traits of different plant organs, and holistic examination of plant response to environmental changes; 2) Multi-dimensional response and adaptation of various plant functional traits, and proposal of the concept of a plant trait network; 3) Consideration of the complexity of plant community structure, and exploration of community assembly using plant functional diversity and trait moments; and 4) Refinement of the scaling method for different levels of ecological organization, and recognition of plant community and ecosystem traits as critical bridges between plant traits and macroecology. These directions have pushed for the application of traditional functional trait research to natural, social, and economic systems, thus promoting the rapid development of trait-based studies to further solve regional eco-environmental problems.
Related Articles | Metrics
  
Spatial distribution patterns in potential species richness of foraging plants for Hainan gibbons
ZHONG Jiao, JIANG Chao, LIU Shi-Rong, LONG Wen-Xing, SUN Osbert Jianxin
Chin J Plant Ecol    2023, 47 (4): 491-505.   DOI: 10.17521/cjpe.2022.0268
Accepted: 04 November 2022

Abstract477)   HTML89)    PDF (3089KB)(303)       Save

Aims Hainan gibbons (Nomascus hainanus) are amongst the most endangered primates in the world and only endemic to China. This study aims to determine the potential species richness patterns of the foraging plants for Hainan gibbons.

Methods Based on the data on actual distribution points of foraging plants for Hainan gibbons and the controlling environmental variables, the potential distribution of those foraging plants in Hainan Island was simulated by using the maximum entropy (MaxEnt) model. The foraging plants were classified according to the type of organs used by the Hainan gibbons, the occurrence of foraging in dry season vs in rainy season, and preference of foraging.

Important findings The results show that: (1) Altitude, slope and the annual air temperature range are important environmental factors affecting the potential distribution of the foraging plants, with the potential species richness for all categories of the foraging plants positively correlated with altitude and slope, and negatively with annual air temperature range. (2) In Hainan Island, ten counties and cities in the south are the areas with concentrated occurrence of the foraging plants. The potential species richness for plants foraged for fruits and leaves, plants that are foraged either in dry or rainy seasons, and plants that are used as preferential food sources are all greater in the south than in the north, but the potential species richness for plants foraged for flowers is greater in the middle part of the Island and smaller in the fourth. (3) The hotspots for potential species richness of the foraging plants cover about 25.50% of the Island. In Bawangling, except the plants foraged for fruits, members of families Moraceae and Lauraceae are the preferential food sources for the gibbons, the hotspots for potential species richness of all other categories of foraging plants accounted for more than 40.00% of the area. This study provides information on the potentially concentrated distributions and the potential hotspots of species richness for different categories of foraging plants for Hainan gibbons, which serves to guide the efforts on conservation and recovery of Hainan gibbon populations.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
  
Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient
LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei
Chin J Plant Ecol    2023, 47 (6): 822-832.   DOI: 10.17521/cjpe.2022.0195
Accepted: 26 December 2022

Abstract475)   HTML42)    PDF (1680KB)(408)       Save

Aims The relationship between biodiversity and ecosystem function is one of the hotspots in ecological research. In the past, the research on the relationship between biodiversity and ecosystem function only focused on the experimental or observational investigation of single ecosystem function (SEF), ignoring the most essential value that ecosystem can provide multiple functions and services at the same time. Identifying the relationship between plant functional diversity and ecosystem multifunctionality (EMF) can provide a clear understanding of changes in ecosystem function.

Methods In this study, Bayanbulak alpine meadow was taken as the study area, and five altitude sites were set at an interval of 200 m from 2 194 to 3 062 m above sea level. Soil total nitrogen content, nitrate nitrogen content, ammonium nitrogen content, total phosphorus content, available phosphorus content, total potassium content, available potassium content, soil density, aboveground and underground biomass of plant community were selected to characterize EMF, which were closely related to nutrient cycling, soil organic carbon accumulation and plant growth.

Important findings (1) The species composition of the plant community varied greatly along the altitude gradient, and the species richness at the altitude of 2 600 m was significantly higher than that at the other altitudes. Functional evenness index (FEve), functional richness index (FRic) and functional dispersion index (FDis) all showed a “single peak” trend with the rise of altitude, and the highest values were found at 2 600, 2 800 and 2 800 m, respectively. Rao’ quadratic entropy (Rao’Q) showed a monotonically decreasing trend. (2) FRic and FDis at each altitude were positively correlated with soil EMF, which accounted for 47% and 43% of the variation in EMF, respectively. FEve was significantly correlated with nutrient cycling index and soil organic carbon storage index at the altitude of 2 600 m. Rao’Q at 3 000 m was significantly correlated with soil nutrient cycling index, organic carbon storage and EMF. The relationship between plant functional diversity and EMF along the altitude gradient was analyzed by constructing a structural equation model, which showed that altitude could exert impacts on EMF through changing functional diversity, with the greatest effect of functional richness on EMF. In conclusion, with the alteration of altitude, the functional diversity may result in changes, thereby affect the SEF and EMF, and the functional diversity is important to maintain the EMF.

Table and Figures | Reference | Related Articles | Metrics
  
Ecological functions of vascular epiphytes in habitat construction
ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe
Chin J Plant Ecol    2023, 47 (7): 895-911.   DOI: 10.17521/cjpe.2022.0454
Accepted: 24 February 2023

Abstract461)   HTML191)    PDF (2814KB)(388)       Save

In forest ecosystems, vascular epiphytes in the forest canopy act as buffers against environmental pressures, create important habitats for other organisms, increase the complexity of forest ecosystems, and enhance species diversity and community stability. Vascular epiphytes can create distinct habitat forms and perform unique ecological functions. Based on their morphological functional characteristics, they can be categorized into two groups: collecting plants and ant-nest plants. The former group includes “trash-basket” and “tank-form” plants, while the latter group includes “ant-garden” and “ant-house” plants. The present paper discusses the positive effect of vascular epiphytes on canopy biodiversity through the creation of habitats. It reveals the existence of these microhabitats can increase the complexity of the canopy community structure and food web, thereby promoting community stability. Additionally, we analyze how herbivorous defense and nutrient acquisition promote the evolution of special structures of vascular epiphytes for creating habitats, and the impact of these structures on the evolution of other canopy organisms. Drawing on the current research hotspots in canopy science, this paper explores the role of habitat-constructing vascular epiphytes in the three prominent areas: biological interactions in forest canopies, community succession, and responses to global change. This paper highlights the role of habitat-constructing vascular epiphytes as “umbrella species” with significant conservation value in the face of global change. We suggested to strengthen the research on the evolutionary history and ecological functions of different types of vascular epiphytes, and to explore the biodiversity conservation strategies for tropical and subtropical forests ecosystems in the context of global change.

Table and Figures | Reference | Related Articles | Metrics
  
Effects of warming on fine root growth, mortality and turnover: a review
WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng
Chin J Plant Ecol    2023, 47 (8): 1043-1054.   DOI: 10.17521/cjpe.2022.0202
Accepted: 10 October 2022

Abstract460)   HTML51)    PDF (1081KB)(350)       Save

Fine roots are the most active and sensitive part of the root system, and play an important role in the biogeochemical cycles of forest ecosystems. Fine root growth and turnover have a strong impact on the root carbon flux into soil. The effect of global warming on below-ground ecological processes has become a hot issue in global change research, and the response of fine root dynamics to warming will directly affect the carbon balance of forest ecosystems. In this paper, the effects of warming on fine root production, mortality, biomass and turnover are reviewed to reveal the effects of warming on fine root dynamics. Generally, warming affects the fine root production and mortality by changing soil moisture, nutrient availability and distribution of recent photosynthetic products, accelerates fine root turnover process, and then reduces fine root biomass. However, fine root growth is affected by many factors, making the research results of the impact of warming on fine roots inconsistent among different studies, due to the difference in tree species, regions, warming methods and other factors. Therefore, comprehensively analyzing the response of forest fine roots under warming is very important for studies on below-ground ecological processes. In the future, we call for more research in the following aspects: (1) according to the advantages and disadvantages of each warming method, compare the effects of different warming methods and warming durations on the growth dynamics of fine roots and above-ground parts; (2) combined with various fine root observation and experimental methods, comprehensively analyze the effect of warming on fine root growth dynamics, and strengthen the research on the effect of warming on fine root order structure; (3) strengthen the research on the interaction of warming and nutrient, water and CO2 on fine root growth dynamics; (4) focus on the effects of warming on fine root dynamics in different soil layers, especially in deep soils; and (5) deeply study the potential response of the relationship among fine roots, soils and microorganisms to warming.

Table and Figures | Reference | Related Articles | Metrics
  
Effects of neighborhood tree species diversity on foliar nitrogen-phosphorus stoichiometry of Cunninghamia lanceolata
RAN Song-Song, YU Zai-Peng, WAN Xiao-Hua, FU Yan-Rong, ZOU Bing-Zhang, WANG Si-Rong, HUANG Zhi-Qun
Chin J Plant Ecol    2023, 47 (7): 932-942.   DOI: 10.17521/cjpe.2022.0128
Accepted: 11 October 2022

Abstract456)   HTML66)    PDF (1308KB)(282)       Save

Aims Biodiversity loss threatens ecosystem functions. Investigating the effect of biodiversity on the ecological stoichiometry of plant nutrients, therefore, can help reveal the mechanisms of the effect of biodiversity on ecosystem functions.

Methods Using a tree species diversity experiment in subtropical China, Cunninghamia lanceolatafrom plots with different tree species richness (1, 4, 8, 16, 32) were selected as focal tree species. The effects of neighborhood species richness (NSR), functional trait dissimilarities between neighborhood tree species and the focal tree, neighborhood competition index (NCI) on foliar nitrogen (N), phosphorus (P) content and N:P of C. lanceolata were investigated.

Important findings (1) The results showed that the dissimilarity in specific root length (SRL_diss) between neighborhood trees and focal trees significantly increased the foliar P content of C. lanceolata, while the dissimilarity in root tissue density (RTD_diss) significantly decreased the foliar N content of C. lanceolata. (2) Neighborhood competition significantly decreased the foliar N content and N:P of C. lanceolata. (3) The interaction effects of NCI and SRL_diss, as well as the interaction between NSR and SRL_diss significantly reduced the foliar P content of C. lanceolata. The result indicates that the positive effect of SRL_diss on the foliar P content of C. lanceolata decreased with increasing NSR, and the positive effect of SRL_diss on the foliar P content of C. lanceolata decreased with increasing NCI. (4) The interaction between NSR and phylogenetic dissimilarity (NP_diss) significantly increased foliar N:P of C. lanceolata, demonstrating that the negative effect of NP_diss on the foliar N:P content of C. lanceolata decreased with increasing NSR. Our results indicated that the foliar P content of C. lanceolata was significantly enhanced by mixing with tree species with different trait dissimilarities, while foliar N content of C. lanceolata was decreased by neighborhood competition. Tree species richness can help mitigate the adverse effects of interspecific competition on C. lanceolata through niche complementation when mixing with species that have greater trait dissimilarity.

Table and Figures | Reference | Related Articles | Metrics
  
Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland
LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen
Chin J Plant Ecol    2023, 47 (9): 1256-1269.   DOI: 10.17521/cjpe.2022.0341
Accepted: 22 March 2023

Abstract454)   HTML105)    PDF (1767KB)(351)       Save

Aims Grazing, one of the primary ways of grassland utilization in Nei Mongol, has essential influences on plant community properties of grasslands. However, the comprehensive response patterns of Nei Mongol grassland plant community properties to grazing remain unclear.
Methods Based on a dataset derived from 76 studies, the plant community characteristics and soil physicochemical properties of Nei Mongol grasslands under different grazing intensities, different grassland types and different grazing years were integrated and analyzed in order to comprehensively evaluate the response patterns of Nei Mongol grasslands to grazing.
Important findings Our results showed that grazing significantly reduced plant above/below ground biomass, cover, height, density, species richness, Shannon-Wiener diversity index, Pielou evenness index, Simpson diversity index, and soil water content. The negative effects of grazing were strengthened with increasing of grazing intensity and duration. Moreover, grazing had a greater negative effect on the grasslands with sparse vegetation and low environmental carrying capacity (e.g., desert grasslands, sandy areas, etc.). This study shows that the responses of plant community characteristics to grazing in Nei Mongol grasslands are regulated by multiple factors, and appropriate grazing intensity and grazing time should be set according to different types of grasslands to achieve sustainable utilization of grasslands. The standards of grazing intensity in current grazing studies are not uniform, making it difficult to compare different studies, and the results from some studies do not have statistical significance due to a lack of replications in the experiment. The exploration of uniform quantitative standards for grazing intensity will be an important and challenging issue in future grazing studies, and the rationality of experimental design should also be emphasized.

Table and Figures | Reference | Related Articles | Metrics
  
Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate
BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun
Chin J Plant Ecol    2023, 47 (8): 1144-1158.   DOI: 10.17521/cjpe.2022.0300
Accepted: 16 November 2022

Abstract436)   HTML60)    PDF (5651KB)(300)       Save

Aims As pioneer tree species in temperate and boreal forests, birch species (Betula spp.) play an important role in the restoration of secondary forests. Under the current climate change, little is known about the anatomical characteristics of the xylem of different birch species in response to climate change and their adaptation strategies. Therefore, we aim to study the relationship between the characteristics of their xylem vessels and climate, to reveal the response and adaptation strategies of Betula spp. to climate change, and to provide theoretical basis for accurately assessing the impact of climate change on different Betula spp. populations.

Methods In this paper, three natural birch species (B. platyphylla, B. dahurica and B. costata) from Taxus cuspidata National Nature Reserve in Muling, Heilongjiang, China were selected as the research objects. By means of dendrochronology and tree-ring anatomy, we compared these characteristics of xylem vessels of the three birch species, and analyzed the relationship between the characteristics of xylem vessels and seasonal climatic factors, temporal stability, as well as the resistance and recovery of growth to extreme climate.

Important findings (1) The vessel number and vessel density were significantly positively correlated with ring width for all three birch species. The average ring width of B. platyphylla was the widest among the three species, and the vessels were small and numerous. In B. dahurica and B. costata, the average ring width was smaller, and the vessel was significantly larger and less, which made B. dahurica more prone to embolism. (2) The growth of the three species of birch was mainly limited by moisture factors and less limited by temperature. The vessel number of the three birch species was positively correlated with precipitation in each season, and the strongest positive correlation was found in B. costata. The increase of temperature in spring promoted the increase of number of vessels, while the number of birch vessels decreased with the increase of temperature in non-growing seasons. As the climate warmed, B. dahurica tended to have smaller and more vessels, while B. costata tended to have smaller and fewer vessels. (3) The trends of resistance and recovery to drought in the growing season and heat in the non-growing season were similar among the three species, and the resistance and recovery to heat in the non-growing season were lower among the three species. There was great variation among individuals of B. dahurica in response to high temperature in non-growing season. We found that different birch species had different strategies of xylem vessel characteristics to cope with climate warming. B. platyphylla adopted a more conservative strategy (producing more and smaller vessels) to cope with climate change, while B. costata initially adopted a strategy to improve water transport efficiency through large vessels, which may lead to the first decline and even death. B. dahurica’s strategy was between B. platyphylla and B. costata, with moderate number and size of vessels.

Table and Figures | Reference | Related Articles | Metrics
  
Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes
LI Bing, ZHU Wan-Wan, HAN Cui, YU Hai-Long, HUANG Ju-Ying
Chin J Plant Ecol    2023, 47 (9): 1310-1321.   DOI: 10.17521/cjpe.2022.0176
Accepted: 13 September 2022

Abstract436)   HTML34)    PDF (1302KB)(280)       Save

Aims Soil respiration is one of the most critical components of carbon cycle in terrestrial ecosystems. The study on temporal dynamics of soil respiration and its linkage with environmental factors in desert steppes under changing precipitation can provide data supports for a deep understanding of the regulatory mechanisms of key carbon cycling processes in fragile ecosystems.
Methods A field experiment involving five precipitation treatments (50% reduction, 30% reduction, natural, 30% increase, 50% increase) was set up in 2014 in a desert steppe in Ningxia. The temporal dynamics of soil respiration rate were explored during the growing season (from June to October) in 2019, and the relationships between soil respiration rate and soil properties and plant characteristics were analyzed.
Important findings Soil respiration rate showed a seasonal variation of an increasing and a decreasing trend across the growing season, with the maximum values (2.79-5.35 μmol·m-2·s-1) occurring in late July or early August. Compared with the natural condition, 30% reduction in precipitation did not result in a significant effect on soil respiration rate, reflecting the adaptability of soil respiration to moderate drought. Overall, 50% reduction in precipitation reduced soil respiration rate, whereas increased precipitation (especially the 30% increase) enhanced soil respiration rate, and this positive effect was especially obvious in the early growing season (June to July). Soil respiration rate had a significantly exponential relationship with soil temperature and a significantly linear relationship with soil water content. Soil physicochemical property had a highly independent explanatory power for soil respiration rate (R2 = 0.36), and its effect was highly correlated with soil biological property and plant diversity (R2 = 0.31). Precipitation could affect soil respiration rate either directly or indirectly through the influences on soil biological property and plant biomass. The results indicated that a moderate increase in precipitation could accelerate soil respiration by alleviating soil water limitation, stimulating soil enzyme activity, promoting microbial activity and plant growth in the desert steppe, and that an extreme increase in precipitation would lead to a decrease in soil permeability and a hindrance to microbial metabolic activity, thus inhibiting soil respiration.

Table and Figures | Reference | Related Articles | Metrics
  
Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone
ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi
Chin J Plant Ecol    2023, 47 (6): 770-781.   DOI: 10.17521/cjpe.2022.0318
Accepted: 27 December 2022

Abstract431)   HTML37)    PDF (1363KB)(353)       Save

Aims Understanding the effects of shrub encroachment on plant and soil microorganisms in the forest-grassland ecotone will help improve the understanding and management of shrub encroachment in the forest-grassland ecotone.

Methods In this study, different levels (light, moderate and heavy) of shrub encroachment were selected in the forest-grassland ecotone of Dongling Mountain Nature Reserve in Beijing, to explore the effects of shrub encroachment on plant diversity, soil microbial diversity, plant individual trait and soil nutrients by plot method and high-throughput sequencing technology. The correlation between plant diversity, soil microbial diversity, plant individual trait and soil nutrients were also developed in order to further explore the effects of shrub encroachment on plants and soil microorganisms and associated mechanisms.

Important findings Our results showed that: 1) Shrub encroachment significantly reduced the diversity of plants with the different responses of arbor, shrub and herb, among which the diversity index of herb plants decreased in the largest level. 2) Shrub encroachment significantly increased the diversity of soil fungal microorganisms. 3) Shrub encroachment significantly increased the height and crown width of shrubs, while soil total nitrogen and organic carbon contents increased significantly with the increasing shrub encroachment level. 4) The partial least squares path model (PLS-PM) revealed that shrub encroachment had a direct impact on plant and soil microorganisms, whereas plant individual trait and soil nutrients did not have a direct impact on them. The redundancy analysis (RDA) further showed that shrub height made great contribution to the interpretation of changes in plant diversity, and soil total nitrogen content was the main factor in affecting soil microbial diversity. There was a stronger correlation of soil fungal microbial diversity with plant diversity than its relationship with soil bacterial microbial.

Table and Figures | Reference | Related Articles | Metrics
  
Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species
WAN Chun-Yan, YU Jun-Rui, ZHU Shi-Dan
Chin J Plant Ecol    2023, 47 (10): 1386-1397.   DOI: 10.17521/cjpe.2022.0469
Accepted: 20 April 2023

Abstract430)   HTML60)    PDF (8019KB)(276)       Save

Aims This study aims to clarify the differences in ecological strategies between karst and non-karst forest tree species, in terms of leaf morphology and anatomy, hydraulics, and mechanical resistance.

Methods A total of 101 tree species were selected from typical karst and non-karst forests in tropical-subtropical regions. We measured: (1) leaf morphological and anatomical traits including leaf thickness (LT), leaf density (LD), vein density and leaf mass per area (LMA); (2) leaf mechanical traits including force to punch and force to tear (Ft); and (3) leaf hydraulic traits including maximum hydraulic conductance (Kleaf_max), cavitation resistance (P50leaf), turgor loss point (Ψtlp), and stomatal safety margin (HSMtlp). We compared the differences in leaf traits between karst and non-karst forest tree species, and analyzed their traits correlation networks.

Important findings (1) Compared to non-karst forest tree species, on average the karst tree species had greater Ft, higher Kleaf_max, lower (more negative) Ψtlp and HSMtlp. (2) Leaf trait network of karst forest tree species showed shorter average path length and diameter and lower edge density than non-karst forest tree species, indicating that traits combinations were closer in karst forests. (3) Mechanical traits and LMA showed high connectedness in the trait networks of karst forest tree species, LT and LD showed high connectedness in those of non-karst tree species. In karst forest tree species, LMA was positively correlated with Ft and negatively correlated with Ψtlp, indicating that increasing leaf carbon investment can simultaneously enhance meachnical resistance and drought tolerance. However, no such correlations were found in non-karst forest tree species. (4) Across karst forests tree species, we found a significant tradeoff between Kleaf_max and P50leaf, both of which were not related with leaf mechanical resistance, and morphological and anatomical traits. By contrast, there was no hydraulic tradeoff in non-karst forest tree species, and Kleaf_max was significantly correlated with LT and LD. This study further reveals that compared to non-karst forest tree species, karst forest tree species tend to exhibit isohydraulic strategy and show closer coordination among leaf traits.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
  
Global patterns and influencing factors of initial concentrations of phenols in plant litter
YU Ji-Mei, WU Fu-Zhong, YUAN Ji, JIN Xia, WEI Shu-Yuan, YUAN Chao-Xiang, PENG Yan, NI Xiang-Yin, YUE Kai
Chin J Plant Ecol    2023, 47 (5): 608-617.   DOI: 10.17521/cjpe.2022.0117
Accepted: 06 September 2022

Abstract422)   HTML44)    PDF (1144KB)(285)       Save

Aims Phenols are organic components that are resistant to be decomposed during litter decomposition, and their initial content greatly affects the subsequent decomposition process. However, patterns of their initial content in plant litter at the global scale are unclear. In this paper, the content of total phenol and soluble phenol in litter and their response to climate, mycorrhizal association, life forms and soil properties were assessed at the global scale.
Methods Data were collected from published scientific articles before November 5, 2021, the content and influencing factors of total and soluble phenol in plant litter were discussed at the global scale. Among them, 98 articles had total phenol content, covering 350 observations, and 18 articles had soluble phenol content, covering 70 observations. The linear mixed model was used to compare the differences of total phenol and soluble phenol content in root and leaf litter of different functional traits. The linear mixed model was also used to evaluate the effects of different environmental factors on total phenol and soluble phenol content in root and leaf litter. The linear mixed effect model selection method was used to further evaluate the relative importance of influencing variables on the initial total phenol and soluble phenol content in litter.
Important findings Results showed that (1) The average initial total phenolic and soluble phenolic content of the global litter was 65 and 88 mg·g-1, respectively. (2) Mycorrhizal association had a significant effect on the total phenolic content in root litter and the soluble phenolic content in leaf litter. The total phenolic content in root litter of plants with both arbuscular mycorrhiza and ectomycorrhiza was significantly lower than that in litter of plants with ectomycorrhiza, while the soluble phenolic content in leaf litter of plants associated with both arbuscular mycorrhiza and ectomycorrhiza was significantly higher than that in litter from plants associated with arbuscular mycorrhiza. (3) Phylogenetic types (gymnosperm, angiosperm) and leaf morphology (needleleaf, broadleaf) had significant effects on the total phenolic content in leaf litter, and the total phenolic content in litter of broadleaf and angiosperm plants was significantly higher than that in litter of needleleaf and gymnosperm plants. (4) Average temperature diurnal range, precipitation in the driest month, and precipitation in the driest quarter were significantly positively correlated with the total phenolic content in leaf litter. (5) Precipitation in the warmest quarter and soil moisture were significantly negatively correlated with the content of soluble phenol in leaf litter. (6) Leaf morphology had the most significant effect on total phenolic content in leaf litter. Overall, these results will be useful for understanding the relationships between litter functional traits and phenols and for predicting the decomposition of plant litter under future climate change scenario.

Table and Figures | Reference | Related Articles | Metrics
  
Differential ecological strategies in functional traits among coexisting tree species in a Quercus aliena var. acuteserrata forest
YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin, YUE Ming
Chin J Plant Ecol    2023, 47 (9): 1270-1277.   DOI: 10.17521/cjpe.2022.0255
Accepted: 11 October 2022

Abstract417)   HTML48)    PDF (1157KB)(309)       Save

Aims Comparing functional traits of coexisting tree species in natural forests can reveal the adaptation strategies of different tree species to different habitats, which is essential for understanding the coexistence mechanism of the local forest community and guiding forest restoration.
Methods In this study, we compared the functional traits of five coexisting tree species in a Quercus aliena var. acuteserrata forest, the zonal vegetation in the Qinling Mountains, and further examined the difference in the traits space defined by the first two principal component analysis (PCA) axes to reveal the differences of these tree species in ecological strategies.
Important findings The results showed that there were obvious differences in the above- and belowground functional traits of different tree species, especially in the strategies of leaf resource acquisition and defense. Specifically, Acer davidii tended to have more acquisitive leaf traits and fine root traits, while Carpinus cordata was relatively more conservative in leaf and fine root traits. Lindera obtusiloba was inclined to have leaves with high resistance and defense ability, while leaves of Cornus kousa subsp. chinensis showed low resistance and defense ability. The dominant species, Q. aliena var. acuteserrata, occupied the middle position along the strategy gradient. The differences in the functional traits and their combinations of coexisting tree species in Q. aliena var. acuteserrata forest reflect their differences in ecological strategies and niches, which may contribute to their stable coexistence.

Table and Figures | Reference | Related Articles | Metrics
  
Effects of straw and biochar addition on carbon, nitrogen and phosphorus ecological stoichiometry in Jasminum sambac plant and soil
LIN Shao-Ying, ZENG Yu, YANG Wen-Wen, CHEN Bin, RUAN Min-Min, YIN Xiao-Lei, YANG Xiang, WANG Wei-Qi
Chin J Plant Ecol    2023, 47 (4): 530-545.   DOI: 10.17521/cjpe.2021.0398
Accepted: 22 April 2022

Abstract416)   HTML46)    PDF (3378KB)(337)       Save

Aims The contents of carbon (C), nitrogen (N) and phosphorus (P) in different plant organs and their ecological stoichiometric characteristics are important for understanding of the relationships among soil nutrients in their cycling process. The purpose of this study was to explore the variations of ecological stoichiometry of plant and soil C, N, and P in a jasmine (Jasminum sambac) plantation and their stoichiometric homeostasis under three different treatments.

Methods We set up three treatments: control, straw addition and biochar addition, and measured growth characteristic parameters of jasmine and C, N, P contents in different jasmine organs and in the soil and then analyzed their ecological stoichiometric characteristics.

Important findings Results showed that compared to the control, the straw addition treatment significantly increased the leaf biomass of jasmine by 73.33%, and decreased the soil salinity and soil temperature by 37.04% and 1.41%, respectively. Additionally, the biochar addition treatment significantly increased the plant height, leaf area, leaf and stem biomass of jasmine by 26.11%, 29.42%, 239.59% and 96.04%, while the soil density and soil temperature were significantly lower under the biochar addition treatment than under the control by 18.33% and 1.79%, respectively. Under different treatments, there was no significant difference in leaf or stem C content, or leaf N content. Root and soil C and N contents were significantly higher under biochar addition treatment than under straw addition and control treatments. The P contents of jasmine leaf, stem, root were in the order of biochar addition treatment > control treatment > straw addition treatment, while the soil P content was in the order of biochar addition treatment > straw addition treatment > control treatment. Compared with the control treatment, the biochar addition treatment decreased the C:P of leaf, stem, root and soil, and significantly decreased the N:P of jasmine leaf and stem, while increasing the N:P of root and soil. The overall internal stability of C, N, and P in different organs of jasmine was in the order of C > N > P, and the C:N, C:P and N:P were in the order of N:P > C:P > C:N. In summary, the application of biochar addition increased the absorption and assimilation of N and P by above-ground plants, and further promoted the C sequestration and homeostasis in the plant-soil system.

Table and Figures | Reference | Related Articles | Metrics
Cited: CSCD(1)
  
Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China
DU Ting, CHEN Yu-Lian, BI Jing-Hui, YANG Yu-Ting, ZHANG Li, YOU Cheng-Ming, TAN Bo, XU Zhen-Feng, WANG Li-Xia, LIU Si-Ning, LI Han
Chin J Plant Ecol    2023, 47 (5): 660-671.   DOI: 10.17521/cjpe.2021.0321
Accepted: 22 April 2022

Abstract414)   HTML33)    PDF (1574KB)(201)       Save

Aims As key components in plant litters, the total phenols and condensed tannins greatly regulate decomposition process of forest litter, which can be directly or indirectly affected by forest gaps. The aim of this study was to determine how the forest gaps would affect the losses of total phenols and condensed tannins of foliar litter during decomposition in subalpine forest.
Methods We conducted a three-year in situ litter decomposition experiment on different forest gaps (i.e. gap center, canopy gap, expanded gap, closed canopy) in a subalpine forest of western Sichuan, and six foliar litters including Juniperus saltuaria, Abies fargesii var. faxoniana, Larix mastersiana, Betula albosinensis, Salix paraplesia and Rhododendron lapponicum were selected. The measurements were conducted to examine the losses of litter total phenols and condensed tannins during winter and growing season.
Important findings Litter total phenols and condensed tannins showed higher loss rates in the first decomposition year, with the levels of 10.76 mg·d-1 and 8.5 mg·d-1, respectively. The effects of forest gaps on the degradation of phenolic components gradually were getting weak with the litter decomposition proceeding, and exhibited obvious seasonal differences. The total phenols content of six litters all decreased rapidly in the growing seasons, while litters with higher initial condensed tannins with faster loss rate were found in the first winter, suggesting that both litter quality and seasons would significantly alter litter phenolic components losses during long-term decomposition under forest gaps. These results are helpful for deeper understanding of the litter decomposition process and nutrients cycling in forest ecosystems, which provide scientific data to improve the development of management policies in subalpine forests.

Table and Figures | Reference | Related Articles | Metrics
  
Population structure and point pattern analysis of rare and endangered plant Potaninia mongolica in eastern Alxa, China
LI Xiao-Tian, WANG Tie-Juan, HAN Wen-Juan, ZHANG Li, ZHANG Hui, LIU Xiao-Ting, LIU Ya-Jie
Chin J Plant Ecol    2023, 47 (4): 506-514.   DOI: 10.17521/cjpe.2022.0319
Accepted: 10 December 2022

Abstract414)   HTML26)    PDF (1127KB)(215)       Save

Aims Potaninia mongolica, as a remnant species of ancient monospecific genus distributed in the northwest desert area, belongs to the category of national secondary key protected plants in China. The present study aims to investigate the structure, intra- and interspecific relationships, as well as the adaptation strategies to the environment of different types of P. mongolica populations. In particular, the age structure, spatial distribution patterns, and spatial correlations between size classes of P. mongolica populations were analyzed.

Methods Potaninia mongolica population concentrated in the gravel land (referred to as the Alxa population) and distributed in sandy soil in the eastern marginalia of distribution area (referred to as Erdos population) were selected. Through the size structure analysis method, P. mongolica individuals were categorized into three size classes, namely class I: d ≤ 10 cm; class II: 10 cm < d ≤ 30 cm; and class III: d > 30 cm, where d stands for the cubic root of the product of crown length, crown width and plant height. Moreover, the age structure, spatial distribution patterns, and spatial correlations between size classes of the selected P. mongolicapopulations were analyzed using the Ripley’s K-function through spatial point pattern analysis.

Important findings Results of the study include: 1) The Alxa population of P. mongolica was dominated by class II plants, accounting for 69%, whereas class I plants accounting for only 5% of the total population. However, the Alxa population was observed to be stable because of asexual reproduction. On the other hand, for the Erdos population, the proportion of class II and III plants were similar, and no class I plants were observed, which resulted in limited population renewal by seed propagation. 2) The Alxa population was randomly distributed, with class I and II plants predominantly distributed in clusters at small and medium scales and randomly distributed at large scales. Nevertheless, the Erdos population was predominantly distributed in clusters, both in general and at all size scales, which was strongly related to interspecific competition. 3) There was a significant negative correlation between class III and I individuals of the Alxa population at small and medium scales, reflecting the inhibition effect of the senior individuals on the young individuals. However, class II and III plants of the Erdos population showed a positive association with increasing scale range, suggesting a positive interaction between mature age classes of P. mongolica.

Table and Figures | Reference | Related Articles | Metrics
Cited: CSCD(1)
  
Case verification of community structure determining community productivity in subalpine meadow
LI Wei, ZHANG Rong
Chin J Plant Ecol    2023, 47 (5): 713-723.   DOI: 10.17521/cjpe.2022.0331
Accepted: 11 November 2022

Abstract412)   HTML77)    PDF (1262KB)(215)       Save

Aims In studies on the relationship between plant species richness and productivity, species richness is regarded primarily as an independent variable and productivity as a response variable, whereas other factors that may affect community productivity at the same species richness levels, such as species combination and composition, are largely ignored. The objectives of this research have been determined: (1) the effect of community structure on community productivity, including species combination, composition, and functional groups to which the species belongs, and (2) the relationship between species richness and community productivity in subalpine meadow communities.
Methods In the pot experiment, seeds of four plant species (Festuca sinensis, Elymus nutans, Medicago sativa and Dactylis glomerata) were sown to pots in terms of given species combination and composition at varying levels of species richness (1, 2, 3, 4). In both monocultures and mixtures, the overall planting density of the community was 100. Seeds were sown in equal numbers to pots in communities of diverse species combinations at various levels of species richness. The species composition of four-species mixed-seeding communities was designed as 10%, 20%, 30%, and 40% density proportions, respectively. Each treatment had five replicates, and weeds were manually removed on a regular basis. The above-ground biomass in each pot had been harvested, dried, and measured by species at the end of September.
Important findings Community productivity increased with increasing species richness at lower species richness, but not substantially at higher species richness, The combination and composition of community species had a significant effect on community productivity, with the mixed-seeding community containing Elymus nutans and communities with a high proportion of Elymus nutans having higher productivity. Among the functional groups to which the species belonged, legumes either promoted or inhibited the production of other species. Elymus nutans enhanced community productivity, whereas Festuca sinensis and Dactylis glomerata had no discernible effect. As a result, it could be inferred that there is an apparent relationship between species richness and productivity, and plant community productivity is more dependent on species combination and composition than on species richness.

Table and Figures | Reference | Related Articles | Metrics
  
Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China
CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He
Chin J Plant Ecol    2023, 47 (9): 1245-1255.   DOI: 10.17521/cjpe.2023.0028
Accepted: 21 April 2023

Abstract410)   HTML112)    PDF (2352KB)(328)       Save

Aims Grassland is an important component of terrestrial ecosystems around the world and plays an important role in terrestrial carbon cycling. However, large uncertainties still exist in predictions of soil organic carbon (SOC) dynamics in grassland ecosystems using earth system models, partly due to an inadequate understanding of the spatial patterns and drivers of soil carbon components and the rate of decomposition. In this study, we explored the determinants of the contents of total SOC and its components as well as the rate of soil carbon decomposition in the topsoil of temperate grasslands of Nei Mongol.
Methods Soil samples at depths of 0-10 cm were collected during July to August 2015 from field sites on the Nei Mongol Plateau. We measured the contents of total SOC and its partitioning in three soil aggregate size-classes, and the decomposition rate based on laboratory incubation. In addition, we acquired a suite of explanatory factors including climatic, edaphic, vegetation, and mineral variables. Variance partitioning analyses were then used to investigate the relative importance of the four factors in affecting the contents of total SOC, aggregate-classified carbon fractions and soil carbon decomposition rate.
Important findings The contents of total SOC and three carbon fractions displayed an increasing trend from southwest to northeast of the study area, while soil carbon decomposition rate (standardized by SOC) showed a reverse trend. The carbon contents in bulk soil and different aggregate fractions are highest in the meadow steppe, followed by the typical steppe and the desert steppe; whereas soil carbon decomposition rate (standardized by SOC) was highest in the desert steppe, followed by the typical steppe and the meadow steppe. The spatial variations of carbon contents in the three soil aggregate fractions were mainly driven by climatic and mineral factors, with finer soil particles attaching greater relative importance in the effect by the mineral factor. The soil carbon decomposition rate (standardized by SOC) was affected by mineral, edaphic, and climatic factors. These findings highlight the importance of considering the differential influences by minerals in different soil aggregate carbon fractions, particularly the silt- and clay-associated carbon in the Earth system models, so as to improve the accuracy in the prediction of SOC dynamics in grassland ecosystems under changing environment.

Table and Figures | Reference | Related Articles | Metrics
  
Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow
LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei
Chin J Plant Ecol    2023, 47 (7): 922-931.   DOI: 10.17521/cjpe.2022.0105
Accepted: 18 July 2022

Abstract408)   HTML85)    PDF (1529KB)(305)       Save

Aims Precipitation regime alteration and increasing nitrogen deposition have substantially altered the structure and function of grassland ecosystems. However, the responses of stoichiometry in soil and vegetation remain elusive, which limits the accuracy in predicting functional changes of alpine meadow.

Methods Based on a manipulation experiment platform of nitrogen addition (10 g·m-2·a-1) and precipitation change (precipitation reduction by 50% and increase by 50%) in an alpine meadow on the southern foot of Qilian Mountains, organic carbon (SOC), total nitrogen (SN), total phosphorus (SP) contents in topsoil (0-10 cm), and foliar carbon (LC), nitrogen (LN), phosphorus (LP) and potassium (LK) contents of dominant plant species, including Gentiana straminea, Elymus nutans, Oxytropis ochrocephalaand Kobresia humilis,were continuously surveyed from 2017 to 2020.

Important findings The soil stoichiometry varied significantly among different years, but was not affected by experimental treatments. The aboveground plant biomass showed inter-annual variations and was significantly affected by nitrogen addition. The responses of leaf stoichiometry were species-specific. Foliar stoichiometry of a resource-conservative species, E. nutans, showed limited variations, while that of the sensitive species, K. humilis, fluctuated significantly. To exclude the impacts of temporal variations, we conducted the analysis based on the relative changes (Δ) between treatment plots and the control plots from the same year and the results showed that nitrogen addition significantly increased ΔPB by 15.6%. Precipitation reduction significantly decreased ΔLC of O. ochrocephala by 6.8% while increased ΔLP of K. humilis by 19.8%. Our findings suggest that only nitrogen addition increased aboveground biomass and precipitation reduction altered LC and LP contents in some plant species. The temporal or species-specific effect, rather than experiment treatments effect, dominated the stoichiometric variations of soil and vegetation, highlighting the complex responses of alpine meadow to precipitation regime alteration and nitrogen addition.

Table and Figures | Reference | Related Articles | Metrics
  
Effect of tourism disturbance on soil microbial diversity and community structure in a Pinus tabuliformis forest
FENG Ke, LIU Dong-Mei, ZHANG Qi, AN Jing, HE Shuang-Hui
Chin J Plant Ecol    2023, 47 (4): 584-596.   DOI: 10.17521/cjpe.2022.0072
Accepted: 16 September 2022

Abstract408)   HTML35)    PDF (9254KB)(220)       Save

Aims Understanding the effect of tourism disturbances on soil microbial diversity and community structure is necessary for the restoration and management of environmental resources in tourist areas. Therefore, we conducted a field survey in Beijing Songshan National Nature Reserve, to reveal the effect of different tourism disturbance intensity on soil microorganisms in a Pinus tabuliformis forest.

Methods Three intensity groups, high disturbance (HD), low disturbance (LD) and no disturbance (ND), were conducted in the P. tabuliformis forest. We investigated microhabitat conditions and measured soil physicochemical properties. Next generation sequencing technique was used to determine the diversity and community structure of soil microorganisms. Then, we evaluated the impact of tourism disturbance intensity on soil microorganisms.

Important findings 1) HD significantly reduced soil fungal alpha diversity, and LD significantly reduced soil fungal phylogenetic diversity. Soil fungal diversity showed a decreasing trend, and soil bacterial diversity showed an increasing trend with increasing disturbance intensity. 2) For soil fungal community structure, the dominant phylum of three intensity groups were Basidiomycota and Ascomycota. HD disturbance significantly affected the relative abundance of Ascomycota, but had no effect on Basidiomycota, LD had no effect on both of them. LEfSe analysis showed that indicators of ND were Pseudogymnoascus and three species (Oidiodendron griseum, Acrodontium hydnicola, Metacordyceps chlamydosporia); indicator of HD was Clavariaceae; there was no indicator in LD. 3) For bacterial community structure, the dominant phylum of three intensity groups were Proteobacteria, Actinobacteria and Acidobacteria, but HD and LD had no effect on them. LEfSe showed that indicators of ND accounted for 82.05% of total indicators, and the most indicative ones were Gaiellales and Solirubrobacterales; indicators of HD accounted for 17.95% of total indicators, they mainly manifested as pathogenic indicator bacteria and bacterial groups related to human activities, the most indicative ones were Flavobacteriia and one genus of Verrucomicrobia; there was no indicator in LD. 4) Partial Least Squares Path Modeling (PLS-PM) found disturbance intensity significantly impacted microhabitat and alpha diversity of soil fungi. Redundancy analysis showed that soil and microhabitat condition explained 71.35% and 74.47% of variations in community structure of fungi and bacteria under different intensity group, respectively. Tree diameter at breast height, herb cover and litter cover were the main factors that altered fungal and bacterial community structure. In conclusion, tourism disturbance significantly reduced alpha diversity and impacted community structure of soil microbiota in the P. tabuliformis forest, and the degree of influence associated with disturbance intensity and the kind of microorganisms. Moreover, the impact was also controlled by microhabitat and soil physical and chemical properties. Therefore, future attentions should be paid to the restoration of microhabitats and soil conditions in tourism areas.

Table and Figures | Reference | Related Articles | Metrics
  
Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients
ZHOU Ying-Ying, LIN Hua
Chin J Plant Ecol    2023, 47 (5): 733-744.   DOI: 10.17521/cjpe.2022.0289
Accepted: 10 October 2022

Abstract401)   HTML41)    PDF (1264KB)(344)       Save

Aims Leaf temperature is one of the important microenvironmental parameters for energy exchange and physiological processes of plants. Leaf thermal traits can regulate leaf temperature so as to relieve heat damage to some extent. However, systematic studies on leaf thermal traits are rare.
Methods In the present study, 43 dominant canopy species of four typical vegetation types with varying temperature and precipitation from tropical to temperate zones in Yunnan Province were selected: savanna vegetation, tropical rain forest, subtropical evergreen broadleaf forest, and temperate mixed forest. We selected 23 thermal traits that might have influence on leaf temperature, including leaf morphological, optical, material property, anatomical and physiological traits.
Important findings The results showed that plants in savanna vegetation mainly relied on transpiration for cooling. Savanna species have thin leaves and short life span. They are mainly “quick investment-return” species. Tropical rain forest plants developed large leaves, with low transpiration rates, which have no advantage of leaf cooling. Thick leaves and high water content can alleviate high temperature to some extent. They adopted “slow investment-return” strategy. Subtropical evergreen broadleaf forest was rarely exposed to extreme temperatures. The species had thick leaves, long leaf life span, and adopted “slow investment-return” strategy. They did not show obvious thermal adaptation traits. Temperate mixed forest had small and thick leaves, growing in clusters which provides benefits for thermal insulation. Photosynthetic rate of canopy evergreen plants in this forest was low, adopting “slow investment-return” strategy, while photosynthetic rate of deciduous plants was high, presenting “quick investment-return” characteristics. This study systematically investigated the variation of leaf thermal traits and plant adaptation strategies along temperature and precipitation gradients, providing a theoretical basis for further understanding of plant adaptation to the environment.

Table and Figures | Reference | Related Articles | Metrics
  
Characteristics and spatial distribution pattern of natural regeneration young plants of Prunus armeniaca in Xinjiang, China
SHI Dang, GUO Chuan-Chao, JIANG Nan-Lin, TANG Ying-Ying, ZHENG Feng, WANG Jin, LIAO Kang, LIU Li-Qiang
Chin J Plant Ecol    2023, 47 (4): 515-529.   DOI: 10.17521/cjpe.2022.0089
Accepted: 21 October 2022

Abstract396)   HTML90)    PDF (2031KB)(244)       Save

Aims Exploring the growth status and spatial distribution pattern of regenerated naturally young plants of Xinjiang wild apricot (Prunus armeniaca) population, which would provide a basis for protecting and artificially promoting the natural regeneration to this species.

Methods In this study, Daxigou (DXG) in Huocheng County, Xinghuagou (XHG) in Xinyuan County and Xiaomohu’ergou (XMHE) in Gongliu County were selected as the study sites. In order to fully understand the regeneration status of Prunus armeniaca population in the patchy, sparse and scattered habitats, forest understory, forest gap and forest glade were set sample plots in three study sites respectively. The distribution density, basal diameter, height and crown width of young plants were measured. The distribution type was determined by the method with 5 m × 5 m contiguous grid quadrats (7 aggregation indices). The aggregation intensity was calculated by point distribution pattern method.

Important findings The characteristics of natural regeneration young plants of Prunus armeniaca in Xinjiang were as follows: (1) The distribution density of XHG, DXG to XMHE was from high to low; the density in the forest gap is significantly higher than that in forest glade and forest understory. The average natural regeneration intensity of the population was 325 plants·hm-2. (2) The basal diameter class of XMHE and DXG was significantly higher than that of XHG; and the one in the forest glade was significantly higher than that of forest understory and forest gap. The average basal diameter of natural regeneration of the population was about 1.7 cm. (3) The height of DXG and XMHE was significantly higher than that of XHG, and the one from the forest glade was significantly higher than that from forest understory and forest gap. The average height of natural regeneration of the population was 77.0 cm. (4) The crown breadth of DXG was significantly higher than that of XMHE and XHG, and the one in the forest glade was significantly higher than that of forest gap and understory. The average crown breadth of natural regeneration of the population was 38.7 cm. (5) There were 22 sample plots with young plants among all plots. In 5 m × 5 m quadrats, the proportions of aggregated, uniform and random distribution plots were 63.6%, 27.3% and 9.1% respectively. (6) In the point distribution pattern, the regeneration young plants were mostly aggregated in forest understory and forest glade. The aggregation intensity was the highest when the scale was 5-8 m, and it was mainly randomly distributed in the forest gap. When the scale was 1 m, the aggregation intensity was the highest, and its spatial pattern in different habitats was aggregated to random distribution. The results showed that both distribution area and habitat type could significantly affect the individual characteristics of young plants of wild apricot regeneration, and mixed forests types of DXG and XMHE were more conducive to the growth of young plants. The distribution number of regenerated young plants was seriously inhibited in forest understory. The forest gap was conducive to seed germination and planting, but the growth of young plants was hindered. The forest glade with condition was conducive to the growth and development of regenerated young plants. On the whole, the regeneration barriers of P. armeniacapopulation was obvious. The spatial distribution pattern of the existing regenerated young plants reflects the habitat change, survival stress, and grazing disturbance. In this context, more protective intervention should be enhanced to promote natural regeneration of P. armeniacapopulation.

Table and Figures | Reference | Related Articles | Metrics
  
Selenium biofortification in plants and application potential of microorganisms in selenium biofortification
LI Liu, LIU Qing-Hua, YIN Chun-Ying
Chin J Plant Ecol    2023, 47 (6): 756-769.   DOI: 10.17521/cjpe.2022.0163
Accepted: 28 September 2022

Abstract394)   HTML96)    PDF (1823KB)(235)       Save

Selenium is an essential micronutrient element for humans. The range between “beneficial” and “harmful” levels of selenium is very narrow, so biofortification through plants is a safe and effective way to supplement selenium. This article reviewed the processes of selenium uptake, transport, and metabolism in plants. Plants mainly absorb selenate, selenite, and organic selenium from soil. The root system has different absorption mechanisms for different forms of selenium, and the absorption process is participated by different transporters. The absorbed selenium is mainly transported in plants in the form of selenate ion, transported to the aboveground through the xylem and the phloem, and metabolized under the action of various enzymes. Finally, part of the selenium absorbed by the roots is stored in the plant as organic selenium, and the other part is released into the atmosphere in the form of selenide. This article also focuses on the effects of different types of rhizosphere microorganisms on plant selenium biofortification. Arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and rhizosphere promoting bacteria can promote the absorption of selenium in plants to a certain extent, but their internal mechanisms are still unclear. Based on the current research status, the future research focuses are put forward: 1) the process of selenium absorption by plants and its gene regulation; 2) the underlying mechanism and application potential of microorganisms on selenium biofortification in plants.

Table and Figures | Reference | Related Articles | Metrics
  
Response of rhizosphere microbial community structure and functional characteristics to health status of Malania oleifera
ZHANG Zhong-Fu, WANG Si-Hai, YANG Wei, CHEN Jian
Chin J Plant Ecol    2023, 47 (7): 1020-1031.   DOI: 10.17521/cjpe.2022.0335
Accepted: 13 March 2023

Abstract390)   HTML86)    PDF (3081KB)(179)       Save

Aims To reveal the relationship between rhizosphere microbial composition, functional characteristics and health status of Malania oleifera.

Methods We collected rhizosphere soil samples of healthy and non-healthy M. oleifera at five different habitats in broadleaf forest, artificial planting forest and karst forest, sequenced the microbial communities using illumina high-throughput sequencing techniques and predicted the microbial community functions using FAPROTAX.

Important findings The results showed that: 1) Amplicon sequence variants (ASV) representative sequence classification analysis showed slight differences in microbial composition among five habitats. The top five bacterial phyla were Acidobacteriota, Proteobacteria, Actinobacteriota, Chloroflexi and Myxococcota. There were significant differences in rhizosphere microbial composition between healthy and non-healthy plants, and the dominant microbial taxa changed significantly. 2) The non-metric multidimensional scaling (NMDS) analysis showed significant differences in microbial components of M. oleiferawith different health status. Redundancy analysis results showed that the healthy plant samples were distributed along the first axis, and the two axes explained 25.83% of the variation in the microbial community as a whole. The contents of soil available phosphorus, total potassium and pH were the main factors affecting the rhizosphere microbial communities of healthy plants. Redundancy analysis of non-healthy plants showed that 51.84% of the variation in microbial community was explained by the two ordination axes. Soil total potassium content and available phosphorus content represented the important factors affecting the rhizosphere microbial communities of the non-healthy plants. 3) The correlation heatmap showed that soil pH, available phosphorus content and total potassium content were significantly correlated with the abundance of Chloroflexi, Planctomycetota, Methylomirabilota and Desulfobacterota in healthy plants. However, the abundance of Desulfobacterota, Acidobacteriota, Desulfobacterota, Latescibacterota and Gemmatimonadota were significantly affected by soil pH, available nitrogen content, available phosphorus content, total phosphorus content and total potassium content in non-healthy plants. 4) FAPROTAX functional prediction results showed that the abundance of phototrophy, photoautotrophy, aromatic compound degradation, cyanobacteria and oxygenic decreased significantly in healthy rhizosphere microorganisms, whereas fermentation, ureolysis and human pathogens increased significantly. The results demonstrate that the rhizosphere microbial community undergoes significant changes in different health conditions.

Table and Figures | Reference | Related Articles | Metrics
  
Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling
Chin J Plant Ecol    2024, 48 (1): 1-20.   DOI: 10.17521/cjpe.2023.0075
Accepted: 25 January 2024

Abstract385)      PDF (2265KB)(432)       Save
There are substantial carbon exchange fluxes between soil, vegetation and atmosphere in the terrestrial ecosystems, which are highly relevant to global climate changes. Mycorrhizal fungi can form symbiotic associations with most terrestrial plants, linking the above- and below-ground ecosystems through mineral nutrient-carbon exchange; thus, mycorrhizal fungi play crucial roles in terrestrial carbon cycling. This review summarized the involvements of mycorrhizal fungi in the terrestrial carbon cycling processes, including the carbon input, and formation, stabilization, and decomposition of soil organic matter. Studies have demonstrated that mycorrhizal fungi markedly influence the terrestrial carbon input processes by alleviating plant nutrient deficiencies, improving plant stress resistance, influencing plant photosynthesis, and regulating plant diversity-productivity relationships, subsequently sustaining or improving primary productivity of terrestrial vegetation. A considerable proportion of photosynthetic carbon is channeled directly into the soil matrix via the fungal mycelial network, where it is partly converted into microbial-derived organic carbon, further changes the composition of soil organic carbon, and be stabilized through association with minerals and/or forming soil aggregates. Mycorrhizal fungi can affect the decomposition and transformation of soil organic matter mainly through two mechanisms: the rhizosphere priming effects and/or hyphosphere biogeochemical processes. These mechanisms involve the secretion of specific extracellular enzymes, shaping hyphosphere microbial communities, induction of chemical oxidation, and competition for limited resources (e.g., nutrients and water) with free-living saprotrophs. Considering the sensitivity of mycorrhizal fungi to environmental and climate changes, we also discuss the impact of global change factors on soil carbon cycling mediated by mycorrhizal fungi. Finally, we proposed future research directions, emphasizing a need for in-depth studies on the role of mycorrhizal fungi in terrestrial carbon cycling and their environmental dependence based on network experiments in typical ecosystems. Quantitative studies should be strengthened to integrate mycorrhizal fungi into ecosystem carbon cycling models, and mycorrhizal technologies should be developed and practiced in ecological restoration and agriculture to facilitate terrestrial carbon sequestration for achieving the national carbon neutrality goals and combating climate changes.
Related Articles | Metrics
  
Species delimitation and genetic conservation of the endangered firs Abies beshanzuensis and A. ziyuanensis
YANG Ling, LIANG Si-Qi, PAN Jia-Ming, WEI Jin-Xin, DING Tao, JIANG Ri-Hong, SHAO Yi-Zhen, ZHANG Xian-Chun, LIU Yong-Bo, XIANG Qiao-Ping
Chin J Plant Ecol    2023, 47 (12): 1629-1645.   DOI: 10.17521/cjpe.2022.0295
Accepted: 08 June 2023

Abstract381)   HTML41)    PDF (2657KB)(138)       Save

Aims “Species” is the basic taxonomical unit in biology. The accuracy of endangered species delimitation largely determines the efficiency and conservation strategies. Abies beshanzuensis, A. ziyuanensis and A. dayuanensis, a group of endangered firs endemic to the subtropical region of China, have extremely small populations and controversial taxonomy. According to morphological differences and geographical distribution, A. dayuanensis has been considered as the synonym of A. ziyuanensis, whereas A. ziyuanensis is currently treated as a variety of A. beshanzuensis. However, no genetic evidence has been provided to test this classification hypothesis.
Methods We performed target enrichment sequencing on 23 individuals from eight extant populations and obtained 805 single nucleotide polymorphic sites from 60 single-copy nuclear genes for population genetic analyses.
Important findings Results of population genetic structure and demographic history analyses showed that this endangered fir group has diverged into two lineages corresponding to A. beshanzuensis and A. ziyuanensis. Abies ziyuanensis first diverged from the common ancestor of A. beshanzuensis and A. dayuanensis, the latter two split apart later and more closely related, forming the other lineage. The genetic diversity is low within these populations. Strong genetic differentiation was found among populations (fixation index, FST = 0.083-0.208). Gene flow is not detected after lineages split, probably because of the fragmented habitats which blocked effective genetic exchanges among populations. Ecological niche comparison showed that the average annual temperature and the temperature of the coldest quarter were significantly higher in the habitats of these endangered firs compared to those of non-threatened firs in East Asia. Therefore, we inferred that global warming is likely to push this group of endangered firs to the edge of extinction. According to the significant population differentiation, we provide genetic evidence that A. dayuanensis is a synonym of A. beshanzuensis, and resurrect A. ziyuanensis as a separate species. Based on the niche comparison results, we highlight the necessity to carry out ex suit conservation in the Hengduan Mountains and the Qingling-Bashan Mountains and conduct in suit regeneration.

Table and Figures | Reference | Related Articles | Metrics

  • WeChat Service: zwstxbfw

  • WeChat Public:zwstxb